用户名: 密码: 验证码:
基于蛋白转导域的人禽流感复制子疫苗的构建和诱导细胞免疫应答研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     本课题通过生物信息学手段比较分析A/Anhui/1/2005毒株HA基因抗原的免疫原性和代表性,并整合复制子具有自我复制和高效表达外源抗原特点以及蛋白转导域VP22蛋白的转导功能的优势,构建和包装人禽流感复制子疫苗,以期增强禽流感复制子疫苗诱导的免疫应答,尤其是抗原特异性CD8~+ T淋巴细胞介导的特异性CTL反应,为研制高效、安全及通用性禽流感人疫苗临床应用奠定实验基础。
     材料与方法
     首先,检索1997 2008年流感病毒数据库(influenza virus resources)收录全部甲型流感病毒(H5N1亚型)人源分离株的HA基因序列和氨基酸序列。采用系统进化树分析A/Anhui/1/2005与其它各毒株之间亲缘关系。采用DNASTAR、DNAMAN软件及相关在线分析蛋白抗原指数和抗原表位。
     其次,扩增禽流感病毒(H5N1)人源分离株的HA基因及VP22和EGFP基因的全长编码序列,同时采用剪切重叠延伸PCR(SOE-PCR,splicing by overlapextension-PCR)技术扩增VP22和HA的融合基因(VP22/HA),将HA、VP22、EGFP基因及VP22/HA融合基因分别构建到pSFV载体26S亚基因组下游,构建pSFV-HA、pSFV-VP22、pSFV-EGFP和pSFV-VP22/HA质粒。将构建的质粒进行体外转录,并在BHK-21细胞中包装成VRP-HA、VRP-VP22、VRP-EGFP、VRP-VP22/HA复制子。将包装的各复制子感染BHK-21细胞后,在荧光显微镜下观察EGFP表达情况,采用RT-PCR和间接免疫荧光染色法(IFA)检测HA、VP22及VP22/HA蛋白表达情况。同时,采用Annexin V/PI双染色法检测细胞凋亡情况。
     最后,分别用不同剂量的VRP-HA及VRP-VP22/HA复制子疫苗及相应的VRP-VP22复制子、VRP-EGFP复制子和生理盐水对照免疫6-8周龄BALB/c雌性小鼠,经右侧大腿肌肉注射初次免疫和3周后加强免疫,加强免疫2周后在乙醚麻醉下处死小鼠分离脾脏,分离淋巴细胞。采用流式细胞仪检测CD4~+T细胞表达IL-4和CD8~+ T细胞表达IFN-γ等细胞内细胞因子表达情况。采用SPSS 13.0统计软件对数据进行统计分析,数据以均数(M)±标准差(SD),表达细胞因子的细胞百分比分析采用近似正态法单因素方差分析(ANOVA),多组两两比较采用SNK法。
     结果
     对1997-2008年的232株参考序列进行系统发生树分析发现A/Anhui/1/2005候选株的HA基因与国内及印尼等国的人禽流感病毒分离株亲缘关系最近;该候选株与泰国和越南等国的人禽流感病毒分离株的亲缘关系也相对较近。对各亚系相对构成分析发现,A/Anhui/1/2005候选株所属亚系中同系分离株数量占总分离株数量的70.0%(162/232,当遗传距离为0.0245时),当包含泰国和越南等国的人禽流感病毒分离株时(遗传距离为0.0175),其所属亚系中同源分离株数量占总分离株数量的91.8%(213/232)。对国内14株H5N1禽流感病毒人源分离株HA基因的核苷酸和氨基酸的同源性分析,发现其核苷酸和氨基酸的同源性分别在94.7%-100%和95.3%-100%之间。抗原表位预测表明,疫苗候选株A/Anhui/1/2005(ABD28180)有26个抗原表位,为国内分离株抗原表位最多毒株之一,抗原表位多数都处在亲水区段,且较少处在糖基化位点区段。
     将构建的表达目的基因的复制子载体进行测序,显示pSFV复制子载体中HA、VP22、EGFP基因及VP22/HA融合基因序列与理论序列完全一致,并位于pSFV载体的亚基因启动子的下游。经琼脂糖变性胶电泳发现pSFV-HA,pSFV-VP22,pSFV-EGFP,pSFV-VP22-HA和pSFV helper载体的转录产物分别约为9500 bp,8700 bp,8500 bp,10400 bp and 7000左右,并且没有明显拖尾现象。经直接荧光显微镜、RT-PCR和间接免疫荧光检测发现,各复制子感染的细胞均表达其相应目的基因;而且,经间接免疫荧光检测结果发现,VRP-VP22/HA感染的BHK-21细胞比VRP-HA复制子感染的BHK-21细胞产生更强、更密集的荧光强度。凋亡检测发现,各复制子感染的BHK-21细胞均出现明显凋亡现象,尤其是早期凋亡。
     VRP-HA和VRP-VP22/HA两种复制子疫苗经10~5TU和10~6TU两种剂量的免疫6-8周龄BALB/c雌性小鼠后,发现VRP-HA和VRP-VP22/HA复制子疫苗免疫的小鼠脾脏CD4~+T细胞高水平表达IL-4细胞因子,CD8~+T细胞高水平表达IFN-γ细胞因子,而对照组(VRP-VP22,VRP-EGFP和NS)中两种细胞因子呈现低水平表达;其中,10~6-VRP-HA,10~5-和10~6-VRP-VP22/HA免疫组是显著高于VRP-VP22,VRP-EGFP和NS对照组,差异有显著性(p<0.01)。而10~5TU的VRP-HA疫苗免疫组诱导表达IL-4和IFN-γ与对照组差异无显著性。而且,10~6-VRP-VP22/HA复制子疫苗免疫组高于10~5-VRP-VP22/HA复制子疫苗组,后者又高于10~6-VRP-HA复制子疫苗组。
     结论
     采用A/Anhui/1/2005毒株的HA基因构建疫苗具有普遍的代表性,抗原性预测表明该毒株HA基因具有较高抗原性。
     pSFV-HA,pSFV-VP22,pSFV-EGFP,pSFV-VP22-HA质粒均已正确构建,并成功包装了VRP-HA、VRP-VP22、VRP-EGFP和VRP-VP22/HA复制子,各复制子均可诱导细胞凋亡。
     VRP-HA和VRP-VP22/HA复制子疫苗均能诱导IL-4、IFN-γ细胞因子表达,并呈现一种剂量效应关系;VP22基因与HA基因融合的复制子疫苗优于单HA基因的复制子疫苗。
By analysing the antigenic peptides and homogeneity of the HA sequences(human isolates of the influenza A virus H5N1 subtype) and exploring a novel alphavirus replicon system of VP22 fused with HA,this study assesses whether the immunogenicity of an HA-based replicon vaccine could be induced and augmented by fusing with VP22.
