用户名: 密码: 验证码:
甜菜黑色焦枯病毒的基因功能及表达策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以甜菜黑色焦枯病毒(Beet black scorch virus,BBSV)侵染性全长cDNA克隆pUBF52为材料,利用体外转录物的核苷酸(nt)突变和绿色荧光蛋白(GFP)标记等技术,对BBSV不同基因的功能和基因组表达策略开展了反向遗传学研究。通过对编码区核苷酸的替换、移码和缺失突变,证实了位于基因组5′端的P22和P82基因所编码的蛋白是参与BBSV复制酶(RdRp)功能的必需组分。通过翻译起始密码子的点突变和引入提前终止密码子,对由计算机推导而来、位于BBSV基因组中部的4个小分子蛋白编码框(P5、P7a、P7b和P5′)分别进行了功能分析。结果发现,其中对P5编码框的突变没有对BBSV侵染苋色藜(Chenopodium amaranticolor)后的枯斑症状,以及病毒RNA在寄主内的积累水平产生任何影响;而对P7a、P7b或P5′编码框的类似突变改造则将导致BBSV接种苋色藜后的局部枯斑症状消失,且体内病毒RNA的积累水平明显降低。
     进一步采用GFP替换BBSV外壳蛋白(CP)的标记试验证明,在激光共聚焦显微镜下,对P7a、P7b或P5′中任何一个编码框的突变改造都将导致绿色荧光被局限在单个接种细胞的细胞核内,而野生型BBSV所携带的GFP则可在多个相邻细胞的细胞核及细胞膜中同时得到表达。结合以往关于BBSV CP基因的研究结果,由此确认BBSV基因组可能共计编码6种蛋白质,包括与RdRp相关的P22和P82、协同决定BBSV细胞间运动功能的P7a、P7b和P5′、以及外壳蛋白P24。其中P5′基因是在烟草坏死病毒属(Necrovirus)成员中首次发现。
     在此基础上,对BBSV多顺反子基因组的表达策略进行了初步研究。以纯化的BBSV双链RNA为模板,经5′-RACE和体外转录物单核苷酸突变确定了BBSV在复制过程中产生的两条亚基因组RNA(Subgenomic RNA,sgRNA)的转录起始位点。结果表明,BBSV的sgRNA1和sgRNA2分别起始于BBSV基因组2209位或2526位的鸟苷酸(G),其中由sgRNA1可翻译产生P7a、P7b和P5′三种蛋白,并由此决定了BBSV接种苋色藜后的细胞间运动及枯斑症状;而sgRNA2则负责CP的表达,对病毒侵染寄主后的症状及RNA积累水平没有明显影响。
     对亚基因组转录起始点(G~(2209)或G~(2526))上、下游共9个核苷酸(2204-2213nt或2521-2530nt)的突变分析表明,起始点上游胞苷酸(C)的突变对亚基因组RNA的转录影响较大,即:C~(2206)的突变将导致sgRNA1的转录灭活,而C~(2521)、C~(2523)、或C~(2524)的突变则导致sgRNA2的转录灭活。计算机推导的BBSV基因组二级结构表明,C~(2206)可以在一个“茎-环”结构中与G~(2118)配对;C~(2521)、C~(2523)和C~(2524)则以同样方式与G~(2380)、G~(2378)和G~(2377)位分别配对。对这些碱基对的突变分析发现,维持他们之间的配对关系对相应亚基因组RNA的转录具有重要的作用。进一步对亚基因组转录启动子的缺失突变研究结果表明,sgRNA2的启动子区域可能位于2339nt-2558nt之间,以一种稳定的多重“茎-环”结构存在。鉴于sgRNA1的上游也存在类似的多重“茎-环”结构,由此推断BBSV亚基因组RNA可能是遵循“提前终止机制”复制产生的。
     计算机分析发现,BBSV基因组或亚基因组RNA的5′、3′末端之间也存在与其他Necrovirus成员类似的“茎-环”结构,环状区域的核苷酸序列高度保守,并且反向互补。为了认识在这种RNA“茎-环”结构之间可能存在相互作用,我们对其进行了初步地突变分析。结果表明,“茎-环”结构中“环”部核苷酸种类的保守性、以及“茎”部的碱基配对程度对于维持病毒正常复制所必需的RNA结构至关重要。
Based on the full-length infectious cDNA pUBF52 of Beet black scorch virus (BBSV), reverse genetic analysis was carried for gene functions and expression strategy of BBSV by means of in vitro transcription of mutant viral RNAs, GFP labeled expression. By mutation of nucleotide substitution, frame-shift and deletion, it was proven that the P22 and P82 at the 5' proximal end of BBSV genome were both involved into its replicase (RdRp) essentially. By site-directed mutagenesis of translational start codons or premature, the four small ORFs including P5, P7a, P7b and P5' that are centrally located in the viral genome by computer prediction were analyzed for their functions during BBSV infection. The results showed that, except the P5, other three ORFs of P7a, P7b and P5' were coordinately responsible for the local lesion symptoms and viral RNA accumulation after BBSV infection of Chenopodium amaranticolor.For fluorescent expression in plant cells, a GFP gene was fused BBSV RNAs as a substitute of the C? in the each mutant of P7a, P7b and P5'. In contrast to the infection by wild type BBSV labeled with GFP from pBGFP, in which the GFP was observed both on nuclei and cell membranes in the cells around the initially infected cell, GFP expressions of mutants P7a, P7b and P5' were limited in the nuclei of the original infected cell. Combining with the previous report on BBSV coat protein gene, these results indicated that total six proteins were possibly encoded by BBSV genome, including the RdRp components of P22 and P82, the P7a, P7b and P5' proteins associated with BBSV movement from cell-to-cell, and the P24 coat protein, among which the P5' is reported first time in Necroviruses.In further investigation, a strategy for the mRNA expression of BBSV multi-cistron genome was revealed with two subgenomic RNA (sgRNA) in BBSV particles or C. amaranticolor infected by the in vitro transcripts. By 5' -RACE and mutagenesis of infectious cDNAs, the transcription start sites of sgRNAl and sgRNA2 were determined as G~(2209) or G~(2526), respectively. So that, the sgRNAl is responsible for protein expressions of P7a, P7b and P5' and the sgRNA2 is for the coat protein.Mutations of nucleotides from position 2204 to 2213 nt around G~(2209) and 2521 to 2530 nt around G~(2526) showed that mutation of C~(2206), or any of C~(2521), C~(2523) and