用户名: 密码: 验证码:
鸡传染性法氏囊病病毒VP1蛋白影响病毒复制及致病性机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡传染性法氏囊病(IBD)是一种危害养禽业的急性、高度接触性传染病。鸡传染性法氏囊病的病原为鸡传染性法氏囊病病毒(IBDV),属于双RNA病毒科禽双RNA病毒属的成员。IBDV主要侵害3到6周龄雏鸡,破坏中枢免疫系统法氏囊中的B淋巴细胞,导致免疫抑制。IBDV基因组由A和B两条双链组成。其中A节段含有两个开放阅读框,编码VP2、VP3、VP4和VP5蛋白。B节段含有一个开放阅读框,编码VP1蛋白,具有RNA依赖的RNA聚合酶活性。
     反向遗传技术的成功建立很大程度上推进了IBDV的基础研究工作。众多学者对于IBDV的A节段做了相关的研究,发现IBDV的VP2蛋白对病毒的毒力、细胞嗜性有重要作用,VP3和VP5蛋白也对病毒的复制有一定影响。但是,病毒的毒力是由多个因素共同决定的,VP1对于病毒的复制和毒力也有影响。目前,关于VP1的研究仍相对滞后,VP1对病毒复制及毒力的影响尚未见比较深入的报道。
     本研究旨在研究VP1与IBDV复制及毒力的关系,并研究其影响病毒复制和毒力的分子机制。本研究首先测定并分析了七株IBDV的B节段全基因组序列,并将全基因组序列上传到GenBank中。通过遗传进化分析结合致病性实验,所测定的七株病毒均属于IBDV超强毒株。根据B节段进化分析,可将B节段划分为三个群,本研究测定毒株的B节段属于第Ⅱ群和第Ⅲ群。通过序列比对,强毒在VP1蛋白上有八个保守的氨基酸位点,分别是4V、61I、145T、287A、508K、511S、646S以及687P。在B节段的5’UTR部分,55T和63A在强毒中是保守的,在3’UTR部分,2786C是保守的。
     为进一步研究VP1上的保守位点对于病毒的生物学特性是否有影响,本研究根据VP1的三维结构,构建4、61和145位点突变的N端结构域突变株,287、508、511和646位点突变的中心活性结构域突变株和C端结构域的687突变株。首先以弱毒Gt的A节段和超强毒HLJ-4的B节段为骨架构建5株针对B节段不同突变的病毒,研究其在CEF细胞上的复制动力学特性,发现将强毒HLJ-4的B节段上的4、61和145位点突变为弱毒的相应位点,可使病毒在CEF细胞上的复制能力增强。将强毒HLJ-4的B节段上的687位点P突变为弱毒的相应位点S,也可使病毒在CEF细胞上的复制能力增强。进一步拯救出4、61、145单位点突变的病毒,研究其在CEF细胞上的复制动力学特性,发现将强毒的HLJ-4的B节段上的4位点V突变为弱毒的相应位点I,也可使病毒在CEF细胞上的复制能力增强。可见V4I以及P687S突变可提高病毒在CEF细胞的复制能力。
     为研究影响体外复制的位点是不是会进一步对病毒的毒力造成影响,本研究首先构建了IBDV超强毒株的反向遗传系统。以HLJ-4的A节段和HLJ-4的B节段为骨架拯救出IBDV超强毒亲本毒株。首先将A、B节段的质粒在DF1细胞上转染,转染48 h后,将转染的细胞液反复冻融3次,从尾根部接种3周龄SPF鸡的法氏囊,在接种后3天,拯救各组不同病毒的SPF鸡均出现死亡,剖检鸡法氏囊出现病变,经测序和电镜分析证实IBDV超强毒已成功拯救。将拯救的B节段上不同突变的IBDV超强毒进行SPF鸡攻毒实验,发现将强毒的4位点由V突变为I,可使病毒的致病性增强,将强毒的687位点由P突变为S,可使病毒的致病性增强。
     VP1具有RNA依赖的RNA聚合酶活性,研究不同位点突变影响病毒复制及致病性的分子机制。构建了基于B节段的minigenome系统,并成功用于检测IBDV的聚合酶活性。通过聚合酶活性检测,发现将IBDV强毒的4位点V突变为弱毒的相应位点I,可使病毒的聚合酶活性升高,而将弱毒的4位点I突变为强毒的相应位点V,病毒的聚合酶活性降低。由此可见,4位点影响病毒复制及致病性的分子机制之一是由于其影响了病毒的聚合酶活性。
Infectious bursal disease is a highly contagious and immunosuppressive disease of great economic importance to the poultry industry. The causative agent of IBD is infectious bursal disease virus, which is a member of the family Birnaviridae. B lymphoid cells in the bursae of Fabricius(BF)are the target cells of IBDV, and between 3 and 6 weeks after hatching, when the BF reaches maximum development, chickens are highly susceptible to the virus. Infection results in lymphoid depletion and the final destruction of the bursae. IBDV genome consists of two segments A an B. Genome segment A of IBDV encodes VP2, VP3, VP4 and VP5, while genome segment B encodes VP1, which is the RNA dependent RNA polymerase.
