用户名: 密码: 验证码:
可持续发展的环境修复方法及土壤中石油烃迁移与传递研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要

In recent years, there are increasing interests in integrating sustainability as a decision-making criterion for environmental remediation. International initiatives have been established to explore sustainable remediation but there are knowledge gaps to be filled due to the specific challenges and problems in China. Improved insights into how to use the currently available frameworks to guide implementation of sustainable remediation in China are essential for improving risk assessment, remediation strategies and effective generation of previously contaminated land. This thesis explores the potential application of two remediation approaches including solvent extraction and compost amendment for petroleum hydrocarbon contaminated soils in context of China and the United Kingdom (UK).
     Solvent extraction is a preferred approach for sites with high levels of contamination which are not amenable for some more sustainable approaches such as bioremediation. This study provides new insights into the benefits of using integrated approaches such as solvent extraction followed by biodegradation for remediating contaminated soils with high levels of total petroleum hydrocarbons (TPH > 140 000 mg kg-1) as most of the previous studies have been only focused on low concentration contamination (< 5000 mg kg-1). The method allows > 90% of TPH to be removed within 15 min at room temperature, which is much more effective than previous reported solvent extraction method that required an extraction time ranging from 30 min to 48 h and temperature ranging from 70℃to 100℃. In addition, the issue of secondary pollution was addressed because 99% of the solvent was recycled using water. This method also shows good performance for the long-term effectiveness because the residual contaminants (mainly asphaltene) after treatment are extremely recalcitrant, non-available to ecological receptors in soil, and may be left in place without creating additional environmental risks. The complementation of solvent extraction and biodegradation promoted the strength but circumvented the drawbacks of their individual application, and therefore should be encouraged at contaminated sites for reducing remediation time, enhancing efficacy, improving sustainability and restoring previous contaminated sites especially with high concentration weathered hydrocarbons.
     Adding mature compost to contaminated soils is a good alternative for reusing waste and remediating the degraded land. The influence of compost addition on the degradation and bioavailability changes of polycyclic aromatic hydrocarbons (PAH) in both spiked and genuinely contaminated soils were investigated in this study. The quantified contribution of degradation and desorption/sorption to bioavailability change has implication for future studies to bring bioavailability concept into exposure assessment and to develop a more realistic and defensible remediation criteria for petroleum hydrocarbon in soils. Results of conjoint analysis reinforced the importance of incubation time and soil type (accounting for 92%) for PAH bioavailability change. The relationship between time, eleven readily accessible soil properties, and the bioavailable concentration of 16 PAHs using machine learning techniques gained insights into their high nonlinear relationship and provided a useful tool for the temporally prediction of bioavailability allowing a quick forecast of the bioremediation endpoint. Although the type and ratio of compost added were less important for bioavailability change, their interactions with other factors were significant. Results of multiple factor interactions implied that the compost addition shifted the equilibrium of soil-oil interaction (e.g. competitive sorption), however, knowledge about how to model the multi-phase partitioning of hydrocarbons in the soil-compost-oil system and the contribution of each mass transfer process (e.g. biodegradation, desorption, volatilization, diffusion, and etc.) to the overall fate and transport of hydrocarbons is still missing which warrants further investigation.
引文
[1] CLARINET, Contaminated Land Rehabilitation Network for Environmental Technologies in Europe, Available at: www.charinet.at.
    [2] QiShi L., Catney P., Lerner D., Risk-based management of contaminated land in the UK: lessons for China?, J. Environ. Manage., 2009, 90 (2): 1123-1134.
    [3] Li S., National Soil Pollution Survey Plan. China Internet Information Centre, Available at: www.china.org.cn/english/china/175191.htm, 2006.
    [4] USEPA, How to Evaluate alternative cleanup technologies for underground storage tank sites. Office of Solid Waste and Emergency Response, US Environmental Protection Agency. Publication No. EPA 510-B-95-007, Washington, DC., 1995.
    [5] USEPA, Abstracts of remediation case studies. Office of Solid Waste and Emergency Response, US Environmental Protection Agency. Publication No. EPA 542-R-95-001, Washington, DC., 1995.
    [6] USEPA, A citizen's guide to soil washing. Office of Solid Waste and Emergency Response, US Environmental Protection Agency. Publication No. EPA 542-F-96-002, Washington, DC., 1995.
    [7] USEPA, In situ soil vapor extraction. Office of Solid Waste and Emergency Response, US Environmental Protection Agency, Washington, DC. http://www.epa.gov/techinfo/case/comm/soilvape.html, 1996.
    [8] USEPA, A citizen's guide to natural attenuation. Office of Solid Waste and Emergency Response, US Environmental Protection Agency. Publication No. EPA 542-F-96-015, Washington, DC., 1996.
    [9] USEPA, A citizen's guide to treatment walls. Office of Solid Waste and Emergency Response, US Environmental Protection Agency. Publication No. EPA 542-F-96-016, Washington, DC., 1996.
    [10] USEPA, A citizen's guide to in situ soil flushing. Office of Solid Waste and Emergency Response, US Environmental Protection Agency. Publication No. EPA 542-F-96-006, Washington, DC., 1996.
    [11] USEPA, A citizen's guide to in situ thermal desorption. Office of Solid Waste and Emergency Response, US Environmental Protection Agency. Publication No. EPA 542-F-96-005, Washington, DC., 1996.
    [12] USEPA, A citizen's guide to phytoremediation. Office of Solid Waste and Emergency Response, US Environmental Protection Agency. Publication No. EPA 542-F-96-014, Washington, DC., 1996.
    [13] USEPA, A citizen's guide to bioremediation. Office of Solid Waste and Emergency Response, US Environmental Protection Agency. Publication No. EPA 542-F-96-007, Washington, DC., 1996.
    [14] USEPA, Soil vapor extraction (SVE). Office of Underground Storage Tank, US Environmental Protection Agency. Publication No. EPA 510-B-95-007, Washington, DC. http://www.epa.gov/swerust1/cat/sve1.htm, 1998.
    [15] USEPA, Landfarming. Office of Underground Storage Tank, US Environmental Protection Agency. Publication No. EPA 510-B-95-007, Washington, DC. http://www.epa.gov/swerust/cat/landfarm.htm, 1998.