C~(2524) would abolish the form of sgRNAl or sgRNA2, respectively. The following mutations of G which complement with these C in the second structure of BBSV and corresponding base pair showed that the base pairing is more important than these C themselves. According to the secondary structure of BBSV RNA by computer analysis, the results from mutations of the base-pairings of C~(2206)-G~(2118), C~(2521)-G~(2380), C~(2523)-G~(2378) and C~(2524)-G~(2377) indicated that the predicted stem-loop structures upstream from the two transcription start sites played important roles on the RNA transcription. The nucleotide deletions around the sgRNAs start sites provided the further evidences that the promoter region for the sgRNA2 perhaps ranged from 2339 nt to 2558 nt as a stable stem-loop complex form. Since a similar structure also was found in the sgRNAl, it
    was speculated that the mechanism of premature termination was employed in transcription of BBSV sgRNAs.Similar to other Necroviruses, the stem-loop structures involved in 5' -3' RNA-RNA interaction were also found in the proximal ends of either BBSV genomic RNA or the subgenomic RNAs, in which the nucleotide sequences in the loop regions were highly conserved and reversely complementary. In order to know the possible interaction between these stem-loop structures, mutagenesis analysis was carried out. The preliminary results showed that the conservation of nucleotide sequence in the loop region and the base-pairing in the stem of the stem-loop structures were necessary to keep the correct RNA folding essential for the virus replication.
引文
1.薄玉霞,蔡祝南,丁群,于嘉林,刘仪.甜菜黑色焦枯病毒核酸特性、RNA2的cDNA克隆和部分序列分析.农业生物技术学报,1996,4:269-276.
    2.蔡祝南,陈定虎,吴茂森,崔星明,于嘉林,刘仪.甜菜黑色焦枯型病毒病原、cDNA合成、光生物素标记及探针制备.北京农业大学学报,1993,19(3):112.
    3.曹云鹤.甜菜黑色焦枯病毒全长侵染性cDNA克隆的构建以及外壳蛋白基因与致病性关系的初步研究.中国农业大学博士学位论文.2002.
    4.曹云鹤.甜菜黑色焦枯病毒外壳蛋白基因的功能分析.中国农业大学博士后工作报告.2004.
    5.崔星明.甜菜丛根病症状类型的研究.植物保护,1991,17(5):5-7.
    6.崔星明.一种侵染甜菜的球型病毒.石河子农学院学报,1988,10(1):73-78.
    7.范在丰,李怀方.植物病毒的分类与命名现状.植物病理学报,2003,33(2):112-115.
    8.蒋军喜.甜菜黑色焦枯病毒介体油壶菌生物学特性及其基因组片段的克隆.中国农业大学硕士学位论文.1998.
    9.刘杰贤,咸洪泉.甜菜黑色焦枯型病毒研究初报.中国甜菜,1993,3:30-31.
    10.洪健,李德葆,周雪平.植物病毒分类图谱.北京,科学出版社,2001,115-141.
    11.吴茂森.甜菜黑色焦枯型病原病毒及其cDNA克隆和部分序列分析.北京农业大学硕士论文.1993.
    12. Agranovsky, A. A., Koonin, E. V., Boyko, V. P. Maiss, E., Frotschl, R., Lunina, N. A. & Atabekov, J. G. Beet yellow closterovirus: complete genome structure and identification of a leader papain-like thiol protease. Virology, 1994, 198: 311-324.
    13. Angenent, G. C., Linthorst, H. J. M., van Belkum, A. E, Cornelissen, B. J. C. & Bol, J. F. RNA 2 of tobacco rattle virus strain TCM encodes an unexpected gene. Nucleic Acids Research, 1986, 14: 4673-4682.
    14. Ausubel, F. M. Short Protocals in molecular biology, 3rd ed. 1995, John Wiley & Sons, Inc.
    15. Bahner. I., Lamb, J., Mayo. M. A. & Hay, R. T. Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo. Journal of General Virology, 1990, 71: 2251-2256.
    16. Barbier, E, Takahashi, M., Nakamura, I., Toriyama, S. & Ishihama, A. Solubilization and promoter analysis of RNA polymerase from rice stripe virus. Journal of Virology, 1992, 66: 6171-6174.
    17. Beck, D. L., Guilford, P. J., Voot, D. M., Anderson, M. T. & Forster, R. L S. Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology, 1991, 183: 695-702.
    18. Beier, H., Barciszewska, M., Krupp, G., Mitnacht, R. & Gross, H. J. UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAs~(Tyr) with suppressor activity from tobacco plants. EMBO Journal, 1984, 3: 351-356.
    19. Bo, Y. X., Cai, Z. N., Ding, Q., Yu, J. L. & Liu, Y. Characterization of beet black scorch vires RNA, partial cDNA cloning and sequencing of the small component. Journal of Agricultural Biotechnology (Ch.), 1996, 4(3): 269-276.
    20. Boccara, M., Hamilton, W. D. O. & Baulcombe, D. C. The organization and interviral homologies of genes at the 3' end of tobacco rattle vires RNA1. EMBO Journal, 1986, 5: 223-229.
    21. Bouloy, M. Bunyaviridae: genome organization and replication strategies. Advance in Virus Research, 1991, 40: 235-275.
