用户名: 密码: 验证码:
脉冲电场对大豆蛋白理化性质和脂肪氧化酶的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲电场(Pulsed Electric Fields, PEF)处理是一种新型的非热食品杀菌技术。它是以较高的电场强度(10-50kV/cm)、较短的脉冲宽度(0-100μs)和较高的脉冲频率(0-2000Hz)对液体、半固体食品进行处理,并且可以组成连续杀菌和无菌灌装的生产线。脉冲电场技术要在食品加工中大规模推广使用,还需要解决很多问题(如杀菌钝酶机理及动力学模型的建立、脉冲电场对食品组分的影响和食品安全性评价等等)。大豆富含丰富的蛋白质和合理的氨基酸组成,是国际上公认的一种全营养食品。大豆蛋白具有重要的营养价值和理化及功能特性(如粘弹性、凝胶性、乳化性)等,在食品配方中作为一种重要的功能成分和食品添加剂广泛应用于食品工业。但大豆中含有多种酶类和一些抗营养因子,使得大豆及其制品有一定的毒副作用和产生不愉快的豆腥味。传统的加热杀菌易使大豆蛋白变性,大豆蛋白饮料易于沉淀,从而影响产品的质量;蛋白质天然结构的破坏会使理化及其功能性质发生变化,温度太低对抗营养因子和豆腥味祛除不彻底。本研究的目的就是利用脉冲电场这一新型的杀菌技术处理豆奶及大豆分离蛋白溶液,初步探讨脉冲电场对豆奶品质、大豆脂肪氧化酶和大豆分离蛋白功能性质及结构的影响,为脉冲电场技术在大豆制品加工中的应用、大豆蛋白的改性及食品安全提供理论参考。
     以豆奶为真实的食品体系,测定了脉冲电场处理后豆奶理化性质、色泽、风味、酶类及微生物等指标,结果表明,由于较高的脉冲电场能使带电粒子趋向一致,致使黏度下降;脉冲电场可能导致轻微褐变的发生,豆奶L值略有上升;pH值、电导率没有发生改变。通过GC-MS测定结果表明,脉冲处理后的豆奶的风味物质几乎没有变化;处理后豆奶中总游离氨基酸含量降低,半胱氨酸、酪氨酸、苯丙氨酸和丝氨酸含量降低的原因可能是电场作用使半胱氨酸之间通过巯基氧化形成了二硫键、对疏水相互作用和氢键有一定的影响。脉冲电场对大豆脂肪氧化酶(SLOX)、大豆胰蛋白酶抑制剂(STI)及脲酶有显著的钝化效果(P<0.05),脲酶对脉冲电场较为敏感,SLOX次之,STI对脉冲电场具有一定的抵抗力。脉冲强度和处理时间对大肠杆菌、沙门氏菌及金黄色葡萄球菌的钝化都有显著的影响(P<0.05)。大肠杆菌对脉冲电场比较敏感,沙门氏菌次之,金黄色葡萄球菌对脉冲电场的抵抗力较强。
     以大豆分离蛋白溶液为研究对象,研究了脉冲电场对其理化及功能性质的影响,脉冲电场处理后大豆分离蛋白的pH值和表观黏度略微降低,溶解度、乳化性及起泡性都有所提高,较强脉冲条件则使其功能性质呈现下降趋势。原因可能是脉冲电场对其疏水相互作用有一定的影响,使大豆分离蛋白分子部分伸展,疏水基团暴露,因此溶解度、乳化性及起泡性都提高;较强的脉冲条件则使极化的蛋白分子之间相互吸引重新形成分子聚集体,其功能性质下降。脉冲处理后的大豆分离蛋白的7S和11S的变性温度都有所下降,7S的变性温度下降的较大,说明7S对脉冲处理较为敏感。热变性温度的下降说明蛋白的构象发生了变化,其结构发生了解折叠,变为松散的结构。
     应用Ellman试剂法、ANS荧光探针法、分子排阻法及激光光散射法研究了脉冲处理前后大豆分离蛋白聚集情况。结果发现,随着脉冲强度的增大或时间的延长,大豆分离蛋白的表面游离巯基含量和疏水性提高,较强的脉冲则使其巯基含量和疏水性下降。短的脉冲处理时间对大豆分离蛋白分子量和粒径分布几乎没有影响;但脉冲处理时间长于432μs,高于1000kDa和1000nm大分子蛋白聚集体含量增加。这说明脉冲电场诱导了大豆蛋白分子的极化;破坏了维持蛋白四级结构的作用力如疏水相互作用、二硫键、静电相互作用及氢键等;导致了蛋白亚基解离和疏水基团的暴露;极化的亚基相互吸引通过非共价键重新形成更大的分子聚集体。
     应用SDS-PAGE聚丙烯酰胺凝胶电泳、圆二色谱法(CD)、拉曼光谱法(Raman)和FT-IR光谱法等方法研究了PEF处理后大豆分离蛋白结构的变化。脉冲处理后11S球蛋白和7S球蛋白的各亚基的电泳谱带都没有变化,说明脉冲电场对大豆分离蛋白的亚基没有影响。CD色谱法分析结果表明,随着脉冲处理时间的延长,α-螺旋结构的含量逐渐减小,β-折叠逐渐增大,无规则卷曲稍微增大;但当脉冲处理时间为547μs时β-折叠含量变小,而无规则卷曲含量增大。这说明,脉冲电场诱导了维持蛋白二级结构的作用力如氢键等改变了二级结构,从而使四种结构的含量发生了变化,Raman和FT-IR光谱分析结果进一步证明了这一点。Raman光谱中通过S-S和C-C伸缩振动特征谱带的变化,说明脉冲电场对巯基和二硫键有一定的影响;通过酪氨酸特征振动频率的变化情况,说明脉冲电场对疏水相互作用有一定的影响。
     在两极方波脉冲条件下,随着PEF处理时间延长、强度增强、频率及宽度增大,大豆脂肪氧化酶的钝化程度增强。一级分数转换模型、韦布分布函数和Fermi’s模型都可用来很好地拟合大豆脂肪氧化酶活性和PEF参数之间的关系,韦布分布函数最适于预测PEF处理参数对大豆脂肪氧化酶的钝化,它可以解释在低PEF强度时的时间延迟,通过高的形状系数来反应;而一级分数转换模型可以提供PEF的最大钝化酶活;Fermi’s模型可以提供给酶活性为50%时所需的临界电场强度。这些数据为PEF技术在豆奶加工中的应用提供了很重要的信息。
Pulsed electric fields (PEF) are a new non-thermal food preservation method, which treats liquid or semi-solid food with high electric field intensities (10-50 kV/cm), very short electric pulse (0-100μs) and very high pulse frequency (0-2000 Hz). PEF can is convenient to continuously sterilize and aseptically can. There are many problems to need solve for the industrial application of PEF, for example, mechanism and modeling of inactivation microorganisms and enzymes; effects of PEF on food constituents and structures; product safety assurance after PEF processing etc. Soybean is a full-nutrient food due to have abounding proteins and rational amino acids. So soybean proteins are commonly used as a functional ingredient and additive for food formulation because of its excellent functional properties (stickiness, elasticity, gelling, and emulsification) and good nutritional values. However, soybean and soy products have a rancid off-flavor and negative aspects to human health due to the presence of some enzymes and antinutritional factors. Thermal preservation results in denaturation of soybean proteins and precipitation of beverage containing soybean proteins, thus affects the quality of products. Disruption of nature proteins structure can affect their physicochemical and functional properties. Low thermal does completely remove the rancid off-flavor and antinutritional factors. The objective of this study is to investigate the effect of PEF on the quality of soymilk, inactivation of soybean lipoxygenase (SLOX), and physicochemical properties and structure of soybean protein isolates (SPI) in order to provide the reference for the application of soybean products, modification of soybean proteins, and food safety.
     Physicochemical properties, color, flavor, enzymes, and microorganisms of soymilk have detected. The viscosity of soymilk decreased possibly due to identical tendency of electric particles in PEF inducement. PEF resulted in mild browning and L increased a little. Electric conductivity, flavor and pH did not change. The contents decrease of cysteine, hydrophobic amino acid (tyrosine and phenylalanine) and serine suggested that PEF had affected on disulfide bond, hydrophobicity and hydrogen bond. PEF inactivated markedly SLOX, soybean trypsin inhibitors (STI) and urease (p<0.05), which urease is more sensitive, SLOX second, STI resistent to PEF. PEF strength and time had remarkable effects on inactivation of E.coil, salmonella and S. aureus (p<0.05), which E.coil is more sensitive, salmonella second, S. aureus resistent to PEF.