    [16] USEPA, Biosparging. Office of Underground Storage Tank, US Environmental Protection Agency. Publication No. EPA 510-B-95-007, Washington, DC. http://www.epa.gov/Oust/cat/biosparg.htm., 1998.
    [17] USEPA, Bioventing. Office of Underground Storage Tank, US Environmental Protection Agency. Publication No. EPA 510-B-95-007, Washington, DC. http://www.epa.gov/Oust/cat/biovent.htm., 1998.
    [18] USEPA, Biopiles. Office of Underground Storage Tank, US Environmental Protection Agency. Publication No. EPA 510-B-95-007, Washington, DC. http://www.epa.gov/swerust/cat/biopiles.htm., 1998.
    [19] FRTR, Landfarming. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_15.html, 1999.
    [20] FRTR, Passive/reactive treatment walls. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_46.html, 1999.
    [21] FRTR, Bioslurping. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_39.html, 1999.
    [22] FRTR, In situ solidification/stabilization. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_10.html, 1999.
    [23] FRTR, In and ex situ solidification/stabilization. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_24.html, 1999.
    [24] FRTR, Ground water pumping. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_58.html, 1999.
    [25] FRTR, Soil flushing. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_8.html, 1999.
    [26] FRTR, UV oxidation. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_56.html, 1999.
    [27] FRTR, Thermal desorption. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_29.html, 1999.
    [28] FRTR, Bioventing. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_1.html, 1999.
    [29] FRTR, Biopiles. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_12.html, 1999.
    [30] FRTR, Phytoremediation. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_5.html, 1999.
    [31] FRTR, Aeration. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_37.html, 1999.
    [32] FRTR, Slurry phase biological treatment. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_16.html, 1999.
    [33] FRTR, In-well air stripping. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_45.html, 1999.
    [34] FRTR, Incineration. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W. Washington, DC, http://frtr.gov/matrix2/section4/4_26.html, 1999.
    [35] Reddy K.R., Admas J.F., Richardson C., Potential technologies for remediation of Brownfield., Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 1999, 3 (2): 61-68.
    [36] RAAG, Evaluation of Risk Based Corrective Action Model, Remediation Alternative Assessment Group, Memorial University of Newfoundland, St John's, NF, Canada, 2000.
    [37] Gan S., Lau E.V., Ng H.K., Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs), J. Hazard. Mater., 2009, 172 532-549.
    [38] Khan F.I., Husain T., Hejazi R., An overview and analysis of site remediation technologies, J. Environ. Manage., 2004, 71 (2): 95-122.
    [39] Turvani M., Tonin S., Brownfields Remediation and Reuse: An Opportunity for Urban Sustainable Development in: C. Clini, I. Musu, M.L. Gullino (Eds.) Sustainable Development and Environmental Management Springer, Netherlands, 2008.
    [40] Singh A., Kuhad R.C., Ward O.P., Biological remediation of soil: an overview of global market and available technologies, in: A. Singh, R.C. Kuhad, O.P. Ward (Eds.) Advances in Applied Bioremediation, Springer, 2009.
    [41] Bardos P., Bone B., Boyle R., et al., Applying sustainable development principles to contaminated land management using the SuRF UK framework, Remediation Journal, 2011, 21 (2): 77-100.
    [42] Pollard S.J.T., Brookes A., Earl N., et al., Integrating decision tools for the sustainable management of land contamination, Sci. Total. Environ., 2004, 325 (1-3): 15-28.
    [43] Ellis D.E., Hadley P.W., Sustainable remediation white paper-integrating sustainable principles, practices, and metrics into remediation projects, Remediation, 2009.
    [44] USEPA, Green remediation: Incorporating sustainable environmental practices into remediation of contaminated sites. Office of Solid Waste and Emergency Response, EPA 542-R-08-002. Retrieved December 8, 2008, from http://www.brownfieldstsc.org/pdfs/green-remediation-primer.pdf, 2008.
    [45] SuRF-UK, Sustainable remediation indicators. Available at: http://www.claire.co.uk/index.php?option=com_content&view=article&id=182&Itemid=78, 2010.
    [46] Smith J., Bardos P., SuRF-UK Webiner on The SuRF-UK Framework for Assessing the Sustainability of Soil and Groundwater Remediation, 12th May 2011. Available at: http://www.claire.co.uk/index.php?option=com_content&view=article&id=182&Itemid=78&limitstart=5, 2011.
    [47] Elkington J., Towards the sustainable corporation: Win-win-win business strategies for sustainable development, California Management Review, 1994, 36 (2): 90-100.
    [48] Li Z., Soil Quality Deteriorating in China. Threatening Public Health and Ecosystems, Worldwatch Institute, July 27, 2006. Available at: http://www.worldwatch.org/node/4419 2006.
    [49] SEPA, Circular on Prevention of Environmental Pollution from Demolition of Enterprise (Circular 47/2004). State Environmental Protection dministration(SEPA), Beijing., 2004.
    [50] Li S., National Soil Pollution Survey Plan. China Internet Information Centre, July 19, 2006. Available at: http://www.china.org.cn/english/China/175191.htm, 2006.
    [51] MEP, Recommendations on strengthening soil contamination prevention and remediation (MEP[2008] No. 48), 2008.
    [52] Wang Z., Fingas M.F., Development of oil hydrocarbon fingerprinting and identification techniques, Mar. Pollut. Bull., 2003, 47 (9-12): 423-452.
    [53] Brassington K.J., Hough R.L., Paton G.I., et al., Weathered hydrocarbon wastes: A risk management primer, Crit. Rev. Env. Sci. Tec, 2007, 37 (3): 199-232.
    [54] Brassington K.J., J.T.Pollard S., Coulon F., Weathered hydrocarbon biotransformation: implications for bioremediation, analysis and risk assessment., in: Chapter 5. Handbook of Microbiology of Hydrocarbons, Oils, Lipids. Volume 4. Timmis K. ed., Springer Verlag Berlin Heidelberg, ISBN: 978-3-540-77584-3, pp. 2487-25001 2009.
    [55] TPHCWG, Total Petroleum Hydrocarbon Criteria Working Group Series Volume 2: Composition of Petroleum Mixtures, Amherst Scientific, Amherst, Massachusetts, 1998.