     Materials and methods
     The first step in developing an efficient gene vaccine against human-avian H5N1 influenza is to select a representative and highly immunogenic HA gene.A total of 232 reference sequences of the H5N1 human isolates during 1997-2008 retrieved from the influenza database(influenza virus resources) were used in this study.Phylogenetic trees and antigenicity analysis were constructed using neighbour-joining programs included in DNASTAR and DNAMAN software.
     The HA,VP22 and EGFP genes were amplified and cloned into the unique Xho I and Not I restriction sites of plasmid pSFV,resulting in the plasmid pSFV-HA、pSFV-VP22、pSFV-EGFP.To construct pSFV-VP22-HA,the VP22-HA fusion gene inserting five glycine-coding sequences at the fusion site was firstly produced,by SOE-PCR(i.e.,splicing by overlap extension PCR).This fusion gene was then subcloned into the unique BamHI and NotI restriction sites of the pSFV vector.The pSFV-HA,pSFV-VP22,pSFV-EGFP and pSFV-VP22-HA vectors were linearised and transcribed into the RNA transcripts in vitro.Then,VRP-HA,VRP-VP22,VRP-EGFP and VRP-VP22/HA were assembled in BHK-21 cells by using In vitro-transcribed RNAs of pSFV helper vectors and that of pSFV-HA,pSFV-VP22,pSFV-EGFP and pSFV-VP22-HA,respectively.EGFP expression was observed under a fluorescence microscope after the replicons infecting the BHK-21 cells,while RT-PCR and immunofluorescence staining were performed to detect HA,VP22 and VP22-HA expressions.The percentages of apoptotic and necrotic BHK-21 cells,which were infected by VRP-HA,VRP-VP22,VRP-EGFP and VRP-VP22/HA,were analysed by using a flow cytometry with annexin V apoptosis detection kits
     Six- to eight-week-old BALB/c mice were immunised intramuscularly(i.m.; 200μl) at zero weeks and boosted at three weeks with VRP-HA and VRP-VP22/HA, respectively,and VRP-VP22,VRP-EGFP or normal saline(NS) was also used as controls.Lymphocytes were separated from the spleens of mice and detected for specific cell-mediated responses.IL-4 expression of CD4~+ T cells and IFN-γexpression of CD8~+ T cells were assayed by means of intracellular cytokine staining(ICCS) with flow cytometry.The percentage of cells expressing cytokines was analysed by using the ANOVA test with SPSS software,and all data are presented as mean±SD values.
     Results
     A phylogenetic analysis of the 232 reference sequences of the H5N1 human isolates during 1997-2008 revealed that the genetic relationships among the A/Anhui/1/2005 isolates were similar to most of the 1997-2008 H5N1 human isolates (i.e.,70%at the genetic distance of 7×10~(-6) and 90%at the genetic distance of 7×10~(-5)). An antigenicity analysis revealed that the four isolates(A/Anhui/1/2005, A/Beijing/01/2003,A/China/2006 and A/human/China/GD02/2006) had 26 antigenic peptides,and A/Anhui/1/2005 isolates had frequent antigenic peptides.