     Effects of PEF treatment (0 to 547μs and 0 to 40 kV/cm) on physicochemical and functional properties of SPI were studied. The viscosity and pH of SPI PEF-treated decreased slightly. Solubility, emulsibility, foaming capacity increased with the increment of the pulsed electric fields strength and treatment time. When the PEF strength and treatment time were above 30 kV/cm and 288μs, solubility, emulsibility, foaming capacity of SPI decreased due to denaturation and aggregation of SPI by hydrophobic interactions and disulfide bonds. The denaturation temperatures of 7S reduced more than 11S after PEF treatment, which indicated 7S was more sensitive to PEF processing. The decrease of denaturation temperatures of SPI showed that PEF changed the structure of SPI and make protein unfold and relax.
     Aggregation of SPI after PEF was investigated by Ellman reagent, ANS fluorescence probe, size exclusion chromatography (SEC) and laser light scattering analyses (LLS). Surface free sulfhydryls and hydrophobicity of SPI increased with the increment of the PEF strength and treatment time. The stronger PEF conditions caused surface free sulfhydryls and hydrophobicity to decrease due to dissociation, denaturation and aggregation of SPI detected by SEC and LLS. Over 432μs the content of molecule of weight higher than 1000 kDa and larger than 1000 nm increased. These results showed PEF treatment induced polarization of SPI and dissociation of sub-units and molecular unfolding; changed molecular conformation and caused hydrophobic groups and free sulfhydryls buried inside the molecules to expose. Too strong PEF conditions produced stronger molecular polarization and polarized molecules attracted each other and converged again to form larger aggregations by non-covalent bonds such as hydrophobic interactions, electrostatic interactions, hydrogen bonds and S-S bonds.
     The structure of SPI after PEF was investigated by SDS-PAGE, CD, Raman and FT-IR spectra. Subunits of 11S and 7S fractions did not change after PEF by SDS-PAGE spectra. CD spectra showed thatα-helix content decreased, andβ-sheet content and random coil content increased with the increment of treatment time. But theβ-sheet content reduced and the random coil content increased when PEF treatment time was 547μs. These results showed PEF may destrory the interactional force (for example, hydrogen bond) maintaining the second structure of protein and change the second structure of protein. This fact was confirmed further by Raman and FT-IR spectra. Changes in S-S and C-C stretching vibration frequency by Raman spectra indicated that PEF have certain effects on sulfhydryl and disulphide bond. PEF influenced hydrophobicity by changes in tyrosine vibration frequency of Raman spectra.
     Residual activity of SLOX decreased with the increase of PEF treatment time, strength, frequency, and width in square wave pulse of bipolar mode. The first-order fractional conversion model, Weibull distribution function, and Fermi’s model described successfully the relationship between residual activity of SLOX and PEF paremeters, which Weibull distribution function was the best model. The model showed greater capability to make predictions than the other tested models and was reflected by a higher shape parameter if the curves of inactivation of enzyme exhibited some lag time at low PEF strength. The first-order fractional conversion model provided the residual enzyme activity after a prolonged time of treatment (stabilization). Fermi’s model provided the strength when residual enzyme activity is 50%. The data provide the important reference for the application of PEF in soymilk and soybean products.
引文
1. Doevenspeck, H. Verfahren und vorrichtung zur gewinnung der einzelnen phasen nus dispersen systemen. German Patent 1960, 1,237,541.
    2. Sitzmann, W. High voltage pulse techniques for food preservation. In new methods of food preservation (G. W. Gould, Ed.). p.236. Blackie Academic & Professional, London. (1995).
    3. Sale, A. J. H., & Hamilton, W. A. Effects of high electric fields on microorganisms. I. Killing of bacteria and yeast. Biochemica et biophysica acta, 1967, 148: 781-789.
    4. Hamilton, W. A., & Sale, A. J. H. Effects of high electric fields on microorganisms. II. Mechanism of action of the lethal effect. Biochemica et Biophysica Acta, 1967, 148: 789-800.
    5. Zimmerman, U., Pilwat, G., Beckers, F., & Riemann, F. Effects of external electrical fields on cell membrances. Bioelectrochemistry & Bioenergetics, 1976, 3: 58-83.
    6. Hulshegher, H., Potel, J., & Nieman, E. G. Electric field effects on bacteria and yeast cells. Radiat. Environ. Biophys., 1983, 22: 149-162.
    7. Barbosa-Canovas, G. V., Gongora-Nieto, M. M., & Pothakamury, U. R. Preservation of foods with pulsed electric fields., Academic Press San Diego, USA. (1999).
    8. Barbosa-Canovas, G. V., Pothakamury, U. R., Palou, E., & Swanson, B. G. Nonthermal Preservation of Foods, (pp. 53-112). New York: Marcel Dekker. (1998).
    9. Zimmermann, U., Pilwat, G., & Riemann, F. Dielectric breakdown in cell membranes, Biophys. J., 1974, 14: 881-899.
    10. Zimmermann, U. The effect of high intensity electric field pulses on eukaryotic cell membranes: fundamentals and applications, in: Zimmermann, U., Neil, G.A. (Eds.), Electromanipulation of Cells, CRC Press, Boca Raton, pp. 1-106. (1996).
    11. Vega-Mercado, H., Mart?n-Belloso, O., Qin, B. L., Chang, F. J.,Gondora-Nieto, M. M., Barbosa-Ca novas, G. V., & Swanson, B. G. Non-thermal food preservation: pulsed electric fields. Trends in Food Science & Technology, 1997, 8: 151-157.
    12. Jeyamkondan, S., Jayas, D. S., & Holley R. A. Pulsed electric field processing of foods: a review. Journal of Food Protection, 1999, 62(9): 1088-1096.
    13. Qin, B., Zhang, Q., Barbosa-Canovas, G. V., Swanson, B. G., & Pedrow, P. D. Pulsed electric fields treatment chamber design for liquid food pasteurisation using a finite element method. Transactions of ASAE, 1995, 38(2): 557-565.
    14. Yeom, H. W., Zhang, Q. H., & Dunne, C. P. Inactivation of papain by pulsed electric fields in a continuous system. Food Chemistry, 1999, 67: 53-59.
    15. Zhang, Q., Qin, B. L., Barbosa-Canovas, G. V., & Swanson, B. G. Inactivation of Escherichia coli for food pasteurization by high-strength pulsed electric fields. Journal of Food Processing and Preservation, 1995, 19: 103-118.
    16. Palaniappan S., Sastry S. K., & Richter E. R. Effects of electricity on microorganisms: a review. Journal of Food Processing & Preservation, 1990, 14: 393-414.
    17. Min, S., Jin, Z. T., Min, S. K., Yeom, H., & Zhang, Q. H. Commercial-scale pulsed electric field processing of orange juice. Journal of Food Science, 2003, 68: 1265-1271.
    18. Min, S., Jin, Z. T., & Zhang, Q. H. Commercial scale pulsed electric field processing of tomato juice. Journal of Agricultural and Food Chemistry, 2003, 51: 3338-3344.
    19. Ayhan, Z., Streaker, C. B., & Zhang, Q. H. Design, construction and validation of a sanitary glove box packaging system for product shelf-life studies. Journal of Food Processing & Preservation, 2001, 25: 183-196.
    20. Heinz, V., & Knorr, D. Reduction of pathogen microorganisms by high pressure and pulsed electric fields: theoretical and practical considerations. Ernaehrung, 2002, 26(3): 102-106.
    21. Heinz, V., Alvarez, I., & Angersbach A., & Knorr, D. Preservation of liquid foods by high intensity PEF-basic concepts for process design [Review]. Trends in Food Science Technology, 2001, 12: 103-111.
    22. Zhang, Q., Barbosa-Canovas, G. V., & Swanson, B. G. Engineering aspects of pulsed electric field pasteurization. Journal of Food Engineering, 1995, 25: 261-281.
    23. Dunn, J. E., & Pearlman, J. S. Methods and apparatus for extending the shelf-life of fluid food products. US patent, 1987, 4, 695,472.
    24. Grahl, T., & Markl, H. Killing of micro-organisms by pulsed electric fields. Applied Microbioligy and Biotechnology, 1996, 45: 148-157.
    25. Lubicki, P., & Jayaram, S. High voltage pulse application for the destruction of the gram-negative bacterium yersinia enterocolitica. Bioelectrochemistry & Boenergetics, 1997, 43: 135-141.
    26. Matsumoto, Y., Satake, T., & Shioji N. Iactivation of microorganisms by pulsed high voltage application. Conference record of IEEE industrial application society annual meeting, 1991, 652-901.
    27. McDonald, C. J., Lloyd, S. W., Vitale, M. A., Petersson, K., & Innings, F. Effects of pulsed electric fields on microorganisms in orange juice using electric field strengths of 30 and 50 kV/cm. Journal of Food Science, 2000, 65(6): 984-989.