    [56] API, Risk-based Methodologies for Evaluating Petroleum Hydrocarbon Impacts at Oil and Natural Gas E&P Sites, Washington, DC: Regulatory and Scientific Affairs Department American Petroleum Institute Publishing Services. API Publication 4709. , 2001.
    [57] ARCADIS, Risk Assessment Comparison Study 916830024, NICOLE/ISG 5. ASTM. 1994. Emergency Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, Philadelphia: ASTM. ES 48-94. , 2004.
    [58] Best R., Confronting China's industrial ghosts. Chinadialogue, June 02, 2011. Available at : http://www.chinadialogue.net/article/show/single/en/4329.
    [59] EC, European Commission. Council Directive on the Landfill of Waste (1999/31/EEC). European Commission; L182/1, 16/07/99, 1999.
    [60] Snellinx Z., Nepovím A., Taghavi S., et al., Biological remediation of explosives and related nitroaromatic compounds, Environ. Sci. Pollut. R, 2002, 9 (1): 48-61.
    [61] Lovley D.R., Cleaning up with genomics: applying molecular biology to bioremediation, Nature reviews. Microbiology, 2003, 1 (1): 35-44.
    [62] DETR, Department of the environment, transport and the regions. Waste strategy 2000: England and Wales. London: The Stationary Office, 2000.
    [63] DEFRA, Archive: Collecting and using municipal waste for composting. http://archive.defra.gov.uk/environment/waste/topics/compost/index.htm, 2006.
    [64] SCC, China National Environmental Protection Plan in the Eleventh Five-Years(2006-2010), 29 February 2008
    [65] Zhou Q., Sun F., Liu R., Joint chemical flushing of soils contaminated with petroleum hydrocarbons, Environ. Int., 2005, 31 (6): 835-839.
    [66] Khodadoust A.P., Bagchi R., Suidan M.T., et al., Removal of PAHs from highly contaminated soils found at prior manufactured gas operations, J. Hazard. Mater., 2000, 80 (1-3): 159-174.
    [67] Jian X., Li F., Overview of the current situation on brownfield remediation and redevelopment in China, The World Bank, Washington, DC, 2010.
    [68] Foster K.L., Mackay D., Parkerton T.F., et al., Five-stage environmental exposure assessment strategy for mixtures: Gasoline as a case study, Environ. Sci. Technol, 2005, 39 (8): 2711-2718.
    [69] Zemanek M.G., Pollard S.J.T., Kenefick S.L., et al., Multi-phase partitioning and co-solvent effects for polynuclear aromatic hydrocarbons (PAH) in authentic petroleum- and creosote-contaminated soils, Environ. Pollut., 1997, 98 (2): 239-252.
    [70] Semple K.T., Reid B.J., Fermor T.R., Impact of composting strategies on the treatment of soils contaminated with organic pollutants, Environ. Pollut., 2001, 112 (2): 269-283.
    [71] Reid B.J., Jones K.C., Semple K.T., Bioavailability of persistent organic pollutants in soils and sediments--a perspective on mechanisms, consequences and assessment, Environ. Pollut., 2000, 108 (1): 103-112.
    [72] Semple K.T., Morriss A.W.J., Paton G.I., Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis, European Journal of Soil Science, 2003, 54 (4): 809-818.
    [73] Coulon F., Whelan M.J., Paton G.I., et al., Multimedia fate of petroleum hydrocarbons in the soil: Oil matrix of constructed biopiles, Chemosphere, 2010, 81 (11): 1454-1462.
    [74] Bosma T.N.P., Middeldorp P.J.M., Schraa G., et al., Mass transfer limitation of biotransformation: Quantifying bioavailability, Environ. Sci. Technol, 1997, 31 (1): 248-252.
    [75] Hrudey S.E., Chen W., Rousseaux C.G., Bioavailability in Environmental Risk Assessment, CRC Press, 1996.
    [76] Robertson B.K., Alexander M., Sequestration of DDT and dieldrin in soil: Disappearance of acute toxicity but not the compounds, Environ. Toxicol. Chem, 1998, 17 (6): 1034-1038.
    [77] Tang J., Carroquino M., Robertson B., et al., Combined effect of sequestration and bioremediation in reducing the bioavailability of polycyclic aromatic hydrocarbons in soil, Environ. Sci. Technol., 1998, 32 (22): 3586-3590.
    [78] Alexander R.R., Alexander M., Genotoxicity of two polycyclic aromatic hydrocarbons declines as they age in soil, Environ. Toxicol. Chem, 1999, 18 (6): 1140-1143.
    [79] Kelsey J.W., Alexander M., Declining bioavailability and inappropriate estimation of risk of persistent compounds, Environ. Toxicol. Chem, 1997, 16 (3): 582-585.
    [80] Shor L.M., Kosson D.S., Rockne K.J., et al., Combined effects of contaminant desorption and toxicity on risk from PAH contaminated sediments, Risk analysis, 2004, 24 (5): 1109-1120.
    [81] Alexander M., Aging, bioavailability, and overestimation of risk from environmental pollutants, Environ. Sci. Technol, 2000, 34 (20): 4259-4265.
    [82] Chung N., Alexander M., Effect of concentration on sequestration and bioavailability of two polycyclic aromatic hydrocarbons, Environ. Sci. Technol, 1999, 33 (20): 3605-3608.
    [83] Chung N., Alexander M., Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils, Environ. Sci. Technol, 1998, 32 (7): 855-860.
    [84] Alexander R.R., Alexander M., Bioavailability of genotoxic compounds in soils, Environ. Sci. Technol., 2000, 34 (8): 1589-1593.
    [85] Pignatello J.J., Xing B., Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles, Environ. Sci. Technol., 1995, 30 (1): 1-11.
    [86] Huesemann M.H., Hausmann T.S., Fortman T.J., Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils, Biodegradation., 2004, 15 (4): 261-274.
    [87] Alexander M., How toxic are toxic chemicals in soil?, Environ. Sci. Technol., 1995, 29 (11): 2713-2717.
    [88] Latawiec A.E., Swindell A.L., Simmons P., et al., Bringing Bioavailability into Contaminated Land Decision Making: The Way Forward?, Crit. Rev. Env. Sci. Tec, 2011, 41 (1): 52-77.
    [89] Bamforth S.M., Singleton I., Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions, Journal of Chemical Technology & Biotechnology, 2005, 80 (7): 723-736.