     The pSFV-HA,pSFV-VP22,pSFV-EGFP and pSFV-VP22-HA vectors were confirmed by sequencing.The integrity and quantity of RNA transcripts of the pSFV-HA,pSFV-VP22,pSFV-EGFP,pSFV-VP22-HA and pSFV helper vectors were determined via denaturing gel electrophoresis.Observation under a fluorescence microscope revealed EGFP expression in the infected BHK-21 cells,especially in the nuclei.HA,VP22 and VP22-HA expression in the infected BHK-21 cells was confirmed by RT-PCR and immunofluorescence staining.Furthermore,all the BHK-21 cells infected with any of the replicons showed high levels of apoptosis,but at significantly higher-than-normal levels-especially those of early apoptosis.
     Four groups of mice immunised with VRP-HA(10~5 TU and 10~6 TU) and VRP-VP22/HA(10~5 TU and 10~6 TU) presented high percentages of cells expressing IL-4 and IFN-γ,while the three control groups that received 10~5 TU of VRP-VP22, VRP-EGFP or NS presented low percentages of expression.The ANOVA-SNK analysis revealed that the IL-4 expressions in three groups(10~6 TU VRP-HA,and 10~5 TU and 10~6 TU VRP-VP22/HA) were significantly higher than those of the control groups(VRP-VP22,VRP-EGFP and NS)(p < 0.01).A dose titration effect for IL-4 expression,as well as for IFN-γexpression,was observed both in the VRP-HA-vaccinated mice and in the VRP-VP22/HA-vaccinated mice.
     Conclusions
     Our results revealed that the HA gene of A/Anhui/1/2005 isolates presented with comparatively representative and high immunogenicity.
     VRP-HA、VRP-VP22、VRP-EGFP and VRP-VP22/HA expressing the target proteins had be successfully assembled.And,VRP-HA、VRP-VP22、VRP-EGFP and VRP-VP22/HA could induce infected cells apoptosis.
     Our results revealed that both VRP-VP22/HA and VRP-HA replicon particles presented a promising approach for developing vaccines against human-avian influenza, and VP22 could increase the immunogenicity of the HA antigens to which it is fused.
引文
[1]侯云德主编.分子病毒学.第1版.1990,学苑出版社:北京.313-328.
    [2]金奇主编.医学分子病毒学.第1版.2001,科学出版社:北京.633-658.
    [3]Stephenson,I.,Gust,I.,Pervikov,Y.,et al.Development of vaccines against influenza H5.Lancet Infect Dis.2006;6(8):458-60.
    [4]Wang,S.,Zhang,C,Zhang,L.,et al.The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection,electroporation and gene gun methods.Vaccine 2008;26(17):2100-10.
    [5]Kodihalli,S.,Goto,H.,Kobasa,D.L.,et al.DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice.J Virol.1999;73(3):2094-8.
    [6]Hoffmann,E.,Lipatov,A.S.,Webby,R.J.,et al.Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines.Proc Natl Acad Sci U S A.2005;102(36):12915-20.
    [7]肖明.生物信息学及其在病毒研究中的应用.上海师范大学学报(自然科学版)2003;32(3):96-102.
    [8]许雁峰,伪狂犬病病毒gD基因的生物信息学分析.四川农业大学,硕士学位论文,2006年;P15.
    [9]Rota P A,Oberste M S,Monroe S S,et al.Characteraction of a novel cononavirusassociated with severeacute respiratory syndrome..Science 2003;300:1394-1398.
    [10]Marra M A,Jones S J M,Astell C R.et al.The genome sequence of the sars-associated coronavirus.Science 2003;300:1399-1404.
    [11]吕燕波,万瑛,吴玉章等.SARS病毒基因组所编码的E蛋白的二级结构和B 细胞表位预测.免疫学杂志2003;19(6):407-410.
    [12]Maeda K,Mizukoshi F,HamanoM,et al.Development of an equine herpesvirus type 4-specific enzyme-linked immunosorbent assay using a B cell epitope as an antigen.J Clin Microbiol.2004;42(3):1095-1098.
    [13]MahlerM,BluthnerM,Pollard KM.Advances in B cell epitope analysis of autoantigens in connective tissue diseases.Clin Immunol.2003;107(2):65-79.
    [14]Anandarao R,Swaminathan S,Khanna N.The identification of immunodominant linear epitopes of dengue type 2 virus capsid and NS4a proteins using pin-bound peptides.Virus Res.2005;112(1-2):60-68.
    [15]Webster R G,Kawaoka Y,TayEor J,et al.Efficacy of nucleoprotein and haemagglutininantigens expressed in fowlpox virus as vaccine for influenza in chickens.Vaccine 1991;9:303-308.
    [16]Kaverin N V,Mat rosovich M N,Gambaryan A S,et al.Intergenic HA-NA interactions in influenza A virus:post reassortment substitutions of charged amino acid in the hemagglutinin of different subtypes.Virus Res.2000;66:123-129.
    [17]Matrosovich M,Gao P,Kawaoka Y Molecular mechanisms of serum resistance of human influenza H3N2 virus and their involvement in virus adaptation in a new host.J Virol.1998;72:6373-6380.
    [18]Eisen M B,Sabesan S,Skehel J J,et al.Binding of the influenza A virus to cell-surface receptors:structures of five hemagglutinin-sialyloligosaccharide complexes determined by X-ray crystallography.Virology 1997;232:19-31.