    22. Boyer, J. C. & Haenni, A. L. Infectious transcripts and cDNA clones of RNA viruses. Virology, 1994, 198: 415-426.
    23. Brault, V. & Miller, W. A. Translational frameshifting mediated by a viral sequence in plant cells. PNAS 1992, 89: 2262-2266.
    24. Brierley, I Ribosomal frameshifting on viral RNAs. Journal of General virology, 1995, 76: 1885-1892.
    25. Brooks, M. & Bruenling, G. A subgenomic RNA associated with cherry leafroll virus infections. Virology, 1995, 211: 33-41.
    26. Bruno, Z., Haenni, A. L. & Gabriel, M. The remarkable variety of plant RNA virus genomes. Journal of General virology, 1995, 76: 231-247.
    27. Candresse. T., Morch. M. D. & Dunez. J. Nultiple alignment and hierarchical clustering of conserved amino acid sequences in the replication-associated proteins of plant RNA viruses. Research in virology, 1990, 141: 315-329.
    28. Cao, Y. H., Cai, Z. N., Ding, Q., Li, D. W., Han, C. G., Yu, J. L. & Liu, Y. The complete base sequence of Beet black scorch virus (BBSV), a new member of the genus Necrovirus. Archives of Virology, 2002, 147: 2431-2435.
    29. Cardoso, J. M., Felix, M. R., Clara, M. I. & Oliveira, S. The complete genome sequence of a new necrovirus isolated from Olea europaea L. Archives of Virology, 2005, 150(4): 815-823.
    30. Carrington, J. C. & Freed, D. D. Cap-independent enhancement of translation by a plant potyvirus 5' nontranslated region. Journal of Virology, 1990, 64: 1590-1597.
    31. Carrington, J. C., Cary, S. M., Parks, T. D. & Dougherty, W. G. A second proteinase encoded by a plant potyvirus genome. EMBO Journal, 1989, 8: 365-370.
    32. Carrington, J. G., Haldeman, R., Dolja, V. V. & Resfrepo-hartwig, M. A. Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo. Journal of Virology, 1993, 67: 6995-7000.
    33. Cascone, P. J., Carpenter, C. D., Li, X. H. & Simon, A. E. Recombination between satellite RNAs of turnip crinkle virus. EMBO Journal, 1990, 9: 1709-1715.
    34. Cascone, P. J., Haydar, T. E & Simon, A. E. Sequences and structures required for recombinantion between virus-associated RNAs. Science, 1993, 260: 801-805.
    35. Chin, L. S., Foster, J. L. & Falk, B. W. The best western yellows virus ST9-associated RNA shares structural and base sequence homology with carom-like viruses. Virology, 1993, 192: 473-482.
    36. Cormack, B. P., Valdivia, R. H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 1996, 173: 33-38.
    37. Coutts, R. H., Rigden, J. E., Slabas, A. R., Lomonossoff, G. P. & Wise, P. J. The complete base sequence of tobacco necrosis virus strain D. Journal of General virology. 1991, 72: 1521-1529.
    38. David. C., Gargouri, B. R. & Haenni. A. L. RNA replication of plant viruses containing an RNA genome. Progress in Nucleic Acids Research and Molecular Biology, 1992, 42: 157-227.
    39. Davies, C., Hills, G. & Baulcombe, D. C. Sub-cellular localization of the 25kDa protein encoded in thr triple gene block of potato virus X. Virology, 1993, 197: 166-175.
    40. Dawson, W. O. & Lehto, K. M. 1990 Regulation of tobamovirus gene expression. Advance in Virus Research, 1990, 38: 307-342.
    41. Dawson, W. O., Beck, D. L., Knorr, D. A. & Grantham, G. L. cDNA cloning of the complete genome of tobacco mosaic virus and production of infectious transcripts. PNAS, 1986, 83: 1832-1836.
    42. Demler, S. A. & De Zoeten, C. A. The base sequence and luteovirus-like nature of RNA1 of an aphid non-transmissible strain of pea enation mosaic virus. Journal of General Virology, 1991, 72: 1819-1834.
    43. Demler, S. A., Rucker, D. G. & De Zoeten, G. A. The chimeric nature of the genome of pea enation mosaic virus: the independent replication of RNA 2. Journal of general Virology, 1993, 74: 1-14.
    44. Deom, C. M., Lapidot, M. & Beachy, R. N. Plant virus movement proteins. Cell, 1992, 69: 221-224.
    45. Dinesh-Kumar, S. P., Brault, V. & Miller, W. A. Precise mapping and in vivo translation of a trifunctional subgenomic RNA of barley yellow dwarf virus. Virology, 1992, 187: 711-722.
    46. Dodds, J. A., Morris, T. J. & Jordan, R. C. Plant viral double-stranded RNA. Annual Review of Phytopathology, 1984, 22: 151-168.
    47. Dougherty, W. G. & Parks, T. D. Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: identification of an internal cleavage site and delimitation of VPg and proteinase domains. Virology, 1991, 183: 449-456.
    48. Dougherty, W. G. & Semler, B. L. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews, 1993, 57: 781-822.
    49. Duggal, R. & Hall, T. C. Identification of domains in brome mosaic virus RNA-1 and protein necessary for specific interaction and encapsidation. Journal of Virology, 1993, 67: 6406-6412.
    50. Dunigan, D. D. & Zaitlin, M. Capping of tobacco mosaic virus RNA. Analysis of viral-coded guanylytransferase-like activity. Journal of Biological Chemistry, 1990, 265: 7779-7786.
    51. Eggen, R. & Van Kammen, A. RNA replication in comoviruses. In RNA Genetics 1, 1988, pp. 49-69. Edited by E. Domingo, J. J. Holland & E Ahlquist. Boca Raton: CRC Press.