    [90] Sandrin T.R., Maier R.M., Impact of metals on the biodegradation of organic pollutants, Environ. Health Persp, 2003, 111 (8): 1093.
    [91] Couling N.R., Towell M.G., Semple K.T., Biodegradation of PAHs in soil: Influence of chemical structure, concentration and multiple amendment, Environ. Pollut., 2010, 158 (11): 3411-3420.
    [92] Kelsey J.W., Kottler B.D., Alexander M., Selective chemical extractants to predict bioavailability of soil-aged organic chemicals, Environ. Sci. Technol., 1996, 31 (1): 214-217.
    [93] Hickman Z.A., Reid B.J., Towards a more appropriate water based extraction for the assessment of organic contaminant availability, Environ. Pollut., 2005, 138 (2): 299-306.
    [94] Papadopoulos A., Paton G.I., Reid B.J., et al., Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique, J. Environ. Monit., 2007, 9 (6): 516-522.
    [95] Stokes J.D., Wilkinson A., Reid B.J., et al., Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueoushydroxypropyl-β-cyclodextrin extraction technique, Environ. Toxicol. Chem, 2005, 24 (6): 1325-1330.
    [96] Cuypers C., Pancras T., Grotenhuis T., et al., The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques, Chemosphere, 2002, 46 (8): 1235-1245.
    [97] Reid B.J., Stokes J.D., Jones K.C., et al., Nonexhaustive Cyclodextrin-Based Extraction Technique for the Evaluation of PAH Bioavailability, Environ. Sci. Technol., 2000, 34 (15): 3174-3179.
    [98] Allan I.J., Semple K.T., Hare R., et al., Prediction of mono-and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction, Environ. Pollut., 2006, 144 (2): 562-571.
    [99] ISO, Soil quality-Requirements and Guidance for the selection and application of methods for the assessment of bioavailabilty of contaminants in soil and soil materials (ISO 17402:2008). http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38349, 2006.
    [100] Ji G., Sui X., Impact of ultrasonic time on hot water elution of severely biodegraded heavy oil from weathered soils, J. Hazard. Mater., 2010, 179 (1-3): 230-236.
    [101] Viglianti C., Hanna K., De Brauer C., et al., Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study, Environ. Pollut., 2006, 140 (3): 427-435.
    [102] Pannu J.K., Singh A., Ward O.P., Vegetable oil as a contaminated soil remediation amendment: Application of peanut oil for extraction of polycyclic aromatic hydrocarbons from soil, Process. Biochem., 2004, 39 (10): 1211-1216.
    [103] Avila-chavez M.A., Trejo A., Remediation of soils contaminated with total petroleum hydrocarbons and polycyclic aromatic hydrocarbons: Extraction with supercritical ethane, Ind. Eng. Chem. Res., 2010, 49 (7): 3342-3348.
    [104] Latawiec A.E., Reid B.J., Sequential extraction of polycyclic aromatic hydrocarbons using subcritical water, Chemosphere, 2010, 78 (8): 1042-1048.
    [105] Heemken O., Theobald N., Wenclawiak B., Comparison of ASE and SFE with Soxhlet, sonication, and methanolic saponification extractions for the determination of organic micropollutants in marine particulate matter, Anal. Chem, 1997, 69 (11): 2171-2180.
    [106] Saifuddin N., Chua K., Extraction of Tetrachloroethylene from Weathered Soils: A Comparison between Soxhlet Extraction and Microwave-Assisted Extraction, Extraction, 2003, 5 (1): 030-033.
    [107] Risdon G.C., Pollard S.J.T., Brassington K.J., et al., Development of an Analytical Procedure for Weathered Hydrocarbon Contaminated Soils within a UK Risk-Based Framework, Anal. Chem., 2008, 80 (18): 7090-7096.
    [108] Silva A., Delerue-Matos C., Fiuza A., Use of solvent extraction to remediate soils contaminated with hydrocarbons, J. Hazard. Mater., 2005, 124 (1-3): 224-229.
    [109] Hayes M.H.B., Solvent systems for the isolation of organic components from soils, Soil Sci. Soc. Am. J., 2006, 70 (3): 986-994.
    [110] Pignatello J.J., Soil organic matter as a nanoporous sorbent of organic pollutants, Adv. Colloid Interfac, 1998, 76-77 445-467.
    [111] Khodadoust A.P., Reddy K.R., Maturi K., Effect of different extraction agents on metal and organic contaminant removal from a field soil, J. Hazard. Mater., 2005, 117 (1): 15-24.
    [112] Ahn C.K., Kim Y.M., Woo S.H., et al., Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon, J. Hazard. Mater., 2008, 154 (1-3): 153-160.
    [113] Han M., Ji G.D., Ni J.R., Washing of field weathered crude oil contaminated soil with an environmentally compatible surfactant, alkyl polyglucoside, Chemosphere, 2009, 76 (5): 579-586.
    [114] Gong Z., Alef K., Wilke B.M., et al., Activated carbon adsorption of PAHs from vegetable oil used in soil remediation, J. Hazard. Mater., 2007, 143 (1-2): 372-378.
    [115] Petitgirard A., Djehiche M., Persello J., et al., PAH contaminated soil remediation by reusing an aqueous solution of cyclodextrins, Chemosphere, 2009, 75 (6): 714-718.
    [116] Lian J., Du Y., Li Z., et al., Study on organic solvent desorption of soils contaminated with heavy concentration petroleum hydrocarbons, Xian Dai Hua Gong (in Chinese), 2008, 28 (8): 60-63.
    [117] Smith R.M., Superheated water: The ultimate green solvent for separation science, Anal. Bioanal. Chem., 2006, 385 (3): 419-421.
    [118] Gonder Z.B., Kaya Y., Vergili I., et al., Optimization of filtration conditions for CIP wastewater treatment by nanofiltration process using Taguchi approach, Sep. Purif. Technol., 2010, 70 (3): 265-273.
    [119] D.C.Montgonery, Design and analysis of experiments, fifth ed., John Wiley, New York, 2001.
    [120] Smith M., Stiver W.H., Zytner R.G., The effect of varying water content on passive volatilization of gasoline from soil, in: Proceedings of the 49th Annual Purdue Industrial Waste Conference, 1994.