     The establishment of reverse genetics has greatly enhanced the research towards IBDV. Many work had done to identify molecular determinants on segment A. It had been found that VP2 is the major determinant of virulence. However, it was not the sole determinant. VP3 and VP5 protein are involved in virus replication. Many factors contribute to the virulence of IBDV, and segment B is involved in pathogenicity of IBDV. Until now, studies towards segment B are rather sparse. Little had done on molecular determinants on segment B.
     This study aimed to investigate the effect of conserved amino acids on VP1 on virus replication and pathogenesis, and further to investigate the molecular mechanism. First, we sequenced and analyzed the whole segment B sequence of seven IBDV isolates, and submit the sequence to Genbank. Through phylogenetic analysis and pathogenicity study, seven isolates belong to vvIBDV, and segment B of the seven isolates can be clustered into two clusters branchⅡand branchⅢ. There are eight conserved amino acids on VP1 protein, 4V, 61I, 145T, 287A, 508K, 511S, 646S and 687P. In 5’UTR, 55T and 63A are conserved, and in 3’UTR, 2786C are conserved.
     In order to identify if these conserved sites are critical to virus replication and pathogenesis, a series of mutation viruses were rescued based on Gt A segment and HLJ-4 B segment. Mutations were introduced into B segment according to the three dimensional structure of VP1 protein. 4, 61 and 145 sites were mutated to be the N terminus mutation; 287, 508, 511 and 646 sites were mutated to be the central domain mutation, and 687 site was mutated to be the C terminus mutation. One step growth curve showed 687 mutation on segment B of HLJ-4 from P to S can elevate virus replication ability in CEF cells. Further, single site mutation of 4, 61 and 145 were introduced into segment B. One step growth curve showed hat 4 mutation on segment B of HLJ-4 from V to I can elevate virus replication ability in CEF cells.
     To investigate if these mutations can affect virus pathogenicity, a series of vvIBDV were rescued based on both segments of HLJ-4. Animal experiment showed that 4 mutation on segment B of HLJ-4 from V to I can elevate pathogenesis, and 687 mutation on segment B of HLJ-4 from P to S can elevate virus pathogenesis.
     A segment B-driven minigenome system was established to evaluate the polymerase activity. The result showed that 4 site mutation can influence the polymerase activity. 4 site mutation from V to I can elevate polymerase activity, and 4 site mutation from I to V can reduce polymerase activity.
引文
1.闫成刚,刘庆涛.传染性法氏囊病的研究进展.畜牧与饲料科学. 2010, 31(11-12):85-86
    2.高立.利用反向遗传技术构建IBDV候选疫苗株的研究. [硕士学位论文],北京,中国农业科学院,2010.
    3.祁小乐..鸡传染性法氏囊病病毒反向遗传操作系统的建立及基因功能研究.[博士学位论文],北京,中国农业科学院,2007.
    4.宇文延青.我国部分地区传染性法氏囊病毒病分子流行病学研究. [博士学位论文],北京,中国农业科学院,2008.
    5.黄耀伟,李龙,于涟.人类及动物RNA病毒的反向遗传系统.生物工程学报,2004,20(3):311-318
    6.黄耀伟,李龙,李建荣,等.传染性法氏囊病病毒感染性克隆的快速构建.生物化学与生物物理学报,2003,35(4):338-344
    7.于涟,黄耀伟,丁红梅.新技术防治传染性法氏囊病的研究进展和思考.中国兽医学报,2001,21(4):
    8.王永山,周宗安,瞿春生,等.麻雀自然感染鸡传染性法氏囊病病毒的调查.中国兽医学报,1994,14(3):268-270
    9.张存,范坤晓,陈如玉.鸡传染性法氏囊超强毒的感染与防治.畜牧与兽医, 1996,3(28):130-132.
    10.金文杰,崔治中,刘岳龙,等.传染性法氏囊病病料中MDV,CAV,REV的共感染检测.中国兽医学报,2001,21,6-8
    11.姜世金,孟珊珊,崔治中,等.我国自然发病鸡群中MDV,REV,和CAV共感染的检测.中国病毒学,2005,20,164-167
    12.周玉森,郭颖,刑奕新.近期鸡传染性法氏囊病的特点及防制对策.现代畜牧兽医, 2010, 47-48
    13. Agapov E V, Frolov I, Lindenbach BD, et al. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci USA, 1998,95:12989-12994
    14. Agnes Billecocq, Nicolas Gauliard, Nicolas Le May, et al., RNA PolymeraseⅠ-mediated expression of viral RNA for the rescue of infectious virulent and avirulent rift valley fever viruses. Virology. 2008. 378, 377-384
    15. Ahiquist P, Janda M. cDNA cloning and in vitro transcription of the complete brome mosaic virus genome. Mol Cell Biol, 1984,4:2876-2882
    16. Allen W H,Faragher J T and Cullen G A.Immunosuppression by the infectious bursal agent in chickens immunized against Newcastle disease.Vet Rec,1972,90:511-512.