    28. Sensoy, I., Zhang, Q. H., & Sastry, S. K. Inactivation kinetics of Salmonella dublin by pulsed electric field. Journal of Food Process Engineering, 1997, 20 (5): 367-381.
    29. Vega-Mercado, H., Martin-Belloso, O., Qin, B. L., Chang, F.J., Gongora-Nieto, M. M., Barbosa-Canovas, G. V., & Swanson, B. G. Non-thermal food preservation: pulsed electric fields. Trends in Food Science & Technology, 1997, 8: 151-157.
    30. Wouters, P. C., Alvarez, I., & Raso, J. Critical factors determing inactivation kinetics by pulsed electric field food processing. Trends in Food Science & Technology, 2001, 12: 112-121.
    31. Knorr, D., Geulen, M., Grahl, T., & Sitzmann, W. Food application of high electric field pulses. Trends in Food Science and Technology, 1994, 5: 71-75.
    32. Zhang, Q.H., Barbosa-Canovas, G.V., & Swanson, B. G. Engineering aspects of pulsed electric fieldpasteurization. Journal of Food Engineering, 1995, 25: 261-281.
    33. Qin, B. L., Pothakamury, U. R., Vega, H., Martin, O., Barbosa-Canovas, G. V., & Swanson B.G. Food pasteurization using high-intensity pulsed electric fields. Food Technology, 1995, 12: 57-59.
    34. Hulsheger, H., Potel, J., & Niemann, E. G. Electric field effects on bacteria and yeast cells. Radiation and Environmental Biophysics, 1983, 22: 149-162.
    35. Peleg, M. A model of microbial survival after exposure to pulsed electric fields. Journal of Science of Food and Agriculture, 1995, 67: 93-99.
    36. Babosa-Canovas, G. V., Zhang, Q. H., & Tabilo-Munizaga, G. Pulse electric fields in food processing. Technomic Publishing Company, Inc., U.S.A., 2001.
    37. Evrendilek, G. A. Inactivation kinetics of pathogenic microorganisms by pulsed electric fields-Ph. D., The Ohio State University, 2001.
    38. Aronsson, K., Lindgren, M., Johansson, B. R., & Ronner, U. Inactivation of microorganisms using pulsed electric fields: the influence of process parameters in Escherichia coli, Listeria nnocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae. Innovative Food Science and Emerging Technologies, 2001, 2: 41-54.
    39. Alvarez, I., Pagan, R., Raso, J., & Condon S. Environmental factors influencing the inactivation of Listeria monocytogenes by pulsed electric fields. Letters in Applied Microbiology, 2002, 35: 489-493.
    40. Ho, S.Y., Mittal, G. S., Cross, J. D., & Griffiths, M. W. Inactivation of Pseusomonas fluorescens by high voltage electric pulses. Journal of Food Science, 1995, 60: 1337-1340.
    41. Pothakamury, U. R., Barbosa-Canovas, G. V., Swanson, B. G., & Spence, K. D. Ultrastructural changes in Staphylococcus aureus treated with pulsed electric fields. Food Science and Technology International, 1997, 3: 113-121.
    42. Pothakamury, U. R., Monsalve-Gonzalez, A., Barbosa-Canovas, G. V., & Swanson, B. G. High voltage pulsed electric field inactivation of Bacillus subtilis and Lactobacillus delbrueckii. Spanish Journal of Food Science and Technology, 1995 35: 101-107.
    43. Pothakamury, U. R., Vega, H., Zhang, Q., Barbosa-Canovas, G. V., & Swanson, B. G. Effect of growth stage and processing temperature on the inactivation of Escherichia coli by pulsed electric fields. Journal of Food Protection, 1996, 59: 1167-1171.
    44. Vega-Mercado, H., Pothakamury, U. R., Chang, F. J., Barbosa-Canovas, G. V., & Swanson, B. G. Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric field hurdles. Food Research International, 1996, 29; 117-121.
    45. Vega-Mercado, H., Powers, J., Barbosa-Canovas, G. V., & Swanson, B. G. Plasmin inactivation with pulsed electric fields. Journal of Food Science, 1995, 60: 1143-1145.
    46. Castro, A. J., Swanson, B. G., Barbosa-Canovas, G. V., & Zhang, Q. H. Pulsed electric field modification of milk alkaline phosphatase activity. In G. V (Barbosa-Canovas, & Q. H. Zhang (Eds.), Pulsed electric fields in food processing. Fundamental aspects and applications 2001, (pp. 65-82).Lancaster, PA: Technomic Publishing Company Inc.
    47. Vega-Mercado, H., Powers, J. R., Barbosa-Canovas, G. V., Swanson, B. G., & Luedecke, L. (1995). Inactivation of a protease from Pseudomonas fluorescens M3/6 using high voltage pulsed electric fields. In Proceedings IFT Annual Meeting, p. 267, California, USA.
    48. Vega-Mercado, H., Powers, J. R., Martin-Belloso, O., Luedecke, L., Barbosa-Canovas, G. V., & Swanson, B. G. (1997). Effect of pulsed electric fields on the susceptibility of proteins to proteolysis and the inactivation of an extracellular protease from Pseudomonas fluorescens M3/6. In R. Jowitt, ed. Engineering& Food at ICEF 7: Part I (pp. C73-C76). Sheffield Academic Press Ltd, Sheffield, UK.
    49. Ho, S. Y., Mittal, G. S., & Cross, J. D. Effects of high field electric pulses on the activity of selected enzymes, Journal of Food Engineering, 1997, 31, 69-84.
    50. Van Loey, A., Verachtert, B., & Hendrickx, M. Effects of high electric field pulses on enzymes. Trends in Food Science & Technology, 2002, 12: 94-102.
    51. Yang, R. J., Li, S. Q., & Zhang, Q. H. Effects of pulsed electric fields on the activity and structure of pepsin. Journal of Agriculture and Food Chemistry, 2004, 52: 7400-7406.
    52. Yang, R. J., Li, S. Q, & Zhang, Q. H. Effects of pulsed electric fields on the activity of enzymes in aqueous solution. Journal of Food Science, 2004, 69: 241-248.
    53. Giner, J., Rauret-Arino, A., & Barbosa-Cánovas, G. V. (1997). Inactivation of polyphenoloxidases by pulsed electric fields. In Processing IFT Annual Meeting, Orlando USA, pp.19
    54. Bendicho, S., Barbosa-Cánovas, G. V., & Martín, O. Reduction of protease activity in simulated milk ultrafiltrate by continuous flow high intensity pulsed electric field treatments. Journal of Food Science, 2003, 68(3): 952-957.
    55. Bendicho, S., Barbosa-Cánovas, G. V., & Martín, O. Reduction of protease activity in milk by continuous flow high-intensity pulsed electric field treatments. Journal of Dairy Science, 2003, 86: 697-703.
    56. Bendicho, S., Barbosa-Cánovas, G. V., & Martín, O. Milk processing by high intensity pulsed electric fields. Trends in Food Science & Technology, 2002, 12: 195-204.
    57. Bendicho, S., Estela, C., Giner, J., Barbosa-Cánovas, G. V., & Martín, O. Effect of high intensity pulsed electric fields and thermal treatments on a lipase from Pseudomonas fluorescens. Journal of Dairy Science, 2002, 85: 19-27.
    58. Giner, J., Gimeno, V., Barbosa-Cánovas, G. V., & Martín, O. Effects of pulsed electric field processing on apple and pear polyphenoloxidases. Food Science and Technology International, 2001, 7: 339-345.
    59. Giner, J., Gimeno,V., Espachs, A., Elez, P., Barbosa-Cánovas G. V., & Martín, O. Inhibition of tomato (Lycopersicon esculentum Mil.l) pectin methylesterase by pulsed electric fields. Innovative Food & Science Emerging Technologies, 2000, 1: 57-67.
    60. Giner, J., Gimeno, V., Palomes, M., Barbosa-Cánovas G. V., & Martín, O. Lessening polygalacturonase activity in a commercial enzyme preparation by exposure to pulsed electric fields. European Food Research and Technology, 2003, 217: 43-48.
    61. Giner, J., Grouberman, P., Gimeno, G. V., & Martín, O. Reduction of pectinesterase activity in a commercial enzyme preparation by pulsed electric fields: comparison of inactivation kinetic models. Journal of the Science of Food and Agriculture, 2005, 85: 1613-1621.
    62. Giner, J., Ortega, M., Mesegue, M., Gimeno, V., Barbosa-Cánovas, G. V., & Martín, O. Inactivation ofpeach polyphenoloxidase by exposure to pulsed electric fields. Journal of Food Science, 2002, 67: 339-345.
    63. Min, S., Min, S.K., & Zhang, Q. H. Inactivation kinetics of tomato juice lipoxygenase by pulsed electric fields. Journal of Food Science, 2003, (6): 1995-2001.