    [121] Arthurs P., Stiver W.H., G.Zytner R., Passive Volatilization of Gasoline from Soil, J. Soil Contam., 1995, 4 (2).
    [122] Li Y.Y., Zheng X.L., Li B., et al., Volatilization behaviors of diesel oil from the soils, J. Environ Sci, 2004, 16 (6): 1033-1036.
    [123] Li Y., Study on the volatilization and biodegradation of oil contaminants in soil-water system, in: Environment engineering, Ocean university of China, Qingdao, 2005.
    [124] Galin T., Gerstl Z., Yaron B., Soil pollution by petroleum products, III. Kerosene stability in soil columns as affected by volatilization, J. Contam. Hydrol., 1990, 5 (4): 375-385.
    [125] Baver L.D., Soil physics, forth ed., Wiley, New York, 1972.
    [126] Johnson M.D., Keinath Ii T.M., Weber Jr W.J., A distributed reactivity model for sorption by soils and sediments. , Environ. Sci. Technol, 2001, 35 (8): 1688-1695.
    [127] Hatzinger P.B., Alexander M., Effect of aging of chemicals in soil on their biodegradability and extractability, Environ. Sci. Technol., 1995, 29 (2): 537-545.
    [128] Piatt J.J., Brusseau M.L., Rate-Limited Sorption of Hydrophobic Organic Compounds by Soils with Well-Characterized Organic Matter, Environ. Sci. Technol., 1998, 32 (11): 1604-1608.
    [129] Clapp C.E., Hayes M.H.B., Simpson A.J., et al., Chemical processes in soils, Madison, 2005.
    [130] Bernardez L.A., Ghoshal S., Solubilization kinetics for polycyclic aromatic hydrocarbons transferring from a non-aqueous phase liquid to non-ionic surfactant solutions, J. Colloid Interf. Sci, 2008, 320 (1): 298-306.
    [131] Gevao B., Semple K.T., Jones K.C., Bound pesticide residues in soils: a review, Environ. Pollut., 2000, 108 (1): 3-14.
    [132] Scheunert I., Attar A., Zelles L., Ecotoxicological effects of soil-bound pentachlorophenol residues on the microflora of soils, Chemosphere, 1995, 30 (10).
    [133] Jones K.C., Alcock R.E., Johnson D., et al., Organic chemicals in contaminated land: analysis, significance and research priorities, Land Contamination and Reclamation, 1996, 4 (3): 189-198.
    [134] Beck A.J., Wilson S.C., Alcock R.E., et al., Kinetic constraints on the loss of organic chemicals from contaminated soils: implications for soil-quality limits, Crit. Rev. Env. Sci. Tec, 1995, 25 (1): 1-43.
    [135] Antizar-Ladislao B., Lopez-Real J., Beck A.J., Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting, Waste Manage., 2005, 25 (3): 281-289.
    [136] Swartjes F., van den Berg R., Remediation of contaminated soil and groundwater: Proposals for criteria and priority setting, in: Mat. of Workshop on Contaminated Soils, Stockholm, 1993.
    [137] Trenck K.T., Ruf J., Flittner M., Guide values for contaminated sites in Baden-Württemberg, Environ. Sci. Pollut. R, 1994, 1 (4): 253-261.
    [138] Wilson M.J., Maliszewska-Kordybach B., Soil Quality, Sustainable Agriculture and Environmental Security in Central and Eastern Europe, Kluwer Academic Publishers, Netherlands, 2000.
    [139] Atlas R.M., Cerniglia C.E., Bioremediation of petroleum pollutants, Bioscience., 1995, 45 (5): 332-338.
    [140] Allard A.S., Neilson A.H., Bioremediation of organic waste sites: A critical review of microbiological aspects, International Biodeterioration and Biodegradation, 1997, 39 (4): 253-285.
    [141] Lohner S., Tiehm A., Jackman S., et al., Coupled electrokinetic-bioremediation: applied aspects, in: K.R. Reddy, C. Cameselle (Eds.) Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater, John Wiley & Sons, Inc., Hoboken, 2009.
    [142] Lee P.H., Ong S.K., Golchin J., et al., Use of solvents to enhance PAH biodegradation of coal tar-contaminated soils, Water Res., 2001, 35 (16): 3941-3949.
    [143] Wu G., Li X., Coulon F., et al., Recycling of solvent used in a solvent extraction of petroleum hydrocarbons contaminated soil, J. Hazard. Mater., 2011, 186 (1): 533-539.
    [144] Trindade P.V.O., Sobral L.G., Rizzo A.C.L., et al., Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study, Chemosphere, 2005, 58 (4): 515-522.
    [145] Urum K., Pekdemir T., ?opur M., Surfactants treatment of crude oil contaminated soils, J. Colloid Interf. Sci, 2004, 276 (2): 456-464.
    [146] Yang Y., Field study on the soil venting and microbial combined remediation of petroleum hydrocarbon-contaminated soils, School of Chemical Engineering and Technology. Ph.D Dissertation (in Chinese), Tianjin University., 2010.
    [147] Pollard S.J.T., Hough R.L., Kim K.-H., et al., Fugacity modelling to predict the distribution of organic contaminants in the soil:oil matrix of constructed biopiles, Chemosphere, 2008, 71 (8): 1432-1439.
    [148] Rahman K.S.M., Rahman T.J., Kourkoutas Y., et al., Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients, Bioresource. Technol., 2003, 90 (2): 159-168.
    [149] Joseph P.J., Joseph A., Microbial enhanced separation of oil from a petroleum refinery sludge, J. Hazard. Mater., 2009, 161 (1): 522-525.
    [150] Das K., Mukherjee A., Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India, Bioresource. Technol., 2007, 98 (7): 1339-1345.
    [151] Guha S., JafféP., Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants, Environ. Sci. Technol, 1996, 30 (2): 605-611.
    [152] Field A., Discovering statistics using SPSS, 3rd ed. SAGE publications, London., 2009.
    [153] Ancheyta J., Centeno G., Trejo F., et al., Extraction and characterization of asphaltenes from different crude oils and solvents, Energy Fuels, 2002, 16 (5): 1121-1127.
    [154] Ali M.F., Alqam M.H., The role of asphaltenes, resins and other solids in the stabilization of water in oil emulsions and its effects on oil production in Saudi oil fields, Fuel, 2000, 79 (11): 1309-1316.