    17. Araver A.,Ona A.,Abaitua F.,et al. The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. J Virol, 2003,77: 6438-6449
    18. Azad A.A., Barrett S.A., and Fahey K.J. The characteristics and molecular cloning of the doublestranded RNA genome of an Australian strain of infectious bursal disease virus. Virology. 1985, 143: 35-44
    19. Azad A.A.,McKern N.M.,Macreadie I.G.,et al.Physicochemical and immunological characterization of recombinant host-protective antigen(VP2)of infectious bursal disease virus. Vaccine,1991, 9: 715~722.
    20. Bayliss,C.D.,R.W.Peters,J.K. Cook, et al., A recombinant fowlpox virus that expresses the VP 2 antigen of infectious bursal disease virus induces protection against mortality caused by the virus. Arch. Virol. 1991, 120. 193-205.
    21. Becht H., Infectious bursal disease virus. Curr.Top.Microbiol.Immunol.90,107-121.
    22. Benton, W. J., M. S. Cover, J.K.Rosenberger et al. Physicochemical properties of the infectious bursal agent. Avian Dis. 1967, 11, 438-445
    23. Boot H.J.,Agnes H.M.,Arjan J.W.,Rescue of very virulent and mosaic infectious bursal disease virus from cloned cDNA:VP2 is not the sole determinant of the very virulent phenotype.Journal of Virology,2000,74:6701-6711.
    24. Boot H.J.,Huurne A.A.,Peeter B.P.H.,et al.Efficient rescue of infectious bursal disease virus from cloned cDNA:Evidence for involvement of the 3’-terminal sequence in genome replication.Virology,1999,265:330–341.
    25. Bottcher B, Kiselev N A, Stel’Mashchuk V Y, et al., Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J Virol, 1997, 71(1):325-330
    26. Brandt M.,Yao K.,Liu M.,et al.Molecular determinants of virulence,cell tropism,and pathogenic phenotype of infectious bursal disease virus.J Virology,2001,75:11974-11982.
    27. Britton P, Green P, Kottier S, etal. Expression of bacteriophage T7 RNA polymerase in avian and mammalian cells by a recombinant fowlpox virus. J Gen Virol, 1996, 77: 963-967
    28. Burkhardt,E and H. Muller. Susceptiblility of chicken blood lymphoblasts and monocytes to infectious bursal disease virus(IBDV). Arch.Virol. 1987,94,297-303
    29. Chunyi Xue, Yun Zhang, Qingfeng Zhou, et al., Rapid detection of Infectious bursal disease virus by reverse transcription loop-mediated isothermal amplication assay. J Vet Diagn Invest. 2009, 21, 841-843
    30. Cyril Masante, Kathleen Mahias, Sofia Lourenco, et al. Seven nucleotide changes characteristic of the hepatitis C virus genotype 359 untranslated region: correlation with reduced invitro replication. Journal of General Virology. 2008, 89, 212-221
    31. Cyril Le Nouen,Gaelle Rivallan,Didier Toquin,et al.Very virulent infectious bursal disease virus:reduced pathogenicity in a rare natural1 segment-Breassorted isolate.Journal of General Virology,2006,87,209–216.
    32. Chettle N.J.,Stuart J.C.,and Wyeth P.J..Outbreak of virulent infectious bursal disease in East Anglia.Vet Rec.,1989,125:271~272.
    33. Chung-Chau Hon, Tsan-Yuk Lam, Alexei Drummond, et al., Phylogenetic analysis reveals a correlation between the expansion of very virulent infectious bursal disease virus andreassortment of its genome segment B. J. Virol. 2006, 80, 8503-8509
    34. Cosgrove A.S..An apparently new disease of chickens---avian nephrosis.Avian Dis.1962,6:385.
    35. Cruz-Coy, J.S., J.J.Giambrone and F.J.Hoerr. Immunohistochemical detection of infectious bursal disease virus in formalin-fixed, paraffin-embedded chicken tissues using monoclonal antibody. Avian Dis.1993, 37, 577-581
    36. Darteil,R., M.Bublot, E.Laplace, et al. Herpesvirus of turkey recombinant viruses expressing infectious bursal disease virus VP 2 immunogen induce protection against an IBDV virulent challenge in chickens. Virology, 1995,211,481-490
    37. Dobos P.,Hill B.J.,Hallett R.,et al.Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes.J.Virol.,1979,32:593~605.