    64. Martin-Belloso, O., Qin, B. L., Chang, F. J., Barbosa-Canovas, G. V., & Swanson, B. G. Inactivation of Escherichia coli in skim milk by high intensity pulsed electric fields. Journal of Food Processing & Engineering, 1997, 20: 317-336.
    65. Martin-Belloso, O., Vega-Mercado, H., Qin, B. L., Chang, F. J., Barbosa-Canovas, G. V., & Swanson, B. G. Inactivation of Escherichia coli suspended in liquid egg using pulsed electric fields. Journal of Food Processing & Preservation. 1997, 21(3): 193-208.
    66. Elez-Mart?nez, P., Suárez-Recio, M., & Mart?n-Belloso, O. Modeling the reduction of pectin methyl esterase activity in orange juice by high intensity pulsed electric fields. Journal of Food Engineering, 2007, 78: 184-193.
    67. Elez-Mart?nez, P., Aguil?-Aguayo, I., & Mart?n-Belloso, O. Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal of the Science of Food and Agriculture, 2006, 86: 71-81.
    68. Fachin, D., Van Loey, A., Indrawati, Ludikhuyze, L., & Hendrickx, M. Thermal and high-pressure inactivation of tomato polygalacturonase: a kinetic study. Journal of Food Science, 2002, 67(5): 1610-1615.
    69. Fachin, D., Van Loey, A. M., Nguyen, B. L., Verlent, I., Indrawati, & Hendrickx, M. E. Inactivation kinetics of polygalacturonase in tomato juice. Innovative Food Science and Emerging Technologies, 2003, 4: 135-142.
    70. Van den Broeck, I., Ludikhuyze, L. R., Van Loey, A. M., & Hendrickx, M. E. Inactivation of orange pectinesterase by combined high pressure and temperature treatments: a kinetic study. Journal of Agricultural and Food Chemistry, 2000, 48: 1960-1970.
    71. Espachs-Barroso, A., Bendicho, S., Barbosa-Canovas, G. V., & Mart?n-Belloso, O., Inactivation of a commercial pectic enzyme by high intensity pulsed electric fields, in The Abstract book of the symposium‘Emerging Technologies for the Food Industry’, held in Madrid, Spain. Consejo Superior de Investigaciones Cientificas, Madrid. Abstract book 2.07, p. 110 (2002).
    72. Rodrigo, D., Barbosa-Ca′novas, G. V., Mart?nez, A., & Rodrigo, M. Pectin methyl esterase and natural microflora of fresh mixed orange and carrot juice treated with pulsed electric fields. Journal of Food Protection, 2003, 66(12): 2336-2342.
    73. Bendicho, S., Espachs, A., Ara ntegui, J., & Martin, O. Effect of high intensity pulsed electric fields and heat treatments on vitamins of milk. Journal of Dairy Research, 2002, 69: 113-123.
    74. Qin, B. L., Pothakamury, U. R., Vega, H., Mart?n, O., Barbosa-Canovas, G. V., & Swanson, B. G. Food pasteurization using high-intensity pulsed electric fields. Food Technology, 1995, 49: 55-60.
    75. Barsotti, L., Dumay, E., Mu, T. H., Fernandez-Daz, M. D., & Cheftel, J. C. Effects of high voltage electric pulses on protein-based food constituents and structures. Food Science and Technology, 2002,12: 136-144.
    76. Perez, O. E., & Pilosof, A. M. R. Pulsed electric fields on the molecular structure and gelation ofβ-lactoglobulin concentrate and egg white. Food Research International, 2004, 37: 102-110.
    77. Li, S. Q., Bomser, A. B., & Zhang, Q. H. Effects of pulsed electric fields and heat treatment on stability and secondary structure of bovine immunoglobulin G. Journal of Agricultural and Food Chemistry, 2005, 53: 663-670.
    78.张鹰,曾新安朱思明高强PEF对脱脂乳游离氨基酸和乳糖的影响研究[J].食品科技2004, (3): 17-19.
    79. Jeantet, R., Baron, F., Nau, F., Roignant, M., & Brule G. High intensity pulsed electric fields applied to egg white: effect on salmonella enteritidis inactivation and protein denaturation. Journal of Food Protection, 1999, 62(12); 1381-1386.
    80. Fernandez-Diaz, M. D., Barsotti, L., Dumay, E., & Cheftel, J. C. Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. Journal of Agricultural and Food Chemistry, 2000, 48: 2332-2339.
    81. Jin, Z. T., & Zhang, Q. H. Pulsed electric field inactivation of microorganisms and preservation of quality of cranberry juice. Journal of Food Processing & Preservation, 1999, 23(6): 481-497.
    82. Ayhan, Z., Yeom, H. W., & Zhang, Q. H., & Min, D. B. Flavor, color, and vitamin C retention of pulsed electric field processed orange juice in different packaging materials. Journal of Agricultural and Food Chemistry, 2001, 49(2): 669-674.
    83. Ayhan, Z., Zhang, Q. H., & Min, D. B. Effects of pulsed electric field processing and storage on the quality and stability of single-strength orange juice. Journal of Food Protection, 2002, 65(10): 1623-1627.
    84. Yeom, H. W., Streaker, C. B., Zhang, Q. H., & Min, D. B. Effects of pulsed electric fields on the activities of microorganisms and pectin methyl esterase in orange juice. Journal of Food Science, 2000, 65(8): 1359-1363.
    85. Yeom, H. W., Streaker, C. B., Zhang, Q. H., & Min, D. B. Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. Journal of Agricultural and Food Chemistry, 2000, 48(10): 4597-4605.
    86. Yeom, H. W., Zhang, Q. H., & Chism, G. W. Inactivation of pectin methyl esterase in orange juice by pulsed electric fields. Journal of Food Science, 2002, 67(6): 2154-2159.
    87 Yeom, H. W., Evrendelik, G. A., Jin, Z. T., & Zhang, Q. H. Processing of yogurt-based products with pulsed electric fields: microbial, sensory and physical evaluations. Journal of Food Processing & Preservation, 2004, 28(3): 161-178.
    88.廖小军,钟葵,王黎明等高压PEF对橙汁大肠杆菌和理化性质的影响效果[J].食品科学2003, (6): 59-61.
    89.申双贵,张涛,何勤高压PEF在胡萝卜汁加工中应用的研究[J].食品与机械2000, 79(5): 20-21.
    90. Dimitrov, D. S., & Sowers, A. E. Membrane electroporation fast molecular exchange by electroosmosis. Biochemica et Biophysica Acta, 1990, 1022: 381-392.
    91. Glaser, R. W., Leikin, S. L., & Chernomordik, L. V. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochemica et Biophysica Acta, 1988, 940: 275-287.
    92. Friedman, M., & Brandon, D. L. Nutritional and health benefits of soy proteins. Journal of Agriculture and Food Chemistry, 2001, 49 (3): 1069-1086.
    93. Eskin, N. A. M., Grossman, S., & Pinsky, A. Biochemistry of lipoxygenase in relation to food quality. Critical Reviews in Food Science and Nutrition, 1977, 4: 1-40.
    94. Borhan, M., & Snyder, H. E. Lipoxygenase destruction in whole soybeans by combinations of heating and soaking in ethanol. Journal of Food Science, 1979, 44: 586-590.
    95. Obata, A., Matsuura, M., & Kitamura, K. Degradation of sulfhydryl groups in soymilk by lipoxygenase during soybean grinding. Bioscience Biotechnology and Biochemistry, 1996, 60(8): 1229-1232.
    96. Vollman, J., Grausgruber, H., Wagentristl, H., Wohleser, H., & Michele, P. Trypsin inhibitor activity of soybean as affected by genotype and fertilization. Journal Science of Food and Agriculture, 2003, 83(15): 1581-1586.
    97. Evrendilek, G. A., Zhang, Q. H., & Richter, E. R. Inactivation of Escherichia coli O157:H7 and Escherichia coli 8739 in apple juice by pulsed electric fields. Journal of Food Protection, 1999, 62: 793-796.
    98. Qin, B. L., Chang, F. J., Barbosa-Canovas, G. V., & Swanson, B. G. Nonthermal inactivation of Saccharomyces cerevisiae in apple juice using pulsed electric fields. Lebensm. Wiss. u. Techenol, 1995, 28: 564-568.
    99. Raso, J., Calderon, M. L., Gongora, M., Barbosa-Canovas, G. V., & Swanson, B. G. Inactivation of mold ascospores and conidiospores suspended in fruit juices by pulsed electric fields. Lebensm. Wiss u. Techenol, 1998, 31: 668-672.