    [155] Speight J., Moschopedis S., The molecular nature of petroleum asphaltenes, Arab. J. Sci. Eng., 1994, 19 335-335.
    [156] Chang C.L., Fogler H.S., Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles, Lanrmuir, 1994, 10 (6): 1749-1757.
    [157] Leontaritis K.J., Mansoori G.A., Asphaltene deposition: A comprehensive description of problem manufestations and modeling approaches, in: SPE Production Operations Symposium, Oklahoma, 1989, pp. 229-236.
    [158] Hu Y., Yang L., Lin X., et al., N-alkane asphaltene precipitation and the mechanism of their formation, Petroleum exploration and development, 2000, 27 (5).
    [159] Noordman W., Janssen D., Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa, Appl. Environ. Microb., 2002, 68 (9): 4502.
    [160] Bruheim P., Bredholt H., Eimhjellen K., Bacterial degradation of emulsified crude oil and the effect of various surfactants, Can. J. Microbiol., 1997, 43 (1): 17-22.
    [161] McKew B., Coulon F., Yakimov M., et al., Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria, Environ. Microbiol., 2007, 9 (6): 1562-1571.
    [162] Brusseau M., Wood A., Rao P., Influence of organic cosolvents on the sorption kinetics of hydrophobic organic chemicals, Environ. Sci. Technol., 1991, 25 (5): 903-910.
    [163] Wess J.A., Olsen L.D., Sweeney M.H., Concise international chemical assessment document 59: Asphalt (bitumen), 2004.
    [164] USEPA, Engineering Bulletin: Composting (EPA/540/S-96/502). 1996.
    [165] Reid J.B., Fermor T.R., Semple K.T., Induction of PAH-catabolism in mushroom compost and its use in the biodegradation of soil associated phenanthrene, Environ. Pollut., 2002, 118 (118): 65-73.
    [166] Namkoong W., Hwang E.Y., Park J.S., et al., Bioremediation of diesel-contaminated soil with composting, Environ. Pollut., 2002, 119 (1): 23-31.
    [167] Haritash A.K., Kaushik C.P., Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review, J. Hazard. Mater., 2009, 169 (1-3): 1-15.
    [168] Puglisi E., Cappa F., Fragoulis G., et al., Bioavailability and degradation of phenanthrene in compost amended soils, Chemosphere, 2007, 67 (3): 548-556.
    [169] USEPA, Environmental Protection Agency, Method 610-Polynuclear aromatic hydrocarbons, in, 1989.
    [170] BSI, PAS100: 2011 Specification for composted materials, British Standards Institution, London, UK, 2011.
    [171] ISO, ISO 11465:1993: Determination of dry matter and water content on a mass basis by a gravimetric method, 1994.
    [172] ISO, BS EN 13039: Determination of the organic matter and ash, 2000.
    [173] ISO, BS ISO 11277:2009: Determination of particle size distribution in mineral soil material- Method by sieving and sedimentation, 2010.
    [174] ISO, ISO 11263:1994: Determination of phosphorus-Spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution, 1995.
    [175] ISO, BS EN 13654-2:2001: Determination of nitrogen-part 2: Dumas method, 2001.
    [176] ISO, BS ISO 10390: Determination of pH., in, 2010.
    [177] Lord R.A., Atkinson J., Scurlock J.M.O., et al., Biomass, Remediation, re-Generation (BioReGen Life Project): Reusing brownfield sites for renewable energy crops, in: Proceedings 15th European Biomass Conference & Exhibition, 7-11 May 2007, Milan, 2007.
    [178] Oleszczuk P., Application of hydroxypropyl-β-cyclodextrin to evaluation of polycyclic aromatic hydrocarbon losses during sewage sludges composting, Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43 (1): 10-17.
    [179] Wilson S.C., Jones K.C., Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review, Environ. Pollut., 1993, 81 (3): 229-249.
    [180] Leys N., Bastiaens L., Verstraete W., et al., Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil, Appl. Microbiol. Biot., 2005, 66 (6): 726-736.
    [181] Cambardella C., Richard T., Russell A., Compost mineralization in soil as a function of composting process conditions, Eur. J. Soil Biol., 2003, 39 (3): 117-127.
    [182] Nortcliff S., Amlinger F., N and C pools– what is their fate in compost amended systems, in: Appying compost benefirs and needs, 22-23 NovemberReference 2001, Brussels, Federal ministry of agriculture, forestry and water management, Austria and European Communities, 2001, pp. 19.
    [183] Hébert M., A A.K., Paren L.E., Mineralization of nitrogen and carbon in soils amended with composted manure, Biological Agriculture and Horticulture, 1991, 7 349-361.
    [184] Antizar-Ladislao B., Lopez-Real J., Beck A., Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated waste using composting approaches, Crit. Rev. Env. Sci. Tec, 2004, 34 (3): 249-289.
    [185] Janzen R., Xing B., Gomez C., et al., Compost extract enhances desorption of [alpha]-naphthol and naphthalene from pristine and contaminated soils, Soil Biology and Biochemistry, 1996, 28 (8): 1089-1098.
    [186] Montoneri E., Boffa V., Savarino P., et al., Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation, Waste Manage., 2009, 29 (1): 383-389.
    [187] Quagliotto P., Montoneri E., Tambone F., et al., Chemicals from wastes: compost-derived humic acid-like matter as surfactant, Environ. Sci. Technol., 2006, 40 (5): 1686-1692.
    [188] Oleszczuk P., Changes of polycyclic aromatic hydrocarbons during composting of sewage sludges with chosen physico-chemical properties and PAHs content, Chemosphere, 2007, 67 (3): 582-591.
    [189] Shixiang G., Liansheng W., Qingguo H., et al., Solubilization of polycyclic aromatic hydrocarbons byβ-cyclodextrin and carboxymethyl-β-cyclodextrin, Chemosphere, 1998, 37 (7): 1299-1305.
    [190] ATSDR, Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). U.S. Department of Health & Human Services, Agency for Toxic Substances and Disease Registry, 1995.
    [191] Shundo A., Sakurai T., Takafuji M., et al., Molecular-length and chiral discriminations by [beta]-structural poly (l-alanine) on silica, J. Chromatogr. A, 2005, 1073 (1-2): 169-174.