    38. Dobos P..In vitro guanylylation of infectious pancreatic necrosis virus polypeptide VP1.Virology,1993,193(1):403~413.
    39. Einem U.V.,Gorbalenya A.E.,Schirrmeier H,et al.VP1 of infectious bursal disease virus is an RNA-dependent RNA polymerase.J.Gen.Virol.,2004,85:2221-2229.
    40. Fahey K.J.,O’Donnell I.J.,Azad A.A.Characterization by Western blotting of the immunogens of infectious bursal disease virus.J.Gen.Virol.,1985,66:1479-1488.
    41. Fei Yu, Xiaole Qi, Yanqing Yuwen, et al., Molecular characteristics of segment B of seven very virulent infectious bursal disease viruses isolated in China. Virus Genes. 2010, 41: 246-249.
    42. Fernandez-Arias A.,Risco C.,Martinez S.,et al.Expression of ORF A1 of infectious bursal diseasevirus results in the formation of virus-like particles.J Gen Virol,1998,79(Pt 5):1047-1054.
    43. G.Gabriel, B.Dauber, T.Wolff, et al. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host.PNAS.2005,102,18590-18595
    44. Gao H.L.,Wang X.M.,Gao Y.L.,et al.Direct evidence of symposium reassortment and mutant spectrum analysis of a very virulent infectious bursal disease virus.Avian Disease,2007,51: 893-899.
    45. Garriga D.,Querol-Audi J.,Abaitua F.,et al.The 2.6-Angstrom structure of infectious bursal disease virus-derived T1 particles reveals new stabilizing elements of the virus capsid.Journal of Virology,2006,80:6895–6905.
    46. Garriga D., Navarro A, Querol-AudíJ, Abaitu F, Rodíguez J, and Verdague N. 2007. Activation mechanism of a noncanonical RNA-dependent RNA polymerase. PNAS. 104: 20540-20545.
    47. Glick, B., T.S. Chang and J.R,G. The bursal of Fabricius and antibody formation. Poult. Sci. 1956. 35, 224-225
    48. Glick, B. Historical perspective: The bursae of Fabricius and its influence on B cell development, past and present. Vet. Immunol. Immunopathol. 1991. 30, 3-12
    49. Gorziglia. M.I.,Collins,P.L. Intracellular amplification and expression of synthetic analog of rotavirus genomic RNA bearing a foreigen marker gene: mapping cis-acting nucleotides in the3’noncoding region.Proc. Nat. Acad. Sci. USA. 1992,89,5784-5788
    50. Hein J., Boot and Sylvia B.E. Pritz-Verschuren. 2004. Modification of the 3’-UTR stem-loop of infectious bursal disease virus are allowed without influencing replication or virulence. Nucleic Acid Res.32:211-222.
    51. Heine H.G., Haritou M., Failla P., et al. Sequence analysis and expression of the host protective Immunogen VP2 of a variant strain of infectious bursal disease virus which can circument vaccination with standard typeⅠstrains. J.Gen.Virol. 1991,72,1835-1843
    52. Hiraga,M., T.Nunoya, Y. Otaki, M. Tajima, T. Saito and T Nakamura. Pathogenesis of high virulent infectious bursal disease virus infection infection in intact and bursectomized chickens. J.Vet.Med.Sci.1994,56,1057-1063
    53. Hirai K.and Shimakura S..Structure of infectious bursal disease virus.J Virol,1974,14:957~964.
    54. Hitchner S.B..Infectivity of infectious bursal disease virus for embryonating eggs.Poult Sci,1970,49:511~516.
    55. Howie R.and Thorsen J..An enzyme-linked immunosorbent assay(ELISA)for infectious bursal disease virus.Can J Comp Med,1981,45:51~55.
    56. Hoffman E.,Neumann G, Kawaoka Y. et al., A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. USA., 1997, 6108-6113.
    57. Hudson P.J.,McKern N.M.,Power B.E.,et al.Genomic structure of the large RNA segment of infectious bursal disease virus.Nucleic Acids Res,1986,14:5001~5012.
    58. Inou,M., H. Yamamoto, K.Matuo and H. Hihara. Susceptiblility of chicken monocytic cell lines to infectious bursal disease virus. J. Vet. Med. Sci.1992,54,575-577
    59. Islam M.R.,Zierenberg K.,Müller H.,The genome segment B encoding the RNA-dependent RNA polymerase protein VP1 of very virulent infectious bursal disease virus(IBDV)is phylogenetically distinct from that of all other IBDV strains.Archives of Viology,2001,146:2481–2492.