    100. Raso, J., Calderon, M. L., Gongora, M., Barbosa-Canovas, G. V., & Swanson, B. G. Inactivation of Zygosaccharomyces bailii in fruit juices by heat, high hydrostatic pressure and pulsed electric fields. Journal of Food Science, 1998, 63: 1042-1044.
    101. Calderun-Miranda, M. L., Barbosa-Canovas, G. V., & Swanson, B. G. Inactivation of Listeria innocua in skim milk by pulsedelectric fields and nisin. International Journal of Food Microbiolgy, 1999, 51: 19-30.
    102. Calderun-Miranda, M. L., Barbosa-Canovas, G. V., & Swanson, B. G. Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin. International Journal of Food Microbiology, 1999, 51: 7-17.
    103. Reina, L. D., Jin, T., Zhang, Q. H., & Yousef, A. E. Inactivation of Listeria monocytogenes in milk by pulsed electric field. Journal of Food Protection, 1998, 61: 1203-1206.
    104. Qiu, X., Sharma, S., Tuhela, L., Jia, M., & Zhang, Q. H. An integrated PEF pilot plant for continuous nonthermal pasteurization of fresh orange juice. Transactions of the ASAE, 1998, 41: 1069-1074.
    105. Keith, W. D., Harris, L. J., & Griffiths, M. W. Reduction of bacterial levels in flour by pulsed electricfields. Journal of Food Process Engineering, 1998, 21: 263-269.
    106. Keith, W. D., Harris, L. J., Hudson, L., & Griffiths, M. W. Pulsed electric fields as a processing alternative for microbial reduction in spice. Food Research International, 1997, 30: 185-191.
    107. Mok, C., & Lee, S. Sterilization of yakju (rice wine) on a serial multiple electrode pulsed electric field treatment system. Korean Journal of Food Science and Technology, 2000, 32: 356-362.
    108. Qin, B. L., Pothakamury, U. R., Barbosa-Canovas, G. V., & Swanson, B. G. Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Critical Reviews in Food Science and Nutrition, 1996, 36: 603-627.
    1. Barbosa-Canovas, G. V., Pothakamury, U. R., Palou, E., & Swanson, B. G. Nonthermal Preservation of Foods (pp. 53-112). New York: Marcel Dekker (1998).
    2.Barsotti, L., Dumay, E., Mu, T. H., Diaz, M. D. F., & Cheftel, J. C. Effects of high voltage electric pulses on protein-based food constituents and structures. Trends in Food Science & Technology, 2002, 12: 136-144.
    3. Jeantet, R., Baron, F., Nau, F., Roignant, M., & Brule, G. High intensity pulsed electric fields applied to egg white: effect on salmonella enteritidis inactivation and protein denaturation. Journal of Food Protection, 1999, 62(12): 1381-1386.
    4. Jeyamkondan, S., Jayas, D. S., & Holley, R. A. Pulsed electric field processing of foods: a review. Journal of Food Protection, 1999, 62(9): 1088-1096.
    5. Qin, B., Zhang, Q., Barbosa-Canovas, G. V., Swanson, B. G., & Pedrow, P. D. Pulsed electric fields treatment chamber design for liquid food pasteurization using a finite element method. Transactions of ASAE, 1995, 38(2): 557-565.
    6. Wouters, P. C., Alvarez, I., & Raso, J. Critical factors determing inactivation kinetics by pulsed electric field food processing. Trends in Food Science & Technology, 2001, 12: 112-121.
    7. Jin, Z. T., & Zhang, Q. H. Pulsed electric field inactivation of microorganisms and preservation ofquality of cranberry juice. Journal of Food Processing & Preservation. 1999, 23(6): 481-497.
    8. Zhang, Q. H., Sastry, S. K., Yousef, A. E., & Sebo, S. A. Electrical properties of foods and the application of high voltage pulsed electric fields. Journal of Food Protection. 1995, 58: 57-58.
    9. Zhang, Q. H., Barbosa-Canovas, G. V., & Swanson, B. G. Engineering aspects of pulsed electric field pasteurization. Journal of Food Engineering, 1995, 25(2): 261-281.
    10. Friedman, M., & Brandon, D. L. Nutritional and health benefits of soy proteins. Journal of Agriculture and Food Chemistry, 2001, 49(3): 1069-1086.
    11. Baur, C., Groch, W., Wieser, H., & Jugel, H. Enzymatic oxidation of linoleic acid: formation of bittertasting fatty acids. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung, 1977, 164: 171-176.
    12. Eskin, N. A. M., Grossman, S., & Pinsky, A. Biochemistry of lipoxygenase in relation to food quality. Critical Reviews in Food Science and Nutrition, 1977, 4: 1-40.
    13. Michael, N.A. Biochemistry of lipoxygenase in relation to food quality. Critical Review of Food Science Nutrition, 1977, (9): 1-40.
    14. Borhan, M., & Snyder, H. E. Lipoxygenase destruction in whole soybeans by combinations of heating and soaking in ethanol. Journal of Food Science, 1979, 44: 586-590.
    15. Obata, A., Matsuura, M., & Kitamura, K. Degradation of sulfhydryl groups in soymilk by lipoxygenase during soybean grinding. Bioscience Biotechnology Biochemistry, 1996, 60(8): 1229-1232.
    16. Vollman, J., Grausgruber, H., Wagentristl, H., Wohleser, H., & Michele, P. Trypsin inhibitor activity of soybean as affected by genotype and fertilization. Journal Science of Food and Agriculture, 2003, 83(15): 1581-1586.
    17. Evrendilek, G. A., Zhang, Q. H., & Richter, E. R. Inactivation of Escherichia coli O157:H7 and Escherichia coli 8739 in apple juice by pulsed electric fields. Journal of Food Protection, 1999, 62(7): 793-796.
    18. Jin, Z. T., & Zhang, Q. H. Pulsed electric field inactivation of microorganisms and preservation of quality cranberry juice. Journal of Processing & Preservation, 1999, 23(6): 481-497.
    19. Vega-Mercado, H., Martin-Belloso, O., Chang, F. J., Barbosa-Canovas, G. V., & Swanson, B. G. Inactivation of Escherichia coli and Bacillus Subtilis suspended in pea soup using pulsed electric fields. Journal of Processing & Preservation, 1999, 20(8): 501-510.
    20. Hindra, F. J., & Baik O. D. Kinetics of Quality Changes During Food Frying. Critical Reviews in Food Science and Nutrition, 2006, 46: 239-258.
    21. Onayemi, O., & Badifu, G. I. O. Effect of blanching and drying methods on nutritional and sensory quality of leafy vegetables. Plant Foods for Human Nutrition, 1987, 37(4): 291-298.
    22. Kobayashi, A., Tsuda, Y., Hirata, N. et al. Aroma constituents of soybean [Glycinemax(L.) Merril] milk lacking lipoxygenase isozymes. Journal of agricultural and food chemistry, 1995, 43: 2449-2452.
    23. Indrawati, I., Van Loey, A. M., Ludikhuyze, L. R., & Hendrickx, M. E. Soybean Lipoxygenase inactivation by pressure at subzero and elevated temperatures. Journal of agricultural and foodchemistry, 1999, 47: 2468-2474.
    24. Clifford, S., & Wim, V. M. the Determination of trypsin inhibitor levels in foodstuffs. Journal of agricultural and food chemistry, 1980, 31: 341-350.
    25. Ruhlman, K. T., Jin, Z. T., Zhang, Q. H., Chism, G. W., & Harper, W. J. Reformulation of a cheese sauce and salsa to be processed using pulsed electric fields. Chapter 14 in: Pulsed electric fields in food processing: Fundamental aspects and applications. Barbosa-Cánovas, G. V., and Zhang, Q. H., Eds. Technomic Publishing Co., Inc., Lancaster, PA. (2001).
    26. Jin, Z. T., Ruhlman, K. T., Qiu, X., Jia, M., Zhang, S., & Zhang, Q. H. Shelf life evaluation of pulsed electric fields treated aseptically packaged cranberry juice. 1998, 98 IFT Annual Metting. Atlanta, GA. June 20-24. Book of Abstracts p. 70.
    27. Li, S. Q., Zhang, Q. H., Lee, Y. Z., & Pham, T. V. Effects of pulsed electric fields and thermal processing on stability of bovine immunoglobulin G in enriched soymilk. Journal of Food Science, 2003, 68: 1201-1207.
    28. Li, S. Q., & Zhang, Q. H. Inactivation of E. coli 8739 in enriched soymilk using pulse delectric fields. Journal of Food Science, 2004, 69: M169-174.
    29. Moreira, M. A., Tavares, S. R., Ramos, V. et al. Hexanal production and TBA Number are reduced in soybean [Glycinemax(L.)Merril] seeds lacking lipoxygenase isozymes 2 and 3. Journal of agricultural and food chemistry, 1993, 41(1): 103-106.