    [1]Rayner JO,Dryga S A,Kamrud KI.Alphavirus vectors and vaccination.Rev Med Virol.2002;12:279-96.
    [2]Leitner WW,Hwang LN,Deveer MJ,et al.Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways.Nat Med.2003;9:33-9.
    [3]Nordstrom EK,Forsell MN,Barnfield C,et al.Enhanced immunogenicity using an alphavirus replicon DNA vaccine against human immunodeficiency virus type 1.J Gen Virol.2005;86(2):349-54.
    [4]Daemen T,Riezebos-Brilman A,Regts J,et al.Superior therapeutic efficacy of alphavirus-mediated immunization against human papilloma virus type 16 antigens in a murine tumour model:effects of the route of immunization.Antivir Ther.2004;9(5):733-42.
    [5]Elliott G,O'Hare P.Intercellular trafficking and protein delivery by a herpesvirus structural protein.Cell 1997;88(2):223-33.
    [6]Kim TW,Hung CF,Kim JW,et al.Vaccination with a DNA vaccine encoding herpes simplex virus type 1 VP22 linked to antigen generates long-term antigen-specific CD8-positive memory T cells and protective immunity.Hum Gene Ther.2004;15(2):167-77.
    [7]Rayner,J.O.,Dryga,S.A.,Kamrud,K.I.Alphavirus vectors and vaccination.Rev.Med.Virol.2002;12:279-296.
    [8]Rheme C,Ehrengmber MU,Grandgirard D.Alphaviral eytotoxieity and its implication in vector development.Exp Physiol.2004;90(1):4-52.
    [9]Escriou,N.,van der Werf,S.,Vignuzzi,M.,et al.Replicons derived from positive strand RNA virus genomes useful for the production of heterologous proteins.2001;US Patent WO 02/095023,PCT/IB02/02810.
    [10]Vignuzzi,M.,Gerbaud,S.,van der Werf,S.,et al.Naked RNA immunization with replicons derived from poliovirus and Semliki Forest virus genomes for the generation of a cytotoxic T cell response against the influenza A virus nucleoprotein.J.Gen.Virol.2001;82,1737-1747.
    [11]闫若潜.鸡BF2和2m分子特征与二级结构及其复合体鉴定病毒表位的研究.博士学位论文2005;p85.
    [12]Fawell S,J Seery,Y Daikh,et al.Tat-Mediated Delivery of Heterologous Proteins into Cells.Proc Natl Acad Sci USA.1994;91:664-668.
    [13]Ying,H.,Zaks,T.Z.,Wang,R.F.,et al.Cancer therapy using a self-replicating RNA vaccine.Nat.Med.1999;5:823-827.
    [14]Glasgow,GM.,McGee,M.M.,Tarbatt,C.J.,et al.The Semliki Forest virus vector induces p53-independent apoptosis.J.Gen.Virol.1998;79:2405-2410.
    [15]Fleeton M N,Liljestr?mP,Sheahan B J,et al.Recombinant Semliki Forest virus particles expressing louping ill virus antigens induce a better protective response than plasmid-based DNA vaccines or and inactivated whole particle vaccine.Journal of General Virology 2000;81:749-758.
    [16]Leitner W W,Hwang LN,Deveer M J,et al.Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways.Nat Med.2003;9:33-39.
    [1]Tumpey TM,Basler CF,Aguilar PV,et al.Characterization of the reconstructed 1918 Spanish influenza pandemic virus.Science 2005;310(5745):77-80.
    [2]Lindstrom SE,Cox NJ,Klimov A.Genetic analysis of human H2N2 and early H3N2 influenza viruses,1957-1972:evidence for genetic divergence and multiple reassortment events.Virology 2004;10;328(1):101-19.
    [3]Parrish CR,Kawaoka Y.The origins of new pandemic viruses:the acquisition of new host ranges by canine parvovirus and influenza A viruses.Annu Rev Microbiol.2005;59:553-86.
    [4]Rao BL.Epidemiology and control of influenza.Natl Med J India.2003;16(3):143-9.
    [5]Subbarao,K.,Klimov,A.,Katz,J.,et al.Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness.Science 1998;279:393-396.
    [6]WHO.http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_03_10/en/index.html
    [7]de Jong,J.C.,Claas,E.C.J.,Osterhaus,A.D.M.E.,et al.A pandemic warning?Nature 1997;389:554.
    [8]de Jong,M.D.,Thanh,T.T.,Khanh,T.H.,et al.Oseltamivir resistance during treatment of influenza A(H5N1) infection.N.Engl.J.Med.2005;353:2667-2672.
    [9]Subbarao,K.,Murphy,B.R.,Fauci,A.S.Development of effective vaccines against pandemic influenza.Immunity 2006;24:5-9.
    [10]Robertson JS.Safety considerations for nucleic acid vaccines.Vaccine 1994;12(16): 1526-8
    [11]Capron A,Locht C,Fracchia GN.Safety and efficacy of new generation vaccines.Vaccine 1994;12(7):667-9.
    [12]Rayner JO,Dryga S A,Kamrud KI.Alphavirus vectors and vaccination.Rev Med Virol.2002;12:279-96.