    60. Ismail N.M.and Saif Y.M..Differentiation between antibodies to serotypes 1 and 2 infectious bursal disease viruses in chicken sera.Avian Dis,1990,34:1002~1004.
    61. Izeta,A.,Smerdou,C.,Alonso,S.,et al., Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenome. J.Virol.1999. 73,1535-1545
    62. Jackwood D.J.,Sommer-Wagner S.E..Molecular studies on suspect very virulent infectious bursal disease virus genomic RNA samples.Avian Dis,2006 49:246–251.
    63. Jackwood D.H.and Saif Y.M.Antigenic diversity of infectious bursal disease viruses.Avian Dis,1987 31:766~770.
    64. Jackwood D.J.and Jackwood R.J..Infectious bursal disease viruses:molecular differentiation of antigenic subtypes among serotype 1 viruses.Avian Dis,1994,38:531~537.
    65. Jackwood D.J.and Sommer S.E..Restriction fragment length polymorphisms in the VP2 gene of infectious bursal disease viruses from outside the United States.Avian Dis,1999,43:310~314.
    66. Jackwood D.J.and Sommer S.E..Virulent vaccine strains of infectious bursal disease virus notdistinguishable from wild-type viruses with marker the use of a molecular.Avian Dis,2002,46: 1030~1032.
    67. Junhua Pan, Vikram N.Vakharia, and Yizhi Jane Tao. 2007. The structure of a birnavirus polymerase reveals a distinct active site topology. PNAS. 104: 7285-7390.
    68. Karunakaran K.,Thanappapilldi M.,and Raghavan N..Seroprevalence of infectious bursal disease (IBD)in parts of Tamil Nadu,India.Comp Immunol Microbiol Infect Dis,1993,16:241~244.
    69. Kendra A.Bussey, Tatiana L.Bouses, Emily A. Desmet,et al. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells.Journal of Virology. 2010, 84, 4395-4406
    70. Kenichi,I.,Youko,S.,Ichiro,K.,Toshio,I.,Takeo,S.,Kinjiro,M.,2003.An improved method for recovering rabies virus from cloned cDNA. J.Virol.Methods. 2003. 107, 229-236
    71. Kibenge F.S.,Dhillon A.S.,and Russell R.G..Growth of serotypes I and II and variant strains of infectious bursal disease virus in Vero cells.Avian Dis,1988,32:298~303.
    72. Kibenge F.S.,Nagarajan M.M.,and Qian B..Determination of the 5'and 3'terminal noncoding sequences of the bi-segmented genome of the avibirnavirus infectious bursal disease virus.Arch Virol,1996,141:1133~1141.
    73. Kim, I.J., K. Karaca, T.L. Pertile, et al. Enhanced expression of cytokine genes in spleen macrophages during acute infection with infectious bursal disease virus in chickens. Vet. Immunol. Immunopathol. 1998. 61, 331-341
    74. Kirsten Flick,Anna Katz, Anna Overby,et al., Functional analysis of the noncoding regions of the Uukuniemi virus (Bunyaviridae) RNA segments. Journal of Virology. 2004, 78, 11726-11738
    75. Lasher H.N.and Davis V.S..History of infectious bursal disease in the U.S.A.--the first two decades. Avian Dis,1997,41:11~19.
    76. Le Nouen C.,Rivallan G.,Toquin D.,et al.Very virulent infectious bursal disease virus:reduced pathogenicity in a rare natural segment-B-reassorted isolate.J Gen Virol,87:209-216,2006.
    77. Lim B.L.,Cao Y.,Yu T.,et al.Adaptation of very virulent infectious bursal disease virus to chicken embryonic fibroblasts by site-directed mutagenesis of residues 279 and 284 of viral coat protein VP2. J Virol,1999,73:2854~2862.
    78. Lojkic,I.,Bidin, Z.,Pokric,B.,et al.Sequence analysis of both genome segments of three Croatian infectious bursal disease field viruses.Avian Dis.2008, 52,513-519
    79. Lombardo E.,Maraver A.,Castn J.R.,et al.VP1,the putative RNA-dependent RNA polymerase of infectious bursal disease virus,forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles.J Virol,1999,73:6973~6983.