    30. Smouse, T. H. A review of soybean oil reversion flavor. Journal of American Oil and Chemistry Society, 1979, 56: 747-751.
    31. Hildebrand, D. F. Lipoxygenase. Physiology Plant, 1989, 76: 249-253.
    32. Min, S., Min, S. K., & Zhang, Q. H. Inactivation Kinetics of Tomato Juice Lipoxygenase by Pulsed Electric Fields. Journal of Food Science, 2003, 68(6): 1995-2001.
    1. Utsumi, S., Maruyama, N., Satoh, R., & Adachi, M. Structure-function relationships of soybean proteins revealed by using recombinant systems. Enzyme and Microbial Technology, 2002, 30: 284-288.
    2. Utsumi, S., & Kinsella, J. E. Structure-function relationships in food proteins: subunit interactions in heat-inducted gelation of 7S, 11S, and soy isolate proteins. Journal of Agricultural and Food Chemistry, 1985, 33: 297-303.
    3. Maruyama, N., Fukuda, T., Saka S., et al. Molecular and structural analysis of electrophoretic variants of soybean seed storage proteins. Phytochemistry, 2003, 64: 701-708.
    4. Staswick P. E., Hermodson M. A., & Nielsen N. C. Identification of the acidic and basic subunit complexes of glycinin. The Journal of Biological Chemistry, 1981, 256(16): 8752-8755.
    5. Molina, E., Papadopoulou, A., & Ledward, D. A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocolloids, 2001, 15: 263-269.
    6. Lowry, O. H., Rosebrough, N. J., Lewis, A. L., & Randall, R. J. Protein measurement with the folin phenol reagent. Journal Biological Chemistry, 1951, 193: 265-75.
    7. Pearce, K. N., & Kinsella, J. E. Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 1978, 26: 716-723.
    8. Sathe, S K. Functional properties of lupin seed (lupinus mutabilis) proteins and protein concentrates.Journal of Food Science, 1982, 47: 491-497.
    9.陈克复,卢晓江,金醇哲,王幼良编译.食品流变学及其测量.北京:轻工业出版社.
    10.王璋,许时婴,江波,杨瑞金,钟芳,麻建国译。食品化学.第三版,北京:中国轻工业出版社.
    11. Jia, M., Zhang, Q. H., & Min, D. B. Pulsed electric field processing effects on flavor compounds and microorganisms of orange juice. Food Chemistry, 1999, 65(4): 445-451.
    12. Li, S. Q., Zhang, Q. H., Lee, Y. Z., & Pham, T. V. Effects of pulsed electric fields and thermal processing on stability of bovine immunoglobulin G in enriched soymilk. Journal of Food Science, 2003, 68: 1201-1207.
    13. Li, S. Q., & Zhang, Q. H. Inactivation of E. coli 8739 in enriched soymilk using pulsed electric fields. Journal of Food Science, 2004, 69: M169-174.
    14. Wagner, J. R., Sorgentini, D. A., & Anon, M. C. Thermal and electrophoretic behavior, hydrophobicity, and some functional properties of acid-treated soy isolates. Journal of Agricultural and Food Chemistry, 1996, 44: 1881-1889.
    15. Hayakawa, S., & Nakai, S. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins. Journal of Food Science, 1985, 50: 486-491.
    16. Puppo, C., Chapleau, N., Speroni, F., Lamballerie-Anton, M. D., Michel, F., Anon, C., & Anton, M. Physicochemical modification of high-pressure-treated soybean protein isolates. Journal of Agricultural and Food Chemistry, 2004, 52: 1564-1572.
    17. Yang, R. J., Li, S. Q, & Zhang Q. H. Effects of pulsed electric fields on the activity and structure of pepsin. Journal of Agricultural and Food Chemistry, 2004, 52, 7400-7406.
    18. Kinsella, J. E. Functional properties of soy proteins. Journal of American Oil Chemistry Society, 1979, 56: 242-258.
    19. Yao, J. J., Tanteeratarm, K., & Wei, L. S. Effect of maturation and storage on solubility, emulsion stability and gelation properties of isolated soy protein. Journal of American Oil Chemistry Society, 1990, 67(12): 974-979.
    20. Molina, E., Papadopoulou, A., & Ledward, D. A. Emulsifying properties of high-pressure soy protein isolates and 7S and 11S globulins. Food hydrocolloids, 2001, 15: 263-269.
    21. Ricker, D. A., Johnson, L. A., & Murphy, P. A. Functional properties of improved glycinin andβ-conglycinin fractions. Journal of Food Science, 2004, 69: 1110-1115.
    22. Wagner, J. R., & Gueguen, J. Surface functional properties of native, acid-treated, and reduced soy glycinin. 1. Foaming properties. Journal of Agricultural and Food Chemistry, 1999, 47: 2174-2180.
    23. Jung, S., Murphy, P. A., & Johnson, L. A. Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis. Journal of Food Science, 2005, 70: C180-187.
    24. Perez, O. E., & Pilosof, A. M. R. Pulsed electric fields on the molecular structure and gelation ofβ-lactoglobulin concentrate and egg white. Food Research International, 2004, 37: 102-110.
    1.陶慰孙,李惟,姜涌明主编.蛋白质分子基础[M].第二版.北京:高等教育出版社, 1995.
    2. Saito, K., Kajikawa, M., Watanabe, T. Food processing characteristics of soybean proteins: II. Effect of sulfhydryl groups on physical properties of tofu-gel. Agriculture and Biological Chemistry, 1971, 35: 890-898.
    3. Utsumi, S., Maruyama, N., & Satoh, R. Adachi M. Structure-function relationships of soybean proteins revealed by using recombinant systems. Enzyme and Microbial Technology, 2002, 30: 284-288.
    4. Utsumi, S., & Kinsella, J. E. Structure-function relationships in food proteins: subunit interactions in heat-inducted gelation of 7S, 11S, and soy isolate proteins. Journal of Agricultural and Food Chemistry, 1985, 33: 297-303.
    5. Petruccelli, S., & Anon, M. C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates. 2. Surface properties. Journal of Agricultural and Food Chemistry, 1994, 42: 2170-2176.
    6. Puppo, M. C., Lupano, C. E., & Anon, M. C. Gelation of soybean protein isolates on acidic condition. Effect of pH and protein concentration. Journal of Agricultural and Food Chemistry, 1995, 43: 2353-2361.
    7. Puppo, M. C., & Anon, M. C. Soybean protein dispersions at acidic pH. Thermal and rheological behavior. Journal of Food Science, 1999, 64: 50-56.
    8. Yamauchi, F., Yamagishi, T., & Iwabuchi, S. Molecular understanding of heat-induced phenomena of soybean protein. Food Review International, 1991, 7: 721-729.
    9. Sorgentini, D. A., Wagner, J. R., & Anon, M. C. Effects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions. Journal of Agricultural and Food Chemistry, 1995, 43: 2471-2479.
    10. Wagner, J. R., Sorgentini, D. A., & Anon, M. C. Thermal and electrophoretic behavior, hydrophobicity, and some functional properties of acid- treated soy isolates. Journal of Agricultural and Food Chemistry, 1996, 44: 1881-1889.
    11. Molina, E., Papadopoulou, A., & Ledward, D. A. Emulsifying properties of high-pressure soy protein isolates and 7S and 11S globulins. Food Hydrocolloids, 2001, 15: 263-269.
    12. Puppo, C., Chapleau, N., Speroni, F., Lamballerie-Anton, M. D., Michel, F., Anon, C., & Anton, M. Physicochemical modification of high-pressure-treated soybean protein isolates. Journal of Agricultural and Food Chemistry, 2004, 52: 1564-1572.
    13. Beveridge, T., Toma, S. J., & Nakai, S. Determination of SH- and SS-groups in some food proteins using Ellman’s reagent. Journal of Food Science, 1974, 39: 49-51.
    14. Kato, A., & Nakai, S. Hydrophobicity determined by a fluorescence probe methods and its correlation with surface properties of proteins. Biochimica et Biophysica Acta, 1980, 624: 13-20.
    15. Fernandez-Diaz, M. D., Barsotti, L., Dumay, E., & Cheftel, J. C. Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. Journal of Agricultural and Food Chemistry, 2000, 48: 2332-2339.
    16. Jeantet, R., Baron, F., Nau, F., Roignant, M., & Brule, G. High intensity pulsed electric fields applied to egg white: effect on salmonella enteritidis inactivation and protein denaturation. Journal of Food Protection, 1999, 62(12): 1381-1386.
    17. Jeyamkondan, S., Jayas, D. S., & Holley, R. A. Pulsed electric field processing of foods: a review. Journal of Food Protection, 1999, 62(9): 1088-1096.