    [13]Escriou N,van der Werf S,Vignuzzi M,et al.Replicons derived from positive strand RNA virus genomes useful for the production of heterologous proteins.2001;US Patent WO 02/095023,PCT/IB02/02810.
    [14]Catherine E.Greer,Fengmin Zhou,Harold S.Legg,et al.A chimeric alphavirus RNA replicon gene-based vaccine for human parainfluenza virus type 3 induces protective immunity against intranasal virus challenge.Vaccine 2007;25:481-489.
    [15]Na Li,Hua-Ji Qiu,Jian-Jun Zhao,et al.A Semliki Forest virus replicon vectored DNA vaccine expressing the E2 glycoprotein of classical swine fever virus protects pigs from lethal challenge.Vaccine 2007;25:2907-2912.
    [16]ChengW F,Hung CF,H su KF,et al.Enhancement of sindbis virus self-replicating RNA vaccine potency by targeting antigen to endosomal/lysosomal compartments.Hum Gene Ther.2001;12 (3):235-7.
    [17]Robinson HL,Hunt LA,Webster RG Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA.Vaccine 1993;11(9):957-60.
    [18]Stephenson,I.,Gust,I.,Pervikov,Y.,et al.Development of vaccines against influenza H5.Lancet Infect Dis.2006;6(8):458-60.
    [19]Wang,S.,Zhang,C.,Zhang,L.,et al.The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection,electroporation and gene gun methods.Vaccine 2008;26(17):2100-10.
    [20]Kodihalli,S.,Goto,H.,Kobasa,D.L.,et al.DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice.J Virol.1999;73(3):2094-8.
    [21]Hartikka J,Bozoukova V,Ferrari M,et al.Vaxfectin enhances the humoral immune response to plasmid DNA-encoded antigens.Vaccine 2001;19:1911-1923
    [22]Frolov I,Hoffman TA,Pragai BM et al.Alphavirus-based expression vectors: strategies and applications.Proc Natl Acad Sci USA 1996;93:11371-11377.
    [23]Frelin L,Ahlen G,Alheim M,et al.Codon optimization and mRNA amplification effectively enhances the immunogenicity of the hepatitis C virus nonstructural 3/4A gene.GeneTher.2004;11:522-533.
    [24]Rayner,J.O.,Dryga,S.A.,and Kamrud,K.I.Alphavirus vectors and vaccination.Rev Med Virol.2002;12(5):279-96.
    [25]Leifert JA,Lindencrona JA,Charo J,et al.Enhancing T Cell activation and antiviral protection by introducing the HIV-1 protein transduction domain into a DNA vaccine.Hum Gene Ther.2001;12 (15):1881-1892.
    [1]Rao BL.Epidemiology and control of influenza.Natl Med J India.2003;16(3):143-9.
    [2]Ferguson NM,Galvani AP,Bush RM.Ecological and immunological determinants of influenza evolution.Nature.2003;27;422(6930):428-433.
    [3]甘孟侯.禽流感(第二版).北京:中国农业出版社.2004;66-69.
    [4]Subbarao,K.,Klimov,A.,Katz,J.,et al.Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness.Science.1998;279,393-396.
    [5]Shinya K,Ebina M,Yamada S,et al.Avian flu:influenza virus receptors in the human airway.Nature.2006;440(7083):435-436.
    [6]van Riel D,Munster VJ,de Wit E,et al.H5N1 Virus Attachment to Lower Respiratory Tract.Science.2006;312(5772):399.
    [7]Peiris M,Yuen KY,Leung CW,et al.Human infection with influenza H9N2.Lancet.1999;354(9182):916-7.
    [8]Tumpey TM,Basler CF,Aguilar PV,et al.Characterization of the reconstructed 1918 Spanish influenza pandemic virus.Science.2005;310(5745):77-80.
    [9]Lindstrom SE,Cox NJ,Klimov A.Genetic analysis of human H2N2 and early H3N2 influenza viruses,1957-1972:evidence for genetic divergence and multiple reassortment events.Virology.2004;328(1):101-19.
    [10]Parrish CR,Kawaoka Y.The origins of new pandemic viruses:the acquisition of new host ranges by canine parvovirus and influenza A viruses.Annu Rev Microbiol.2005;59:553-86.
    [11]WHO.http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_0 3_10/en/index.html.
    [12]H5N1 avian influenza:timeline[EB]WHO http://www.who.int/entity/esr/disease/ avian-influenza
    [13]Koopmans M,Wilbrink B,Conyn M,et al.Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands.Lancet.2004;363(9409):587-593.
    [14]Mounts AW,Kwong H,Izurieta HS,et al.Case-control study of risk factors for avian influenza A (H5N1) disease,Hong Kong,1997.J Infect Dis.1999;180(2):505-508.
    [15]Bridges CB,Lim W,Hu-Primmer J,et al.Risk of influenza A (H5N1) infection among poultry workers,Hong Kong,1997-1998.J Infect Dis.2002;185(8):1005-1010.