    80. Lomdisease virus,accumulates within the host plasma membrane and induces cell lysis.Virology,2000,277:345~357.
    81. Mahardika G N, Becht H. Mapping of cross-reacting and serotype-specific epitopes on the VP 3structural protein of the infectious bursal disease virus (IBDV). Arch Virol, 1995, 140:765-774
    82. Mcferran, J.B.,M.S.Mcferran,E.R.Mckillop, T.J.Conner, R.M.McCracken, D.S.Collins and G.M. Allan. Isolation and serological studies with infectious bursal disease virus from fowl, turkeys, and ducks: demonstration of a second serotype. Avian Pathol.1980,9,284-192
    83. Mcnulty, M.S., G.M.Allan and J.B.Mcferran..Isolation of infectious bursal disease virus from turkeys.Avian Pathol.1979, 8, 205-212
    84. Mengel-Whereat, S.A. Development of a monoclonal antibody for the detection of highly virulent classic infectious bursal disease virus.1995. Animal Sciences.College Park, MD,University of Maryland, College Park:97
    85. Mirriam G.J.,Tacken,Peeters B.P.,et al.Infectious bursal disease virus capsid protein VP3 interacts with VP1,the RNA-dependent RNA polymerase,and with viral double-stranded RNA.J Virol,2002,11:11301~11311
    86. Muller H.and Becht H..Biosynthesis of virus-specific proteins in cells infected with infectious bursal disease virus and their significance as structural elements for infectious virus and incomplete particles.J Virol,1982,44:384~392.
    87. Muller H.and Nitschke R..The two segments of the infectious bursal disease virus genome are circularized by a 90,000-Da protein.Virology,1987,159:174~177.
    88. Muller H.,Islam M.R.,and Raue R..Research on infectious bursal disease--the past,the present and the future.Veterinary Microbiology,2003,97:153~165.
    89. Muller H.,Scholtissek C.,and Becht H..The genome of infectious bursal disease virus consists of two segments of double-stranded RNA.J Virol,1979,31:584~589.
    90. Mundt E.and Muller H..Complete nucleotide sequences of 5'-and 3'-noncoding regions of both genome segments of different strains of infectious bursal disease virus.Virology,1995,209:10~18.
    91. Mundt E.,Beyer J.,and Muller H..Identification of a novel viral protein in infectious bursal disease virus-infected cells.J Gen Virol,1995,76(Pt 2):437~443.
    92. Mundt E.,Kollner B.,and Kretzschmar D..VP5 of infectious bursal disease virus is not essential for viral replication in cell culture.J Virol,1997,71:5647~5651.
    93. Mundt E..Tissue culture infectivity of different strains of infectious bursal disease virus is determined by distinct amino acids in VP2.J Gen Virol,1999,80:2067~2076.
    94. Nunya,T., Y. Otaki, M.Tajima, M.Hiraga and T.Saito. Occurance of acute infectious bursal disease with high mortality in Japan and pathogenicity of fields isolates in specific-pathogen-free chickens.Avian Dis. 1992, 36, 597-609
    95. Nagarajan M.M.and Kibenge F.S..The 5'-terminal 32 basepairs conserved between genome segments A and B contain a major promoter element of infectious bursal disease virus.Arch Virol, 1997,142:2499~2514.
    96. N.Ben Abdeljelil, B.Delmas, H.Mardassi.Replication and packaging of an infectious bursal disease virus segment A-drived minigenome. Virus Research.2008, 136, 146-151
    97. N.Ben Abdeljelil,N. Khabouchi, H.Mardassi. Efficient rescue of infectious bursal disease virus using a simplified RNA polymeraseⅡ-based reverse genetics strategy. Arch Virol. 2008, 153, 1131-1137
    98. Oliver Dibben, Andrew J. Easton. Mutational analysis of the gene start sequences of pneumonia virus of mice. Virus Research.. 2007. 130: 303-309
    99. Oppling V.,Muller H.,and Becht H..The structural polypeptide VP3 of infectious bursal disease virus carries group-and serotype-specific epitopes.J Gen Virol,1991,72(Pt 9):2275~2278.
    100. Patton.J.T., Rotavirus VP1 alone specifically binds to the 3’end of viral mRNA but the interaction is not sufficient to initiate minus-strand synthesis. 1996. J.Virol. 70, 7940-7947
    101. Perez,M., Sanchez,A., Cubitt,B., Rosario ,D., et al., A reverse genetics system for Bornavirus disease virus. J. Gen. Virol. 2003.84,3099-3104
    102. Qin L.T., Qi X.L., Gao Y.L., et al. VP5 deficient mutant virus induced protection against challenge with very virulent infectious bursal disease virus of chickens. Vaccine, 2010, 28:3735-3740
    103. Ramon Flick and Ralf F.Pettersson. Reverse genetics system for Uukuniemi virus (Bunyaviridae): RNA PolymeraseⅠ-catalyzed expression of chimeric viral RNAs.J.Virol. 2001, 75, 1643-1655
    104. Saif Y.M..Infectious bursal disease and hemorrhagic enteritis.Poult Sci,1998,77:1186~1189.
    105. Rosenberger J.K and Cloud.S. Isolation and characterization of variant infectious bursal disease viruses. Proc. 123rd Ann Meeting of AVMA. 1986.Abstract 181.