    18. Untenberger, S., Dumay, E., & Cheftel, J. C. Pressure-induced aggregation ofβ-lactoglobulin in pH 7.0 buffers. Lebensm. -Wiss. U.-Technol., 1995, 28: 410-418.
    19. Funtenberger, S., Dumay, E., & Cheftel, J. C. High-Pressure promotesβ-lactoglobulin aggregation through SH/S-S interchange reactions. Journal of Agricultural and Food Chemistry, 1997, 45: 912-921.
    20. Hua, Y. F., Huang, Y. R., Qiu, A. Y., & Liu, X. Y. Properties of soy protein isolate prepared from aqueous alcohol washed soy flakes. Food Research International, 2005, 38: 273-279.
    21. Perez, O. E., & Pilosof, A. M. R. Pulsed electric fields on the molecular structure and gelation ofβ-lactoglobulin concentrate and egg white. Food Research International, 2004, 37: 102-110.
    1. Utsumi, S, Maruyama, N., Satoh, R., & Adachi, M. Structure-function relationships of soybean proteins revealed by using recombinant systems. Enzyme and Microbial Technology, 2002, 30: 284-288.
    2. Maruyama, N., Fukuda, T., Saka, S., et al. Molecular and structural analysis of electrophoretic variants of soybean seed storage proteins. Phytochemistry. 2003, 64: 701-708.
    3. Staswick, P. E., Hermodson, M. A., & Nielsen, N. C. Identification of the acidic and basic subunit complexes of glycinin. The Journal of Biological Chemistry, 1981, 256(16): 8752-8755.
    4谢孟峡,刘媛.红外光谱酰胺III带用于蛋白质二级结构的测定研究[J].高等学校化学学报. 2003, 24(2): 226-231.
    5.陶慰孙,李惟,姜涌明主编.蛋白质分子基础[M].第二版.北京:高等教育出版社, 1995, p247-254, 260-263.
    6.苏克曼,潘铁英,张玉兰主编.波谱解析法[M].上海:华东理工大学出版社, 2002,p80.
    7.郭尧军.蛋白质电泳实验技术[M].北京:科学出版社, 1999, p123-160.
    8.赵永芳.生物化学技术原理及其应用[M].第二版.武汉:武汉大学出版社, 2001, p324.
    9. Hou, D. J., & Chang, K. C. Structural characteristics ofβ-conglycinin purified from soybeans stored under four conditions. Journal of Agricultural and Food Chemistry, 2004, 52: 7931-7937.
    10. Hou, D. J., & Chang, K. C. Structural characteristics of glycinin purified from soybeans stored under various conditions. Journal of Agricultural and Food Chemistry, 2004, 52: 3792-3800.
    11. Barsotti, L., Dumay, E., Mu, T. H., Diaz, M. D. F., & Cheftel, J. C. Effects of high voltage electric pulses on protein-based food constituents and structures. Trends in Food Science & Technology, 2002, 12: 136-144.
    12. Venyaminov, S. Y., Yang, J. T. Determination of protein secondary structure. In Circular dichroism and the conformational analysis of biomolecules [M]. New York: Fasman, G. D., Plenum Press, 1996: 69-107.
    13. Puppo, C., Chapleau, N., Speroni, F., Lamballerie-Anton, M. D., Michel, F., Anon, C., & Anton, M. Physicochemical modification of high-pressure-treated soybean protein isolates. Journal of Agricultural and Food Chemistry, 2004, 52: 1564-1572.
    14. Yang, R. J., Li, S. Q, & Zhang Q. H. Effects of pulsed electric fields on the activity and structure of pepsin. Journal of Agricultural and Food Chemistry, 2004, 52: 7400-7406.
    15.Yeom, H. W., Zhang, Q. H., & Dunne, C. P. Inactivation of papain by pulsed electric fields in acontinuous system. Food Chemistry, 1999, 67: 53-59.
    16. Yu, N. T. Raman spectroscopy: A conformational probe in biochemistry. CRC Critical Reviews in Biochemistry, 1977, 4: 229-280.
    17. Overman, S. A., Thomas, & G. J. Amide modes of theα–helix: Raman spectroscopy of filamentous virus fd containing peptide 12C and 3H labels in coat protein subunits. Biochemistry, 1998, 37: 5654-5665.
    18. Cavatorta, F., Fontana, M. P., & Vecli, A. Raman spectroscopy of protein-water interactions in aqueous solutions. The Journal of Chemical Physics, 1976, 65: 3635-3640.
    19. Brunner, H., & Holz, M. Raman studies of conformation of the basic pancreatic trypsin inhibitor. Biochimica Biophysica Acta, 1975, 379: 408-417.
    20. Aubrey, K. L., & Thomas, G. J. Raman spectroscopy of filamentous bacterlophage Ff (fd, M13, fl) incorporating specifically-deuterated alanine and tryptophan side chains. Assignments and structural interpretation. Biophysical Journal, 1991, 60: 1337-1349.
    21. Overman S. A., Thomas G. J. Raman spectroscopy of the filamentous virus Ff (fd, fl, M13): structural interpretation for coat protein aromatics. Biochemistry, 1995, 34: 5400-5451.
    22. Tu A. T. Raman spectroscopy in biology: principles & applications. John Wiley & Sons, Inc. (1982).
    23. Howell, N., & Li-Chan, E. Elucidation of interactions of lysozyme with whey proteins by Raman spectroscopy. International Journal of Food Science and Technology. 1996, 31(5): 439-451.
    24. Carey, P. R. Biochemical Applications of Raman and Resonance Raman Spectroscopies,Academic Press, New York (1982).
    25. Parker, F. S. Applications of infrared, Raman and resonance spectroscopy in Biochemistry; Plenum Press, 1983; pp 1-39, 83-154, 451-480.
    26. Ogawa, M.; Nakamura, S.; An, H.; Tsuchiya, T.; & Nakai, S. Raman spectroscopy study of changes in fish actomyosin during setting. Journal of Agricultural and Food Chemistry, 1999, 47: 3309-3318.
    27. Careche, M.; & Li-Chan, E. Y. C. Structural changes in cod myosin after modification with formaldehyde or frozen storage. Journal of Food Science, 1997, 62: 717-723
    28. Lefèvre, T., & Subirade, M. Structural and interaction properties ofβ-Lactoglobulin as studied by FTIR spectroscopy. International Journal of Food Science and Technology, 1999, 34(5/6): 419-428.
    29. Subirade, M., Kelly, I., Guéguen, J., & Pézolet, M. Molecular basis of film formation from a soybean protein: comparison between the conformation of glycinin in aqueous solution and in films. International Journal of Biological Macromolecules, 1998, 23: 241-249.
    30. Jackson, M. & Mantsch, H. H. Halogenated alcohols as solvents for proteins: FTIR spectroscopic studies. Biochimica et Biophysica Acta, 1992, 1118: 139-143.
    31. Haris, P. I., and Chapman, D. The conformational analysis of peptides using Fourier transform IR spectroscopy, Biopolymers, 1995, 37: 251-263.
    32. Jackson, M., and Mantsch, H. H. The use and misuse of FTIR spectroscopy in the determination of protein structure, Critical Reviews in Biochemistry and Molecular Biology, 1995, 30(2): 95-120.
    1. Baur, C., Groch, W., Wieser, H., & Jugel, H. Enzymatic oxidation of linoleic acid: formation of bittertasting fatty acids. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung, 1977, 164: 171-176.
    2. Eskin, N. A. M., Grossman, S., & Pinsky, A. Biochemistry of lipoxygenase in relation to food quality.Critical Reviews in Food Science and Nutrition, 1977, 4: 1-40.
    3. Michael, N. A. Biochemistry of lipoxygenase in relation to food quality. Critical Review of Food Science Nutrition, 1977, (9): 1-40.
    4. Borhan, M., & Snyder, H. E. Lipoxygenase destruction in whole soybeans by combinations of heating and soaking in ethanol. Journal of Food Science, 1979, 44: 586-590.
    5. Adams, J. B. Review: enzyme inactivation during heat processing of food-stuffs. Inernational Journal of Food Science and Technology, 1991, 26: 1-20.
    6. Obata, A., Matsuura, M., & Kitamura, K. Degradation of sulfhydryl groups in soymilk by lipoxygenase during soybean grinding. Bioscience Biotechnology Biochemistry, 1996, 60(8): 1229-1232.
    7. Friedman, M., & Brandon, D. L. Nutritional and health benefits of soy proteins. Journal of Agricultural and Food Chemistry, 2001, 49(3): 1069-1086.
    8. Vollman, J., Grausgruber, H., Wagentristl, H., Wohleser, H., & Michele, P. Trypsin inhibitor activity of soybean as affected by genotype and fertilization. Journal Science of Food and Agriculture, 2003, 83(15): 1581-1586.