    [16]chultsz C,Dong VC,Chau NV,et al.Avian influenza H5N1 and healthcare workers.Emerg Infect Dis,2005;11(7):1158-1159.
    [17]Katz JM,Lim W,Bridges CB,et al.Antibody response in individuals infected with avian influenza A (H5N1) viruses and detection of anti-H5 antibody among household and social contacts.J Infect Dis.1999;180(6):1763-1770.
    [18]Ungchusak K,Auewarakul P,Dowell SF,et al.Probable person-to-person transmission of avian influenza A(H5N1).N Engl J Med.2005;352(4):333-340.
    [19]Tran TH,Nguyen TL,Nguyen TD,et al.Avian influenza A(H5N1) in 10 patients in Vietnam.N Engl J Med.2004;350(12):1179-1188.
    [20]World Health Organization.Avian influenza-situation in Turkey-update 4Sequencing of human virus 12 January 2006.
    [21]Yuen KY,Chan PK,Peiris M,et al.Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus.Lancet.1998;351(9101):467-471.
    [22]Chotpitayasunondh T,Ungchusak K,Hanshaoworakul W,et al.Human disease from influenza A(H5N1),Thailand,2004.Emerg Infect Dis.2005;11(2):201-209.
    [23]Li KS,Guan Y,Wang J,et al.Genesis of a highly pathogenic and potentially pandemic influenza virus in eastern Asia.Nature 2004;430(6996):209-213.
    [24]Claas,E.C.,Osterhaus,A.D.,van Beek,R.,et al.Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus.Lancet 1998;351(9101):472-7.
    [25]Memoli MJ,Morens DM,Taubenberger JK.Pandemic and seasonal influenza:therapeutic challenges.Drug Discov Today.2008;13(13-14):590-5.
    [26]de Jong,M.D.,Tran,T.T.,Truong,H.K.,et al.Oseltamivir resistance during treatment of influenza A(H5N1) infection.N Engl J Med.2005;353(25):2667-72.
    [27]Poland,G.A.Vaccines against avian influenza--a race against time.N Engl J Med.2006;354(13):1411-3.
    [28]侯云德主编.分子病毒学.第1版.1990;学苑出版社:北京.313-328.
    [29]金奇主编.医学分子病毒学.第1版.2001;科学出版社:北京.633-658.
    [30]Stephenson,I.,Gust,I.,Pervikov,Y.,et al.Development of vaccines against influenza H5.Lancet Infect Dis.2006;6(8):458-60.
    [31]Wang,S.,Zhang,C,Zhang,L.,et al.The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection,electroporation and gene gun methods.Vaccine 2008;26(17):2100-10.
    [32]Kodihalli,S.,Goto,H.,Kobasa,D.L.,et al.DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice.J Virol.1999;73(3):2094-8.
    [33]Hoffmann,E.,Lipatov,A.S.,Webby,R.J.,et al.Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines.Proc Natl Acad Sci U S A 2005;102(36):12915-20.
    [34]Johansson,B.E.Immunization with influenza A virus hemagglutinin and neuraminidase produced in recombinant baculovirus results in a balanced and broadened immune response superior to conventional vaccine.Vaccine 1999;17(15-16):2073-80.
    [35]Webster,R.G.,Reay,P.A.,and Laver,W.G.Protection against lethal influenza with neuraminidase.Virology 1988;164(1):230-7.
    [36]Roy,S.,Kobinger,G.P.,Lin,J.,et al.Partial protection against H5N1 influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein.Vaccine 2007;25(39-40):6845-51.
    [37]Okuda,K.,Ihata,A.,Watabe,S.,et al.Protective immunity against influenza A virus induced by immunization with DNA plasmid containing influenza M gene.Vaccine 2001;19(27):3681-91.
    [38]Jimenez,G.S.,Planchon,R.,Wei,Q.,et al.Vaxfectin-formulated influenza DNA vaccines encoding NP and M2 viral proteins protect mice against lethal viral challenge.Hum Vaccin.2007;3(5):157-64.
    [39]Watanabe,T.,Watanabe,S.,Kim,J.H.,et al.Novel approach to the development of effective H5N1 influenza A virus vaccines:use of M2 cytoplasmic tail mutants.J Virol.2008;82(5):2486-92.
    [40]Neirynck,S.,Deroo,T.,Saelens,X.,et al.A universal influenza A vaccine based on the extracellular domain of the M2 protein.Nat Med.1999;5(10):1157-63.
    [41]De Filette,M.,Ramne,A.,Birkett,A.,et al.The universal influenza vaccine M2e-HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection.Vaccine 2006;24(5):544-51.
    [42]Belz GT,X.W.,Doherty PC.Diversity of epitope and cytokine profiles for primary and secondary influenza A virus-specific CD8+T cell responses.J Immunol.2001;166(7):4627-33.
    [43]李仁清,鲁宁,邓瑶,等.流感病毒RNA聚合酶蛋白PB1在小鼠中可诱导亚型之间交叉免疫保护.中华微生物学和免疫学杂志2006;26(4):p.6.
    [44]Kodihalli S,Sivanandan V,Nagaraja KV,et al.A type-specific avian influenza virus subunit vaccine for turkeys:induction of protective immunity to challenge infection.Vaccine 1994;12(15):1467-1472.