    106. Sharma,J.M. and L.F.Lee. Effect of infectious bursal disease on natural killer cell activity and mitogenic response of chicken lymphoid cell: role of adherent cells in cellular immune suppression.Infect. Immun.1983.42, 747-754
    107. Schnitzler D.,Bernstein F.,Muller H.,et al.The genetic basis for the antigenicity of the VP2 protein of the infectious bursal disease virus.J Gen Virol,1993,74(Pt 8):1563~1571.
    108. Schroder,A.,van Loon,A.A.,Goovaerts,D.,et al.Chimeras in noncoding regions between serotypes I and II of segment A of infectious bursal disease virus are viable and show pathogenic phenotype in chickens.J Gen Virol,2000,81:533~540.
    109. Shwed P.S.,Dobos P.,Cameron L.A.,et al.Birnavirus VP1 proteins form a distinct subgroup of RNA-dependent RNA polymerases lacking a GDD motif.Virology,2002,296:241~250.
    110. Snyder D.B.,Vakharia V.N.and Savage P.K..Naturally occurring-neutralizing monoclonal antibody escape variants define the epidemiology of infectious bursal disease viruses in the United States. Archives of Viruology,1992,127:89~101.
    111. Spies U.and Muller H..Demonstration of enzyme activities required for cap structure formation in infectious bursal disease virus,a member of the birnavirus group.J Gen Virol,1990,71(Pt 4): 977~981.
    112. Spies U.,Muller H.,and Becht H..Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products.Virus Res,1987,8:127~140.
    113. Spies U.,Muller H.,and Becht H..Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products.Virus Res,1987,8: 127~140.
    114. Subramani S, Deluca M. In J K Setlow. Genetic Engineering: Principles and Methods., Plenum Press, New York, 1988, 75-89
    115. Tacken M.G.,Peeters B.P.,Thomas A.A.,et al.Infectious bursal disease virus capsid protein VP3 interacts both with VP1,the RNA-dependent RNA polymerase,and with viral double-stranded RNA. J Virol,2002,76:11301~11311.
    116. Tacken M.G.,Rottier P.J.,Gielkens A.L.,et al.Interactions in vivo between the proteins of infectious bursal disease virus:capsid protein VP3 interacts with the RNA-dependent RNA polymerase,VP1.J Gen Virol,2000,81:209~218.
    117. Tacken M.G.,Thomas A.A.,Peeters B.P.,et al.VP1,the RNA-dependent RNA polymerase and genome-linked protein of infectious bursal disease virus,interacts with the carboxy-terminal domain of translational eukaryotic initiation factor 4AII.Arch Virol,2004,149:2245~2260.
    118. Tacken M.G.,Van Den Beuken P.A.,Peeters B.P.,et al.Homotypic interactions of the infectious bursal disease virus proteins VP3,pVP2,VP4,and VP5:mapping of the interacting domains. Virology,2003,312:306~319.
    119. Taniguchi T,Palmieri M,Weissmann C.QβDNA-containing hybrid plasmids giving rise to Qβphage formation in the bacterial host.Nature,1978,274:223-228
    120. Tetsuro Ikegami,C.J.Peters,and Shinji Makino.Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system. Journal of virology. 2005. 79, 5606-5615
    121. Tiwari A.K.,Kataria R.S.,Indervesh,et al.Differentiation of infectious bursal disease viruses by restriction enzyme analysis of RT-PCR amplified VP1 gene sequence.Comp Immunol Microbiol Infect Dis,2003,26:47~53.
    122. Tyler K.L. and B.N.Fields. Fields Virology. 1996.Philadephia. New York, Lippincott-Raven
    123. Vakharia V.N.,He J.,Ahamed B.,et al.Molecular basis of antigenic variation in infectious bursal disease virus.Virus Res,1994,31:264~273.
    124. Vakharia V.N.,Snyder D.B.,He J.,et al.Infectious bursal disease virus structural proteins expressed in a baculovirus recombinant confer protection in chickens.J Gen Virol,1993,74(Pt 6):1201~1206.
    125. Vakaria, V.N. Development of recombinant vaccines against infectious bursal disease virus. Biotechnology Annual Review. 1997, 3, 151-168
    126. Van Den Berg T.P.,Morales D.,Enterradossi N.,et al.Assessment of genetic,antigenic and pathotypic criteria for the characterization of IBDV strains.Avian Pathol,2004,1:1–2.
    127. Van den Berg T.P.,Gonze M,and Meule mans G..Acute infectious bursal disease in poultry:Isolation and characterization of a highly v irulent strain.Avian Pathol,1991,20:133~143.
    128. van den Berg T.P.,Gonze M.,and Meulemans G..Acute infectious brusal disease in poultry: isolation and characterization of a highly virulent strain.Avian Pathology,1991,20:409~421.
    129. van den Berg T.P.,Gonze M.,Morales D.,et al.Acute infectious brrsal disease in poultry: immunological and molecular basis of antigenicity of a highly virulent strain.Avian Pathol.,1996,25:751~768.