    52. Eggen, R., Verver, J., Wellink, J., Pleu, K., Van Kammen, A. & Goldbach, R. Analysis of sequences involved in cowpea mosaic virus RNA replication using site-specific mutants, Virology, 1989, 173: 456-464.
    53. Elliott, R. M. Molecular biology of the Bunyaviridae. Journal of General Virology, 1990, 73: 501-522.
    54. Elliott, R. M., Schmaljohn, C. S. & Collett, M. S. Bunyaviridae genome structure and gene expression. Current Topics in Microbiology and Immunology, 1991, 169: 91-141.
    55. Evans, R. K., Haley, B. E. & Roth, D. A. Photoaffinity labeling of a viral induced protein from tobacco. Characterization of base-binding properties. Journal of Biological Chemistry, 1985, 260: 7800-7804.
    56. Fibian, M. R. & White, K. A. 5'-3' RNA-RNA Interaction facilitates Cap- and Poly(A) tail-independent translation of Tomato Bushy virus mRNA. Journal of Biological Chemistry, 2004, 279(28): 28862-28872.
    57. Flor, H. H. Inheritance of pathogenicity in Melampasora lini. Phytopathology, 1942, 32: 653-669.
    58. French, R. & Ahlquist, P. Characterization and engineering of sequence controlling in vivo synthesis of brome mosaic virus subgenomic RNA. Journal of Virology, 1988, 62: 2411-2420.
    59. Frisch, C., Mayo, M. & Hemmer, O. Properities if the satellite RNA of nepoviruses. Biochemistry, 1993, 75: 561-567.
    60. Frohman, M. A., Dush, M. K. & Martin, G. R. Rapid Production of Full-Length cDNAs from Rare Transcripts: Amplification Using a Single Gene-Specific Oligobase Primer. PNAS, 1988, 85: 8998-9002.
    61. Fukuda, M., Meshi, T., Okada, Y., Otsuki, Y. & Takebe, Ⅰ. Correlation between particle multiplicity and location on virion RNA of the assembly initiation site for viruses of the tobacco mosaic virus group. PNAS, 1981, 78: 4231-4235.
    62. Furuya, T., Kamada, T., Murakami, T., Kurose, A. & Sasaki,K. Laser scanning cytometry allows detection of cell death with morphological features of apoptosis in cells stained with PI. Cytoraetry, 1997, 29(2): 173-177.
    63. Gallie, D. R. & Kobayashi, M. The role of the 3'-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene, 1994, 142: 159-165.
    64. Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C. & Wilson, T. M. A. The 5'-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Research, 1987a, 15: 3257-3273.
    65. Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C. & Wilson, T. M. A. A comparison of eukaryotic viral 5'-leader sequence s as enhancers of mRNA expression in vivo. Nucleic Acids Research, 1987b, 15: 8693-8711.
    66. Garcia, A., Van Duin, J. & Pleu, C. W. A. Differential response to frameshift signals in eukaryotic and prokaryotic translational systems. Nucleic Acids Research, 1993, 21: 401-406.
    67. Gargouri, R., Joshi, R. L., Bol, J. F., Astier-Manifacier, S. & Haenni, A. L. Mechanism of synthesis of turnip yellow mosaic virus coat protein subgenomic RNA in vivo. Virology, 1989, 171: 386-393.
    68. Geballe, A. P. & Morris, D. R. Initiation codons within 5'-leaders of mRNAs as regulators of translation. Trends in Biochemical Sciences, 1994, 19: 159-164.
    69. Geier, G. E. & E Modrich. Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpnl endonuclease. Journa of Biological Chemistry, 1979, 254(4): 1408-1413.
    70. Gilmer, D., Allmang, C., Ehresmann, C., Guilley, H., Richards, K., Jonard, G. & Ehresmann, B. The secondary structure of the 5'-noncoding region of beet necrotic yellow vein virus RNA 3: evidence for a role in viral RNA replication. Nucleic Acids Research, 1993, 21: 1389-1395.
    71. Gilmer, D., Bouzoubaa, S., Hehn, A., Guilley, H., Richards, K. & Jonard, G. Efficient cell-to-cell movement of beet necrotic yellow vein virus requires 3' proximal genes located on RNA 2. Virology, 1992, 189: 40-47.
    72. Goldbach, R., LeGall, O. & Wellink, J. Alpha-like viruses in plants. Seminar in virology, 1991, 2: 19-25.
    73. Gorbalenya, A. E., Blinov, V. M., Donchenko, A. P. & Koonin, E. V. An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. Journal of Molecular Evolution, 1989, 28: 256-268.
    74. Goregaoker, S. P., Lewandowski, D. J. & Culver, J. N. Identification and functional analysis ot an interaction between domains of the 126/183-kDa replicase-associated proteins of Tobacco mosaic virus. Virology, 2001, 28: 320-328.
    75. Gradzelishvili, V. Z., Chapman, S. N., Dawson, W. O. & Lewandowski, D. J. Mapping of the Tobacco Mosaic Virus Movement Protein and Coat Protein Subgenomic RNA Promoters in Vivo. Virology, 2000, 275: 177-192.
    76. Grieco, F., Savino, V. & Martelli, G. P. Base sequence of the genome of a citrus isolate of olive latent virus 1. Archives of Virology, 1996, 141(5): 825-838.
    77. Guo, L. H., Cao, Y. H., Li, D. W., Niu, Sh. N., Cai, Z. N. Han, Ch. G., Zhai, Y. E & Yu, J.L. Analysis of base sequences and multimeric forms of a novel satellite RNA associated with beet black scorch virus. Journal of virology, 2005, 79(6): 3664-3674.
    78. Guo, L., Allen, E. & Miller, W. A. Structure and function of a cap-independent translation element that functions in either the 3' or the 5' untranslated region. RNA, 2000, 6:1808-1820.