    [45]Availability of H5N1 prototype strains for influenza pandemic vaccine development,http:// www.who.int/csr/disease/avian influenza/guidelines/avian influenza_prototype_strains/en/index.html,2005.
    [46]Availability of new recombinant H5N1 vaccine virus,http://www.who.int/csr/disease/avian_influenza/guidelines/h5nlvaccinevirus/en/index.html,2006.
    [47]Treanor,J.J.,Campbell,J.D.,Zangwill,K.M.,et al.Safety and immunogenicity of an inactivated subvirion influenza A(H5N1) vaccine.N Engl J Med.2006;354(13):1343-51.
    [48]FDA Approves First U.S.Vaccine for Humans Against the Avian Influenza Virus H5N1.http://www.fda.gov/bbs/topics/NEWS/2007/NEW01611.html,2007.
    [49]Bresson,J.L.,Perronne,C,Launay,O.,et al.Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004(H5N1) vaccine:phase I randomised trial.Lancet 2006;367(9523):1657-64.
    [50]Treanor,J.J.,Wilkinson,B.E.,Masseoud,F.,et al.Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans.Vaccine 2001;19(13-14):1732-7.
    [51]Nicholson,K.G.,Colegate,A.E.,Podda,A.,et al.Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97(H5N3)vaccine:a randomised trial of two potential vaccines against H5N1 influenza.Lancet 2001;357(9272):1937-43.
    [52]Stephenson,I.,Nicholson,K.G.,Colegate,A.,et al.Boosting immunity to influenza H5N1 with MF59-adjuvanted H5N3 A/Duck/Singapore/97 vaccine in a primed human population.Vaccine 2003;21(15):1687-93.
    [53]Lin,J.,Zhang,J.,Dong,X.,et al.Safety and immunogenicity of an inactivated adjuvanted whole-virion influenza A(H5N1) vaccine:a phase I randomised controlled trial.Lancet 2006;368(9540):991-7.
    [54]Webby,R.J.,Perez,D.R.,Coleman,J.S.,et al.Responsiveness to a pandemic alert:use of reverse genetics for rapid development of influenza vaccines.Lancet 2004;363(9415):1099-103.
    [55]Nicolson,C,Major,D.,Wood,J.M.,et al.Generation of influenza vaccine viruses on Vero cells by reverse genetics:an H5N1 candidate vaccine strain produced under a quality system.Vaccine 2005;23(22):2943-52.
    [56]Lu,X.,Edwards,L.E.,Desheva,J.A.,et al.Cross-protective immunity in mice induced by live-attenuated or inactivated vaccines against highly pathogenic influenza A (H5N1) viruses.Vaccine 2006;24(44-46):6588-93.
    [57]Suguitan,A.L.,Jr.,McAuliffe,J.,Mills,K.L.,et al.Live,attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets.PLoS Med.2006;3(9):e360.
    [58]Rimmelzwaan,G.F.,Claas,E.C.,van Amerongen,G.,et al.ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus.Vaccine 1999;17(11-12):1355-8.
    [59]Gao,W.,Soloff,A.C.,Lu,X.,et al.Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization.J Virol.2006;80(4):1959-64.
    [60]Hoelscher,M.A.,Garg,S.,Bangari,D.S.,et al.Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice.Lancet 2006;367(9509):475-81.
    [61]Qiao,C.L.,Yu,K.Z.,Jiang,Y.P.,et al.Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes.Avian Pathol.2003;32(1):25-32.
    [62]Veits,J.,Wiesner,D.,Fuchs,W.,et al.Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against Newcastle disease and avian influenza.Proc Natl Acad Sci USA.2006;103(21):p8197-202.
    [63]Schlesinger,S.and Dubensky,T.W.Alphavirus vectors for gene expression and vaccines.Curr Opin Biotechnol.1999;10(5):434-9.
    [64]Rayner,J.O.,Dryga,S.A.,and Kamrud,K.I.Alphavirus vectors and vaccination.Rev Med Virol.2002;12(5):279-96.
    [65]Ada G.Vaccines and vaccination.N Engl J Med 2001;345:1042-1053.
    [66]Plotkin SAO (ed.).Vaccines,3rd edn.W.B.Saunders:Philadelphia;1999.
    [67]Schlesinger S,Schlesinger MJ.Togaviridae:The viruses and their replication.In Fields Virology,4th edn,Knipe DM,Howley PM (eds).Lippincott Williams & Wilkins:Philadelphia,2001;895-916.
    [68]Rayner,J.O.,Dryga,S.A.,Kamrud,K.I..Alphavirus vectors and vaccination.Rev.Med.Virol.2002;12,279-296.
    [69]Matthew B.Elliott,Tong Chen,Nicole B.Terio,et al.Alphavirus replicon particles encoding the fusion or attachment glycoproteins of respiratory syncytial virus elicit protective immune responses in BALB/c mice and functional serum antibodies in rhesus macaques.Vaccine 2007;25:7132-7144.