    130. van den Berg T.P.,Gonze M.,Morales D.,et al.Relevance of antigenic variation for protection in infectious brusal disease.In:Proc,International Symposium on infectious bursal disease and chicken infecious anaemia 22~26.Rauischholzhausen,Germany,1994..
    131. van den Berg T.P.,Morales D.,Eterradossi N.,et al.Assessment of genetic,antigenic and pathotypic criteria for the characterization of IBDV strains.Avian Pathol,2004,33:470~476.
    132. van den Berg T.P..Acute infectious bursal disease in poultry:a review.Avian Pathol,2000,29: 175~194.
    133. van den Berg T.P..Acute infectious bursal disease in poultry:isolation and characterization of a highly virulent strain.Avian Pathol,1991,20:409~421.
    134. van Dijk,A.A., Makeyev, E.V., Bamford, D.H. Initiation of viral RNA-dependent RNA polymerization. J Gen Virol. 2004. 85, 1077-1093
    135. van Loon A.A.,de Haas N.,Zeyda I.,et al.Alteration of amino acids in VP2 of very virulent infectious bursal disease virus results in tissue culture adaptation and attenuation in chickens.J Gen Virol,2002,83:121~129.
    136. von Einem,U.I., Gorbalenya,A.E., Schirrmeier, H., et al. VP1 of infectious bursal disease virus is a RNA-dependent RNA polymerase. J Gen Virol. 2004, 85, 2221-2229
    137. Wei Y, Li J, Zheng J, Xu H, Li L, Yu L. 2006. Genetic reassortment of infectious bursal disease virus in nature. Biochem Biophys Res Commun 350:277-287.
    138. Winterfield R.W.and Hitchner S.B..Etiology of an infectious ephritis-nephrosis syndrome of chickens.Am J Vet Res,1962,23:1273~1279.
    139.Xiaole Qi, Yulong Gao, Honglei Gao,et al., An improved method for infectious bursal disease virus rescue using RNA polymeraseⅡsystem. Journal of Virological Methods. 2007. 142, 81-88
    140. Xu H.T.,Si, W.D., Dobos, P. Mapping the site of guanylylation on VP1, the protein primer for infectious pancreatic necrosis virus RNA synthesis. Virology. 2004, 322, 199-210
    141. Yamaguchi T.,Iwata K.,Kobayashi M.,et al.Epitope mapping of capsid proteins VP2 and VP3 of infectious bursal disease virus.Arch Virol,1996,141:1493~1507.
    142. Yamaguchi T.,Ogawa M.,Miyoshi M.,et al.Sequence and phylogenetic analyses of highly virulent infectious bursal disease virus.Arch Virol,1997,142:1441~1458.
    143. Yanqing Yuwen,Yulong Gao,Honglei Gao. 2008. Sequence analysis of the VP2 hypervariable region of eight very virulent infectious bursal disease virus isolates from the Northeast of China.Avian Dis.52:284-290.
    144. Yao K.and Vakharia V.N..Induction of apoptosis in vitro by the 17-kDa nonstructural protein of infectious bursal disease virus:possible role in viral pathogenesis.Virology,2001,285:50~58.
    145. Yao K.,Goodwin M.A.,and Vakharia V.N.Generation of a mutant infectious bursal disease virus that does not cause bursal lesions.J Virol,1998,72:2647~2654.
    146. Yap C C, Ishii K, Aoki Y, et al. A hybrid baculovirus-T 7 RNA polymerase system for recovery of an infectious virus from cDNA. Virology,1997,231:192-200
    147. Yohsuke Ogawa, Keita Sugiura, Kentaro Kato, et al., Rescue of Akabane virus(family Bunyaviridae) entirely from cloned cDNAs by using RNA PolymeraseⅠ.Journal of General Virology. 2007, 88, 3385-3390
    148. Yoshinori Kitagawa, Min Zhou, Mai Yamaguchi, et al., Human metapneumovirus M2-2 protein inhibits viral transcription and replication. Microbes and Infection, 2009, 1-11
    149. Yongqiang Wang, Zhonghui Kang, Honglei Gao, et al., A one-step reverse transcription loop-mediated isothermal amplification for detection and discrimination of infectious bursal disease virus.Virology Journal. 2011,8: 108
    150. Zierenberg K.,Nieper H.,van den Berg T.P.,et al.The VP2 variable region of African and German isolates of infectious bursal disease virus:comparison with very virulent,"classical"virulent,an attenuated tissue culture-adapted strains.Arch Virol,2000,145:113~125.
    151. Zhang,J., Yamada,O., Sakamoto,T.,et al., Exploiting cis-acting replication elements to direct hepatitis C virus-dependent transgene expression. J.Virol. 2006. 9, 5923-5932

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700