    79. Habili, N. & Symons, R. H. Evolutionary relationship between luteoviruses and RNA plant viruses based on sequence motifs in their putative RNA polymerase and nucleic acid helicases. Nucleic Acids Research, 1989, 17: 9543-9555.
    80. Hayes, R. J. & Buck, K. W. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell, 1990, 63: 363-368.
    81. Herzog, E., Guilley, H., Manohar, S. K., Dollet, M., Fritsch, C. & Jonard, G. Complete base sequence of peanut clump virus RNA 1 and relationships with other fungus-transmitted rod-shaped viruses. Journal of General Virology, 1994, 75: 3147-3155.
    82. Holland, J. J. Defective viral genome. In Virology, 1990, pp. 151-165. Edited by B. Fields & D. M. Knipe. New York: Raven Press.
    83. Huisman, M. J., Linthorst, H. J. M, Bol, J. F & Coruelissen, B. J. C. The complete base sequence of potato virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. Journal of General Virology, 1988, 69: 1789-1798.
    84. Hunter, T. R., Hunt, T., Knowland, J. & Zimmern, D. Messenger RNA for the coat protein of tobacco mosaic virus. Nature, 1976, 260: 759-764.
    85. Ishikawa, M., Meshi, T., Motoyoshi, F., Takamatsu, N. & Okada, YJn vitro mutagenesis of the putative replicase gene of tobacco mosaic virus. Nucleic Acids Research, 1986, 14: 8291-8305.
    86. Jacks, R. J., Madhani, H. D., Masiarz, F. R. & Varmus, H. E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell, 1988, 55: 447-458.
    87. Jobling, S. A. & Gehrke, L. Enhanced translation of chimaeric messenger RNAs containing a plant viral untranslated leader sequence. Nature, 1987, 325: 622-625.
    88. Kamer, G. & Argos, P. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research, 1984, 12: 7269-7282.
    89. Kawakami, S., Hori, K., Hosokawa, D., Okada, Y. & Watanabe, Y. Defective tobamovirus movement protein lacking wild-type phosphorylation sites can be complemented by substitutions found in revertants. Journal of Virology, 2003, 77: 1452-1461.
    90. Kelly, L., Gerlach, W. L. & Waterhouse, P. M. Characterization of the subgenomic RNAs of an Australian isolate of barley yellow dwarf luteovirus. Virology, 1994, 202: 565-573.
    91. Kim, K. H. & Lommel, S. A. Identification and analysis of the site of -1 ribosomal frameshifting in red clover necrotic mosaic virus. Virology, 1994, 200: 574-582.
    92. Koonin, E. V. The phylogeny of RNA-dependent RNA polymerase of positive-strand RNA viruses. Journal of General Virology, 1991, 72: 2197-2206.
    93. Konnelink, R., van Poelwijk, F., Peters, D. & Goldbach, R. Nonviral heterogeneous sequences at the 5' ends of tomato spotted wilt mRNAs. Journal of General Virology, 1992, 73: 2125-2128.
    94. Kozak, M. Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. PNAS, 1995, 92: 2662-2666.
    95. Kozak, M. Bifunctional messenger RNAs in eukaryotes. Cell, 1986, 47: 481-483.
    96. Kozak, M. Determinants of translational fidelity and efficiency in vertebrate mRNAs. Biochemistry, 1994, 76: 815-821.
    97. Kozak, M. Structural features in eukarytic mRNAs that modulate the initiation of translation. Journal of Biological Chemistry, 1991, 266: 19867-19870.
    98. Kozak, M. The scanning model for translation: an update. Journal of Cell Biology, 1989, 108: 229-241.
    99. Kujawa, A. B., Drugeon, G., Hulanicka, D. & Haenni, A. L. Structural requirements for efficient translational frameshifting in the synthesis of the putative viral RNA-dependent RNA polymerase of potato leafroll virus. Nucleic Acids Research, 1993, 21: 2165-2171.
    100. Lahser, F. C., Marsh, L. E. & Hall, T. C. Contributions of the brome mosaic virus RNA -3 3'-nontranslated region to replication and translation. Journal of Virology, 1993, 67: 3295-3303.
    101. Lain, S., Martin, M. T., Riechmann, J. L. & Garcia, J. A. Novel catalytic activity associated with positive-strand RNA virus infection: nucleic acid-stimulated ATP ase activity of the plum pox potyvirus helicaselike protein. Journal of Virology, 1991, 65: 1-6.
    102. Lain, S., Riechmann, J. L. & Garcia, J. A. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Research, 1990, 18: 7003-7006.
    103. Leathers, V., Tanguay, R., Kobayashi, M. & Gallie, D. R. A phylogenetically conserved sequence within viral 3' untranslated RNA pseudoknots regulates translation. Molecular and cellular Biology, 1993, 13: 5331-5347.
    104. Li, X. H., Heaton, L. A. Morals, T. J. & Simon, A. E. Turnip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo. PNAS, 1989, 86: 9173-9177.
    105. Lin, H. X. & White, K. A. A complex network of RNA-RNA interactions controls subgenomic mRNA transcription in a tombusvirus. EMBO Journal, 2004, 23: 3365-3374.
    106. Lot, H., Rubino, L, Delecolle, B., Jacquemond, M., Turturo, C. & Russo, M. Characterization, base sequence and genome organization of leek white stripe virus, a putative new species of the genus Necrovirus. Archives of Virology, 1996, 141(12): 2375-2386.
    107. Maia, I. G., Seron, K., Haenni, A. L. & Bernardi, F. Gene expression from viral RNA genomes. Plant Molecular Biology, 1996, 32: 367-391.
    108. Mans, R. M. W., Pleu, C. W. A. & Bosch, L. tRNA-like structures. Structure, function and evolutionary significance. European Journal of Biochemistry, 1991, 201: 303-324.