    [192] Song W., Huang Q., Wang L.,β-cyclodextrin (β-CD) influence on the biotoxicities of substituted benzene compounds and pesticide intermediates, Chemosphere, 1999, 38 (4): 693-698.
    [193] Wang J.M., Marlowe E.M., Miller-Maier R.M., et al., Cyclodextrin-enhanced biodegradation of phenanthrene, Environ. Sci. Technol., 1998, 32 1907-1912.
    [194] Wang X., Brusseau M.L., Solubilization of some low-polarity organic compounds by hydroxypropyl-. beta.-cyclodextrin, Environ. Sci. Technol., 1993, 27 (13): 2821-2825.
    [195] Wang X., Brusseau M.L., Cyclopentanol-enhanced solubilization of polycyclic aromatic hydrocarbons by cyclodextrins, Environ. Sci. Technol., 1995, 29 (9): 2346-2351.
    [196] Wang J.M., Maier R.M., Brusseau M.L., Influence of hydroxypropyl-β-cyclodextrin (HPCD) on the bioavailability and biodegradation of pyrene, Chemosphere, 2005, 60 (5): 725-728.
    [197] Reid B.J., Semple K.T., Jones K.C., Prediction of bioavailability of persistent organic pollutants by a novel extraction technique. In: Contaminated Soil '98, Vol. 2. Thomas Telford, London, pp. 889-990, 1998.
    [198] Reid B.J., Jone K.C., Semple K.T., Can bioavailability of PAHs be assessed by a chemical means. In: Lesson, A., Alleman, B.C. (Eds), Bioremediation Technologies for Polycyclic Aromatic Hydrocarbons Compounds, Proceeding of the 5th In Situ and On Site Bioremediation Symposium, Vol. 5, no. 8. Battelle Press, Columbus, pp. 253-258, 1999.
    [199] Green P., Srinivasan V., Conjoint analysis in marketing: new developments with implications for research and practice, The Journal of Marketing, 1990, 54 (4): 3-19.
    [200] Alriksson S., ?berg T., Conjoint analysis for environmental evaluation: A review of methods and applications, Environ. Sci. Pollut. R, 2008, 15 (3): 244-257.
    [201] Probert E., Dawson G., Cockrill A., Evaluating preferences within the composting industry in Wales using a conjoint analysis approach, Resources, Conservation and Recycling, 2005, 45 (2): 128-141.
    [202] Hair J., Anderson R., Tatham R., et al., Multivariate data analysis. 5th ed., Prentice hall Upper Saddle River, NJ, 1998.
    [203] McCoullough D., A user's guide to conjoint analysis: before starting out you need to know where the landmines are, Market Research, 2002, 14 (2): 18-23.
    [204] Reutterer T., Kotzab H.W., The Use of Conjoint-Analysis for Measuring Preferences in Supply Chain Design, Industrial Marketing Management, 2000, 29 (1): 27-35.
    [205] Whitmore G., Cavadias G., Experimental determination of community preferences for water quality-cost alternatives, Decision Sciences, 1974, 5 (4): 614-631.
    [206] Rae D., The value to visitors of improving visibility at Mesa Verde and Great Smoky National Parks, Managing Air Quality and Scenic Resources at National Parks and Wilderness Areas, 1983.
    [207] Lareau T., Rae D., Valuing WTP for diesel odor reductions: an application of contingent ranking technique, Southern Economic Journal, 1989, 55 (3): 728-742.
    [208] Mackenzie J., Eduljee B.R., Conjoint-Analysis of Demand for Waterfowl Hunting, Am. J. Agr. Econ., 1990, 72 (5): 1360-1360.
    [209] Gan C., A conjoint analysis of wetland-based recreation: a case study of Louisiana waterfowl hunting, 1992.
    [210] Opaluch J., Swallow S., Weaver T., et al., Evaluating impacts from noxious facilities: including public preferences in current siting mechanisms, Journal of Environmental Economics and Management, 1993, 24 (1): 41-59.
    [211] Roe B., Boyle K., Teisl M., Using Conjoint Analysis to Derive Estimates of Compensating Variation, Journal of Environmental Economics and Management, 1996, 31 (2): 145-159.
    [212] Johnson F., Desvousges W., Estimating stated preferences with rated-pair data: environmental, health, and employment effects of energy programs, Journal of Environmental Economics and Management, 1997, 34 (1): 79-99.
    [213] Adamowicz W., Boxall P., Williams M., et al., Stated preference approaches for measuring passive use values: choice experiments and contingent valuation, Am. J. Agr. Econ., 1998, 80 (1): 64-75.
    [214] Farber S., Griner B., Valuing watershed quality improvements using conjoint analysis, Ecol. Econ., 2000, 34 (1): 63-76.
    [215]álvarez-Farizo B., Hanley N., Using conjoint analysis to quantify public preferences over the environmental impacts of wind farms. An example from Spain, Energ. Policy, 2002, 30 (2): 107-116.
    [216] Muramatsu R., Nakamura Y., Evaluation of lighting environment using conjoint analysis (Part 1) - For the case of office, Journal of Light and Visual Environment, 2002, 26 (3): 30-39.
    [217] Cheung H.D., Chung T.M., A study on subjective preference to daylit residential indoor environment using conjoint analysis, Build. Environ., 2008, 43 (12): 2101-2111.
    [218] Gregory R., Lichtenstein S., Slovic P., Valuing environmental resources: a constructive approach, Journal of Risk and Uncertainty, 1993, 7 (2): 177-197.
    [219] Stuart I.A., Ansell R.O., Maclachlan J., et al., Five-way ANOVA interaction analysis of the selective extraction of carbaryl, pirimicarb and aldicarb from soils by supercritical fluid extraction, Analyst., 1997, 122 (4): 303-308.
    [220] Bradley N., The Response Surface Methodology. Msc Thesis, Indiana University South Bend, 2007.
    [221] SEPA, Paragraph 9 Exemption for "The reclamation or improvement of land", Scottish Environment Protection Agency, www.sepa.org.uk, 2011.
    [222] Madurantakam P.A., Rodriguez I.A., Cost C.P., et al., Multiple factor interactions in biomimetic mineralization of electrospun scaffolds, Biomaterials., 2009, 30 (29): 5456-5464.