    [70]Ahola T,Kujala P,Tuittila M,et al.Effects of palmitoylation of replicase protein nsPl on alphavirus infection.J Virol 2000;74:6725-6733.
    [71]Rikkonen M,Peranen J,Kaariainen L.ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2.J Virol 1994;68:5804-5810.
    [72]Cedron MGD,Ehsani N,Mikkola ML,et al.RNA helicase activity of Semliki Forest virus replicase protein NSP2.FEBS Lett 1999;448:19-22.
    [73]Strauss EG,Groot RJD,Levinson R,et al.Identification of the active site residues in the nsP2 proteinase of Sindbis virus.Virology 1992;191:932-940.
    [74]Peranen J,Takkinen K,Kalkkinen N,et al.Semliki Forest virus-specific nonstructural protein nsP3 is a phosphoprotein.J Gen Virol 1988;69:2165-2178.
    [75]Li GP,Starza MWL,Hardy WR,et al.Phosphorylation of Sindbis virus nsP3 in vivo and in vitro.Virology 1990;179:416-427.
    [76]LaStarza MW,Lemm JA,Rice CM.Genetic analysis of the nsP3 region of Sindbis virus:evidence for roles in minus-strand and subgenomic RNA synthesis.J Virol 1994;68:5781-5791.
    [77]Lemm J A,Durbin RK,Stollar V,et al.Mutations which alter the level or structure of nsP4 can affect the efficiency of Sindbis virus replication in a host-dependent manner.J Virol 1990;64:3001-3011.
    [78]George J,Raju R.Alphavirus RNA genome repair and evolution:molecular characterization of infectious Sindbis virus isolates lacking a known conserved motif at the 3' end of the genome.J Virol 2000;74:9776-9785.
    [79]Joseph M.Thompson,Alan C.Whitmore,Herman F.Staats,et al.Alphavirus replicon particles acting as adjuvants promote CD8+ T cell responses to co-delivered antigen.Vaccine 2008;26:4267-4275.
    [80]Nikos Vasilakis,Darlene Falvey,Seema S Gangolli,et al.Transfection-independent production of alphavirus replicon particles based on poxvirus expression vectors.Nature biotechnology 2003;21(8):932-935.
    [81]Frolova E,Frolov I,Schlesinger S.Packaging signals in alphaviruses.J Virol 1997;71:248-258.
    [82]Kujala P,Ikaheimonen A,Ehsani N,et al.Biogenesis of the Semliki Forest virus RNA replication complex.J Virol 2001;75:3873-3884.
    [83]Lemm JA,Bergqvist A,Read CM,et al.Template-dependent initiation of Sindbis virus RNA replication in vitro.J Virol 1998;72:6546-6553.
    [84]Shirako Y,Yamaguchi Y.Genome structure of Sagiyama virus and its relatedness to other alphaviruses.J Gen Virol 2000;81:1353-1360.
    [85]Nilsson,C,Makitalo,B.,Berglund,P.,et al.Enhanced simian immunodeficiency virus-specific immune responses in macaques induced by priming with recombinant Semliki Forest virus and boosting with modified vaccinia virus Ankara.Vaccine 2007;19:3526-3536.
    [86]Hubby,B.,Talarico,T.,Maureen,M.,et al.Development and preclinical evaluation of an alphavirus replicon vaccine for influenza.Vaccine 2007;25:8180-8189.
    [87]Reap,E.A.,Morris,J.,Dryga,S.A.,et al.Development and preclinical evaluation of an alphavirus replicon particle vaccine for cytomegalovirus.Vaccine 2007;25:7441-7449.
    [88]Pushko P,Parker M,Ludwig GV,et al.Replicon-helper systems from attenuated Venezuelan equine encephalitis virus:expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo.Virology 1997;239:389-401.
    [89]Wolfgang W.Leitner,Leroy N.Hwang,Michael J.Deveer,et al.Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways.Nat Med.2003;9(1):33-39.
    [90]Sjoberg EM,Suomalainen M,Garoff H.A significantly improved Semliki Forest virus expression system based on translation enhancer segments from the viral capsid gene.Biotechnology (NY) 1994;12:1127-1131.
    [91]Sonal Saxena,Shyam S.Dahiya,Arvind A.Sonwane,et al.A sindbis virus replicon-based DNA vaccine encoding the rabies virus glycoprotein elicits immune responses and complete protection in mice from lethal challenge.Vaccine 2008;26:6592-6601.
    [92]Berglund P,Sjoberg M,Garoff H,et al.Semliki Forest virus expression system:production of conditionally infectious recombinant particles.Biotechnology (NY) 1993;11:916-920.
    [93]Frolov I,Schlesinger S.Comparison of the effects of Sindbis virus and Sindbis virus replicons on host cell protein synthesis and cytopathogenicity in BHK cells.J Virol 1994;68:1721-1727.
    [94]Ying H,Zaks TZ,Wang RF,et al.Cancer therapy using a self-replicating RNA vaccine.Nat Med 1999;5:823-827.
    [95]Glasgow GM,McGee MM,Tarbatt CJ,et al.The Semliki Forest virus vector induces p53-independent apoptosis.J Gen Virol 1998;79:2405-2410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700