    109. Marc, R. F. & White, K. A. 5'-3' RNA-RNA interaction facilitates cap- and poly(A) tail-independent translation of tomato bushy stunt virus mRNA. Journal of Biological Chemistry, 2004, 279(28): 28862-28872.
    110. Marsh, L. E., Dreher, T. W. & Hall, T. C. Mutational analysis of the core and modulator sequences of the BMV RNA3 subgenomic promoter. Nucleic Acids Research, 1988, 16: 981-995.
    111. Marsh, L. E., Pogue, G. P. & Hall, T. C. Similarities among plant virus (+) and (-) RNA termini imply a common ancestru with promoters of eukaryotic tRNAs. Virology, 1989, 172: 415-427.
    112. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure. Journal of Molecualr Biology, 1999, 288: 911-940
    113. Mayo, M. A. & Graft, V. Z. Molecular biology of luteoviruses. Advance in Virus Research, 1996; 46: 413-460.
    114. Mayo, M. A. & Brunt, A. A. The current state of plant virus taxonomy. Molecular Plant Pathology, 2001, 2: 97-100.
    115. Meulewaeter, F., Seurinck, J. & van Emmelo, J. Genome structure of tobacco necrosis virus strain A. Virology, 1990, 177(2): 699-709.
    116. Meulewaeter, E, Comelissen, M. & van Emmelo, J. Subgenomic RNAs mediate expression of cistrons located internally on the genomic RNA of tobacco necrosis virus strain A. Journal of Virology, 1992, 66: 6419-6428.
    117. Miller, J. S. & Mayo, M. A. The location of the 5' end of the potato leafroll luteovirus subgenomic coat protein mRNA. Journal of General Virology, 1991, 72: 2633-2638.
    118. Miller, W. A. & Koev, G. Synthesis of subgenomic RNAs by Postive-strand RNA Viruses. Virology, 2000, 273: 1-8
    119. Miller, W. A., Bujarski, J. J., Dreher, T. W. & Hall, T. C. Minus-strand initiation by brome mosaic virus replicase within the 3' tRNA-like structure of native and modified RNA templates. Journal of Molecular Biology, 1986, 187: 537-546.
    120. Miller, W. A., Dreher, T. W. & Hall, T. C. Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-) sense genome RNA. Nature, 1985, 313: 68-70.
    121. Molnar, A., Havelda, Z., Dalmay, T., Szutorisz, H. & Burgyan, J. Complete base sequence of tobacco necrosis virus strain D~H and genes required for RNA replication and virus movement. Journal of General Virology. 1997, 78: 1235-1239.
    122. Morch, M. D., Joshi, R. L., Denial, T. M. & Haenni, A. L. A new 'sense' approach to block viral RNA replication in vitro. Nucleic Acids Research, 1987, 15: 4123-4130.
    123. Morozov, S. Y., Dolja, V. V. & Atabekov, J. G. Probable reassortment of genomic element among elongated RNA-containing plant viruses. Journal of Molecular Evolution, 1989, 29: 52-62.
    124. Morozov, S. Y., Fedorkin, O. N., Juttner, G., Schiemann, J., Baulcombe D. C. & Atabekov, J. G. Complementation of a potato virus X mutant mediated by bomdardment of plant tissues with cloned viral movement protein genes. Journal of General Virology. 1997, 78: 2077-2083.
    125. Murphy, J. E, Rhoads, R. E., Hunt, A. G. & Shaw, J. G. The VPg of tobacco etch virus RNA is the 49-kDa proteinase or the N-terminal 24-kDa part of the proteinase. Virology, 1990, 178: 285-288.
    126. Mushegian, A. R. & Koonin, E. V. Cell-to-cell movement of plant viruses. Insight from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems. Archives of Virology, 1993, 133: 239-257.
    127. Nagy, E D. & Bujarski, J. J. Targeting the site RNA-RNA recombination in brome mosaic virus with antisense sequences. PNAS, 1993, 90: 6390-6394.
    128. Natsuaki, T., Mayo, M. A., Joly, C. A. & Mutant, A. E Base sequence of raspberry bushy dwarf virus RNA-2: a bicistronic component of a bipartite genome. Journal of General Virology, 1991, 72: 2183-2189.
    129. Nicolaisen, M., Johansen, E., Poulsen, G. B. & Borkhardt, B. The 5'untranslated region from pea seedborne mosaic potyvirus RNA as a translational enhancer in pea and tobacco protoplasts. FEBS Letters, 1992, 303: 169-172.
    130. Niesbach-klosgen, U., Guilley, H., Jonard, G. & Richards, K. Immunodetection in vivo of beet necrotic yellow vein virus-encoded proteins. Virology, 1990, 178: 52-61.
    131. Offei, S. K. & Coutts, R. H. A. Location of the 5' Termini of Tobacco Necrosis Virus Strain D Subgenomic mRNAs. Journal of Phytopathology, 1996, 144: 13-17
    132. Offei, S. K., Coffin, R. S. & Coutts, R. H. The tobacco necrosis virus p7a protein is a nucleic acid-binding protein. Journal of General Virology. 1995, 76: 1493-1496.
    133. Petty, I. T. D., French, R., Jones, R. W. & Jackson, A. O. Identification of barley stripe mosaic virus genes involved in viral RNA replication and systemic movement. EMBO Journal, 1990, 9: 3453-3457.
    134. Poch, O., Sauvaget, I., Delarue, M. & Tordo, N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO Journal, 1989, 8: 3867-3874.
    135. Pogue, G. P., Marsh, L. E. & Hall, T. C. Point mutations in the Icr2 motif of brome mosaic virus RNAs debilitate (+)-strand replication. Virology, 1990, 178: 152-160.
    136. Pogne, G. P., Marsh, L. E., Connell, J. E & Hall, T. C. Requirement for ICR-like sequences in the replication of brome mosaic virus genomic RNA. Virology, 1992, 188: 742-753.