    9. Bendicho, S., Barbosa-Cánovas, G. V., & Martín, O. Milk processing by high intensity pulsed electric fields. Trends in Food Science & Technology, 2002, 12: 195-204.
    10. Giner, J., Gimeno,V., Espachs, A., Elez, P., Barbosa-Cánovas G. V., & Martín, O. Inhibition of tomato (Lycopersicon esculentum Mill) pectin methylesterase by pulsed electric fields. Innovative Food & Science Emerging Technologies, 2000, 1: 57-67.
    11. Ho, S. Y., Mittal, G. S., & Cross, J. D. Effects of high field electric pulses on the activity of selected enzymes, Journal of Food Engineering, 1997, 31: 69-84.
    12. Van Loey, A., Verachtert, B., & Hendrickx, M. Effects of high electric field pulses on enzymes. Trends in Food Science & Technology, 2002, 12: 94-102.
    13. Yang, R. J., Li, S.Q, & Zhang, Q.H. Effects of pulsed electric fields on the activity of enzymes in aqueous solution. Journal of Food Science, 2004, 69: 241-248.
    14. Yeom, H.W., Streaker, C. B., Zhang, Q. H, & Min, D. B. Effects of pulsed electric fields on the activities of microorganisms and pectin methyl esterase in orange juice. Journal of Food Science, 2000, 65: 1359-1363.
    15. Yeom, H. W., Zhang, Q. H., & Chism, G. W. Inactivation of Pectin Methyl Esterase in Orange Juice by Pulsed Electric Fields. Journal of Food Science, 2002, 67: 2154-2159.
    16. Yeom, H. W., Zhang, Q. H., & Dunne, C. P. Inactivation of papain by pulsed electric fields in a continuous system. Food Chemistry, 1999, 67: 53-59.
    17. Min, S., Jin, Z. T., & Zhang, Q. H. Commercial scale pulsed electric field processing of tomato juice. Journal of Agricultural and Food Chemistry, 2003, 51: 3338-3344.
    18. Giner, J., Rauret-Arino, A., Barbosa-Cánovas, G. V. Inactivation of polyphenoloxidases by pulsed electric fields. In Processing IFT Annual Meeting, Orlando USA, pp.19 (1997).
    19. Bendicho, S., Barbosa-Cánovas, G.V., & Martín, O. Reduction of protease activity in simulated milk ultrafiltrate by continuous flow high intensity pulsed electric field treatments. Journal of Food Science,2003, 68(3): 952-957.
    20. Bendicho, S., Barbosa-Cánovas, G. V., & Martín, O. Reduction of protease activity in milk by continuous flow high-intensity pulsed electric field treatments. Journal of Dairy Science, 2003, 86: 697-703.
    21. Bendicho, S., Barbosa-Cánovas, G. V., & Martín, O. Milk processing by high intensity pulsed electric fields. Trends in Food Science & Technology, 2002, 12: 195-204.
    22. Bendicho, S., Estela, C., Giner, J., Barbosa-Cánovas, G.V., & Martín, O. Effect of high intensity pulsed electric fields and thermal treatments on a lipase from Pseudomonas fluorescens. Journal of Dairy Science, 2002, 85: 19-27.
    23. Espachs-Barroso, A., Elez-Mart?nez, P., Barbosa-Cánovas, G. V., Mart?n-Belloso, O. Effect of pulse width, frequency and polarity of high intensity pulsed electric fields in a commercial pectic enzymes complex. Institute of Food Technologists Annual Meeting, Chicago, extended abstracts, 2003, 92: C-37.
    24. Giner, J., Gimeno, V., Barbosa-Cánovas, G. V., & Martín, O. Effects of pulsed electric field processing on apple and pear polyphenoloxidases. Food Science and Technology International, 2001, 7: 339-345.
    25. Giner, J., Gimeno,V., Espachs, A., Elez, P., Barbosa-Cánovas G.V., & Martín, O. Inhibition of tomato (Lycopersicon esculentum Mil.l) pectin methylesterase by pulsed electric fields. Innovative Food & Science Emerging Technologies, 2000, 1: 57-67.
    26. Giner, J., Gimeno, V., Palomes, M., Barbosa-Cánovas G. V., & Martín, O. Lessening polygalacturonase activity in a commercial enzyme preparation by exposure to pulsed electric fields. European Food Research and Technology, 2003, 217: 43-48.
    27. Giner, J., Grouberman, P., Gimeno, G. V., & Martín, O. Reduction of pectinesterase activity in a commercial enzyme preparation by pulsed electric fields: comparison of inactivation kinetic models. Journal of the Science of Food and Agriculture, 2005, 85: 1613-1621.
    28. Giner, J., Ortega, M., Mesegue, M., Gimeno, V., Barbosa-Cánovas, G. V., & Martín, O. Inactivation of peach polyphenoloxidase by exposure to pulsed electric fields. Journal of Food Science, 2002, 67: 339-345.
    29. Min, S., Min, S.K., & Zhang, Q.H. Inactivation Kinetics of Tomato Juice Lipoxygenase by Pulsed Electric Fields. Journal of Food Science, 2003, 68(6): 1995-2001.
    30. Elez-Mart?nez, P., Aguil?-Aguayo, I., & Mart?n-Belloso, O. Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal of the Science of Food and Agriculture, 2006, 86: 71-81.
    31. Elez-Mart?nez, P., & Mart?n-Belloso, O. Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chemistry, 2006, (in press).
    32. Elez-Mart?nez, P., Suárez-Recio, M., & Mart?n-Belloso, O. Modeling the reduction of pectin methyl esterase activity in orange juice by high intensity pulsed electric fields. Journal of Food Engineering, 2007, 78: 184-193.
    33. Min, S., Jin, Z. T., Min, S. K.,Yeom, H., & Zhang, Q. H. Commercial-scale pulsed electric field processing of organge juice. Journal of Food Science, 2003, 68: 1265-1271.
    34. Min, S., Jin, Z. T., & Zhang, Q. H. Commercial scale pulsed electric field processing of tomato juice. Journal of Agricultural and Food Chemistry, 2003, 51: 3338-3344.
    35. Zhong, K., Wu, J., Wang, Z., Chen, F., Liao, X., Hu, X., & Zhang Z. Inactivation kinetics and secondary structural change of PEF-treated POD and PPO. Food Chemistry, 2007, 100: 115-123.
    36. Zhong, K., Hu, X., Zhao, G., Chen, F., & Liao, X. Inactivation and conformational change of horseradish peroxidase induced by pulsed electric field. Food Chemistry, 2005, 92: 473-479.
    37. Fachin, D., Van Loey, A., Indrawati, Ludikhuyze, L., & Hendrickx, M. Thermal and high-pressure inactivation of tomato polygalacturonase: a kinetic study. Journal of Food Science, 2002, 67(5): 1610-1615.
    38. Fachin, D., Van Loey, A. M., Nguyen, B. L., Verlent, I., Indrawati, & Hendrickx, M. E. Inactivation kinetics of polygalacturonase in tomato juice. Innovative Food Science and Emerging Technologies, 2003, 4: 135-142.
    39. Van den Broeck, I., Ludikhuyze, L. R., Van Loey, A. M., & Hendrickx, M. E. Inactivation of orange pectinesterase by combined high pressure and temperature treatments: a kinetic study. Journal of Agricultural and Food Chemistry, 2000, 48: 1960-1970.
    40. Espachs-Barroso, A., Bendicho, S., Barbosa-Canovas, G. V., & Mart?n-Belloso, O. Inactivation of a commercial pectic enzyme by high intensity pulsed electric fields, in The Abstract book of the symposium‘Emerging Technologies for the Food Industry’, held in Madrid, Spain. Consejo Superior de Investigaciones Cientificas, Madrid. Abstract book 2.07, p. 110 (2002).
    41. Castro, A. J., Swanson, B. G., Barbosa-Ca′novas, G. V., & Dunker, A. Pulsed electric fields denaturation of bovine alkaline phosphatase. In G. V. Barbosa-Canovas & Q. H. Zhang (Eds.), Pulsed electric fields in food processing (pp. 65-82). (2001). Lancaster, USA: Technomic Publishing Co., Inc.
    42. Rodrigo, D., Barbosa-Canovas, G. V., Mart?nez, A., & Rodrigo, M. Pectin methyl esterase and natural microflora of fresh mixed orange and carrot juice treated with pulsed electric fields. Journal of Food Protection, 2003, 66(12): 2336-2342.
    43. Espachs-Barroso, A., Van Loey, A., Hendrickx, M., & Mart?n-Belloso, O. Inactivation of plant pectin methylesterase by thermal or high intensity pulsed electric field treatments. Innovative Food Science and Emerging Technologies, 2006, 7: 40-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700