    [223] Eaton R.W., Chapman P.J., Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1, 2-dihydroxynaphthalene and subsequent reactions, J. Bacteriol., 1992, 174 (23): 7542.
    [224] Barnsley E., Bacterial oxidation of naphthalene and phenanthrene, J. Bacteriol., 1983, 153 (2): 1069.
    [225] Pignatello J., Competitive effects in the sorption of non-polar organic compounds by soils, in: B. RA (Ed.) Organic Substances and Sediments in Water, Lewis, Chelsea, MI,USA, pp 291-307, 1991.
    [226] White J.C., Hunter M., Pignatello J.J., et al., Increase in bioavailability of aged phenanthrene in soils by competitive displacement with pyrene, Environ. Toxicol. Chem, 1999, 18 (8): 1728-1732.
    [227] Cox L., Cecchi A., Celis R., et al., Effect of exogenous carbon on movement of simazine and 2, 4-D in soils, 2001.
    [228] Karonis D., Lois E., Zannikos F., et al., A neural network approach for the correlation of exhaust emissions from a diesel engine with diesel fuel properties, Energ. Fuel., 2003, 17 (5): 1259-1265.
    [229] Mitchell T., Machine learning, McGraw Hill, 1997.
    [230] Bishop C.M., Neural networks for pattern recognition, Oxford university press, 1995.
    [231] He B., Oki T., Sun F., et al., Estimating monthly total nitrogen concentration in streams by using artificial neural network, J. Environ. Manage., 2011, 92 (1): 172-177.
    [232] Abdul-Wahab S.A., Al-Alawi S.M., Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks, Environ. Modell. Softw, 2002, 17 (3): 219-228.
    [233] Duran A., De Lucas A., Carmona M., et al., Simulation of atmospheric PAH emissions from diesel engines, Chemosphere, 2001, 44 (5): 921-924.
    [234] De Lucas A., Duran A., Carmona M., et al., Modeling diesel particulate emissions with neural networks, Fuel, 2001, 80 (4): 539-548.
    [235] Inal F., Artificial neural network predictions of polycyclic aromatic hydrocarbon formation in premixed n-heptane flames, Fuel Process. Technol, 2006, 87 (11): 1031-1036.
    [236] Inal F., Tayfur G., Melton T.R., et al., Experimental and artificial neural network modeling study on soot formation in premixed hydrocarbon flames, Fuel, 2003, 82 (12): 1477-1490.
    [237] Jensen R.R., Karki S., Salehfar H., Artificial neural network-based estimation of mercury speciation in combustion flue gases, Fuel Process. Technol, 2004, 85 (6-7): 451-462.
    [238] Mjalli F.S., Al-Asheh S., Alfadala H.E., Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance, J. Environ. Manage., 2007, 83 (3): 329-338.
    [239] Wu S., Akbarov A., Support vector regression for warranty claim forecasting, Eur. J. Oper. Res., 2011, 213 196-204.
    [240] Bhattacharya B., Solomatine D., Neural networks and M5 model trees in modelling water level-discharge relationship, Neurocomputing, 2005, 63 381-396.
    [241] Etemad-Shahidi A., Mahjoobi J., Comparison between M5'model tree and neural networks for prediction of significant wave height in Lake Superior, Ocean. Eng., 2009, 36 (15-16): 1175-1181.
    [242] Ustun B., Melssen W., Buydens L., Visualisation and interpretation of support vector regression models, Anal. Chim. Acta, 2007, 595 (1-2): 299-309.
    [243] Postma G., Krooshof P., Buydens L., Opening the Kernel of Kernel Partial Least Squares and Support Vector Machines, Anal. Chim. Acta, 2011.
    [244] Olden J.D., Jackson D.A., Illuminating the" black box": a randomization approach for understanding variable contributions in artificial neural networks, Ecol. Model., 2002, 154 (1): 135-150.
    [245] Haykin S., Neural networks: a comprehensive foundation, New York: Pretice Hall, 1999.
    [246] Garson G.D., Interpreting neural-network connection weights, AI expert, 1991, 6 (4): 46-51.
    [247] Fletcher D., Goss E., Forecasting with neural networks. An application using bankruptcy data, Inform. Manage-amster, 1993, 24 (3): 159-167.
    [248] Buhmann M.D., Radial basis functions: theory and implementations, Cambridge University Press, 2003.
    [249] Smola A.J., Sch?lkopf B., A tutorial on support vector regression, Stat. Comput., 2004, 14 (3): 199-222.
    [250] Platt J., Sequential minimal optimization: A fast algorithm for training support vector machines, Advances in Kernel Methods-Support Vector Learning, 1999, 208 98–112.
    [251] Sch?lkopf B., Smola A.J., Learning with kernels, MIT Press, Cambridge, 2002.
    [252] Flake G.W., Lawrence S., Efficient SVM regression training with SMO, Mach. Learn., 2002, 46 (1): 271-290.
    [253] Breiman L., J.H.Friedman, Olshen R.A., et al., Classification and regression trees, Chapman and Hall/CRC, 1984.
    [254] Hall M., Holmes G., Frank E., Generating rule sets from model trees, in: Proceedings of the 12th Australian Joint Conference on Artificial Intelligence, Springer-Verlag, Sydney, Australia, 1999, pp. 1-12.
    [255] Fürnkranz J., Separate-and-conquer rule learning, Artif. Intell. Rev., 1999, 13 (1): 3-54.
    [256] Hirotugu A., A new look at the statistical model identification, IEEE Transactions on automatic control, 1974, 19 (6): 716-723.
    [257] Lorena A.C., Jacintho L.F.O., Siqueira M.F., et al., Comparing machine learning classifiers in potential distribution modelling, Expert. Syst. Appl., 2010, 38 (5): 5268-5275.
    [258] Azcarraga A., Hsieh M., Pan S.L., et al., Knowledge acquisition and revision via neural networks, in: 2004 IEEE International Joint Conference on Neural Networks 2004.
    [259] Bru R., Maria Carrasco J., Costa Paraíba L., Unsteady state fugacity model by a dynamic control system, Appl. Math. Model., 1998, 22 (7): 485-494.
    [260] Mackay D., Multimedia Environmental Models: The Fugacity Approach, second ed., 2001.
    [261] Mackay D., Finding fugacity feasible, Environ. Sci. Technol, 1979, 13 (10): 1218-1223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700