    137. Prufer, D., Tacke, E., Schmitz, J., Kull, B., Kaufmann, A. & Rohde, W. Ribosomal frameshifting in plants: a novel signal directs the -1 frameshift in the synthesis of the putative viral replicase of potato leafrollluteovirus. EMBO Journal, 1992, 11: 1111-1117.
    138. Ramirez, B. C. & Haenni, A. L. Molecular biology of tenuiviruses, a remarkable group of plant virues. Journal of General Virology, 1994, 75: 467-475.
    139. Rao, A. L. N. & Hall, T. C. Recombination and polymerase error facilitate restoration of infectivity in Brome mosaic virus. Journal of Virology, 1993, 67: 969-979.
    140. Rochon, D. M. & Johnston, J. C. Infectious transcripts from cloned cucumber necrosis virus cDNA: evidence for a bifunctional subgenomic mRNA. Virology, 1991, 181: 656-665.
    141. Rodriguez-Cetezo, E., Gamble Klein, E & Shaw, J. G. A determinant of disease symptom severity is located in the 3' terminal noncoding region of the RNA of a plant virus. PNAS, 1991, 88: 9863-9867.
    142. Rohde, W., Gramstat, A., Schmitz, J., Tacke, E. & Prufer, D. Plant viruses as model system for the study of non-canonical translation mechanisms in higher plants. Journal of General Virology, 1994, 75: 2142-2149.
    143. Rohll, J. B., Holness, C. L, Lomonossoff, G. P. & Maule, A. J. 3'-Terminal base sequence important for the accumulation of cowpea mosaic virus M-RNA. Virology, 1993, 193: 672-679.
    144. Roossinck, M. J., Sleat, D. & Palukaitis, P. Satellite RNAs of plant viruses: structure and biological effects. Microbiological Reviews, 1992, 56: 265-279.
    145. Roux, L, Simon, A. E. & Holland, J. J. Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Advances in Virus Research, 1991, 40: 181-211.
    146. Rozanov, M. N., Koonin, E. V. & Gorbalenya, A. E. Conservation of the putative methyltransferase domain: a hallmark of the 'Sindbis-like' supergroup of positive-strand RNA viruses. Journal of General Virology, 1992, 73: 2129-2134.
    147. Rupasov, V. V., Morozov, S. Y., Kanyuka, K. V. & Zavriev, S. K. Partial base sequence of potato virus M RNA shows similarities to potexviruses in gene arrangement and the encoded amino acid sequences. Journal of General Virology, 1989, 70: 1861-1869.
    148. Russo, M., Burgyan, J. & Martelli, G. P. Molecular biology of tombusviridae. Advance in Virus Research, 1994, 44: 381-428.
    149. Sambrook, J. & Russell, D. W. Molecular Cloning: A laboratory Manual, 3rd ed. 2001, by Cold Spring Harbor Laboratory Press.
    150. Sawicki, S. G. & Sawicki, D. L. Coronavirus transcription: Subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. Journal of Virology, 1990, 64: 1050-1056.
    151. Sawicki, S. G. & Sawicki, D. L A new model for coronavirus transcription. Advance in Experimental Medicine Biology. 1998, 440: 215-219.
    152. Shanks, M., Stanley, J. & Lomonossoff, G. P. The primary structure of red clover mottle virus middle component RNA. Virology, 1986, 155: 697-706.
    153. Shih, D. S., Lane, L. C. & Kaesberg, P. Origin of the small component of brome mosaic virus RNA. Journal of Molecualr Biology, 1972, 64: 353-362.
    154. Shirako, Y. & Wilson, T. M. A. Complete base sequence and organization of the bipartite RNA genome of soil-borne wheat mosaic virus. Virology, 1993, 195: 16-32.
    155. Simon, A. E. & Howell, S. H. The virulent satellite RNA of turnip crinkle virus has a major domain homologous to the 3' end of the halper virus genome. EMBO Journal, 1986, 5: 3423-3428.
    156. Sit, T. L., Leclerc, D. & Abouhaidar, M. G. The minimal 5' sequence for in vitro initiation of papaya mosaic potexvirus assembly. Virology, 1994, 199: 238-242.
    157. Sit, T. L., Vaewhongs, A. A., & Lommel, S. A. RNA-mediated transactivation of transcription from a viral RNA. Science, 1998, 281: 829-832.
    158. Skuzeski, J. M., Nichols, L. M., Gesteland, R. E & Atkins, J. E The signal for a leaky UAG stop codon in several plant viruses includes the two dowmstream codons. Journal of Molecular Biology, 1991, 218: 365-373.
    159. Smimyagina, E., Hsu, Y. H., Chua, N. & Ahlquist, P. Second-site mutations in the brome mosaic virus RNA3 intercistronic region partially suppress a defect in coat protein mRNA transcription. Virology, 1994, 198: 427-436.
    160. Smit, C. H., Roosien, J., Van Vloten, D. L & Jaspars, E. M. J. Evidence that alfalfa mosaic virus infection starts with three RNA-protein complexes. Virology, 1981, 112: 169-173.
    161. Stanley, J., Hanau, R. & Jackson, A. O. Sequence comparison of the 3' end of a subgenomic RNA and the genome RNAs of barley stripe mosaic virus. Virology, 1984, 139: 375-383.
    162. Takamatsu, N. Ohno, T., Meshi, T. & Okada, Y. Molecular cloning and base sequence of the 30K and the coat protein cistron of TMV (tomato strain) genome. Nucleic Acids Research, 1983, 11: 3767-3778.
    163. Takamatsu, N., Watanabe, Y., Meshi, T. & Okada, Y. Mutational analysis of the pseudoknot region in the 3' noncoding regin of tobacco mosaic virus RNA. Journal of Virology, 1990, 64: 3686-3693.
    164. ten Dam, E. B., Pleij, C. W. A. & Bosch, L. RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus genes, 1990, 4: 121-136.
    165. Thomas, A. A. M., Ter Haar, E., Wellink, J. & Voorma, H. O. Cowpea mosaic virus middle component RNA contains a sequence that allows internal binding of ribosomes and that requires eukaryotic initiation factor 4F for optimal translation. Journal of Virology, 1991, 65: 2953-2959.
    166. Tsai, C. H. & Dreher, T. W. Second-site suppressor mutations assist in studying the function of the 3' noncoding region of turnip yellow mosaic virus RNA. Journal of Virology, 1992, 66: 5190-5199.
    167. Turpen, T. H., Reinl, S. J., Charoenvit, Y., Hoffman, S. L., Fallarme, V. & Grill, L. K. Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Bio/technology, 1995, 13: 53-57.
    168. Valle, R. P. C., Drugeon, G., Devigens-Morch, M. D., Legocki, A. B. & Haenni, A. L. Codon context effect in virus translational readthrough. A study in vitro of the determinants of TMV and Mo-MuLV amber suppression. FEBS Letters, 1992, 306: 133-139.
    169. Van der Kuyl, A. C. Langereis, K., Houwing, C. J., JAspars, E. M. J. & Bol, J. E Cis- Acting elements involved in replication of alfalfa mosaic virus RNAs in vivo. Virology, 1990, 176: 346-354.
    170. Van der Vossen, E. A. G., Neeleman, L. & Bol, J. E Role of the 5' leader sequence of alfalfa mosaic virus RNA 3 in replication and translation of the viral RNA. Nucleic Acids Research, 1993, 21: 1361-1367.
    171. Van der Vossen, E. A. G., Notenboom, T. & Bol, J. E Characterization of sequences controlling the synthesis of alfalfa mosaic virus subgenomic RNA in vivo. Virology, 1995, 212: 663-672.
    172. van Lent, J., Storms, M., van der Meer, E, wellink, J. & Goldbach, R. Tubular structures involved in movement of cowpea mosaic virus are also formed in infected coqpea protoplasts. Journal of General Virology, 1991, 72: 2615-2623.
    173. van Viler, A. L., Smits, S. L., Rottier, P.J. & de Groot, R. J. Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirns. EMBO Journal, 2002, 21: 6571-6580.
    174. Wang, H. H., Yu, H. H. & Wong, S. M. Mutation of Phe50 to Ser50 in the 126/183-kDa proteins of Odontoglossum ringspot virus abolishes virus replication but can be complemented and restored by exact reversion. Journal of General Virology, 2004, 85: 2447-2457.
    175. Wei, N. & Morris, T. J. Interactions between viral coat protein and a specific binding region on turnip crinkle virus RNA. Journal of Molecular Biology, 1991, 222: 437-443.
    176. Wei, N., Heaton, L. A., Morals, T. J. & Harrison, S. C. Structure and assembly of turnip crinkle virus Ⅳ. Identification of coat protein binding sites on the RNA. Journal of Molecular Biology, 1990, 214: 85-95.
    177. White, K. A. & Morris, T. J. Nonhomologous RNA recombination in tombusviruses: generation and evolution of defective interfering RNAs by stepwise deletions. Journal of Virology, 1994, 68: 14-24.
    178. White, K. A., Bancroft, J. B. & Mackie, G. A. Coding capacity determines in vivo accumulation of a defective RNA of clover yellow mosaic virus. Journal of Virology, 1992, 66: 3069-3076.
    179. White, K. A., Bancroft, J. B. & Mackie, G. A. Defective RNAs of clover yellow mosaic virus encode nonstructural/coat protein fusion product. Virology, 1991, 183: 479-486.
    180. Wobbe, K. K, Akgoz, M., Dempsey, M. A. & Klessig, D. F. A Single Amino Acid Change in Turnip Crinkle Virus Movement Protein p8 Affects RNA Binding and Virulence on Arabidopsis thaliana. Journal of Virology, 1998, 72: 6247-6250.
    181. Wolf, S., Deom, C.M., Beachy, R.N. & Lucas, W. J. Movement protein of tobacco mosaic virus modifies plasmodesmata size exclusion limit. Science, 1989, 246: 377-379.
    182. Wu, B., & White, K. A. Primary determinant of cap-independent translation is located in the 3'-proximal region of the tomato bushy stunt virus genome. Journal of Virology, 1999, 73(11): 8982-8988.
    183. Zelenina, D. A., Kulaeva, O. I., Smirnyagina, E. V., Solovyev, A. G., Miroshnichenko, N. A., Fedorkin, O. N., Rodionova, N. P., Morozov, S. Y. & Atabekov, J. G. Translation enhancing properties of the 5'-leader of potato virus X genomic RNA. FEBS Letters, 1992, 296: 267-270.
    184. Zerfass, K. & beier, H. Pseudour idine in the anticodoc GψA of plant cytoplasmic tRNAs~(Tyr) is required for UAG and UAA suppression in the TMV-specific context. Nucleic Acids Research, 1991, 22: 5911-5918.
    185. Zerfass, K. & Beier, H. The leaky UGA termination codon of tobacco rattle virus RNA is suppressed by tobacco chloroplast and cytoplasmic tRNA~(Trp) with CmCA anticodon. EMBO Journal, 1992b, 11: 4167-4173.
    186. Zhang, G., Slowinski, V. & White, K. A. Subgenomic mRNA regulation by a distal RNA element in a (+)-strand RNA virus. RNA, 1999, 5: 550-561.
    187. Zhang, X., & Lai, M. M. Unusual heterogeneity of leader mRNA fusion in a murine coronavirus: Implications for the mechanism of RNA transcription and recombination. Journal of Virology, 1994, 68: 6626-6633.
    188. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 2003, 31(13): 3406-3415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700