用户名: 密码: 验证码:
高梁基因组内大片段获得与缺失变异挖掘及其与重要农艺性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
获得与缺失变异(PAVs,presence/absence variants)是一种通过缺失和插入引起的基因组结构变异,直接影响到基因组大小和基因数目变化,带来的基因组变异的尺度远远大于单核苷酸多态性(SNP,single nucleotide polymorphism)或小片段缺失(InDels,insertions and deletions,一般小于10bp)。PAVs广泛存在于人类及动物基因组,对人类多种遗传疾病及动物表型变异起到关键作用。在植物基因组中,已经挖掘出大量PAVs,但对它的起源,形成机理,功能和分子育种利用等研究较少。
     高粱(Sorghum bicolour)是一种重要的粮食、经济、能源等多功能C4作物,光合作用效率高,生物产量和经济产量大,同时高粱具有很强的抗逆性和适应性,适合我国中低产田的开发与利用。为满足国家能源和粮食安全需求,我们应该发掘新的基因资源和育种思路加速高粱分子育种进程。本研究利用遗传多样性丰富的高粱自交系,分析高粱基因组中大片段获得与缺失变异(lsPAVs,larger-size presence/absence variants)的类别、数目、分布和遗传多样性;并对关键的lsPAVs进行重要农艺性状的关联分析,建立PAVs-性状关系,解决高粱分子遗传育种基因及重要功能变异位点等资源缺乏的问题。
     本实验室已经对三个高粱品种(Keller,E-tian和Ji2731)进行了重测序的工作(每个品种12×数据量),通过比较基因组学分析,在高粱基因组中挖掘出5364个PAVs,其中大于30kb的PAVs有96个,影响了约5.2Mb基因组序列,约占总PAVs影响基因组序列的1/4。通过分子生物学及遗传学方法验证,确定51个大于30kb的lsPAVs在高粱基因组上是以简单插入缺失变异存在,覆盖了约2.92Mb的基因组序列。通过PAVs影响的基因密度分析,发现lsPAVs发生在常染色体低基因密度区域。51个lsPAVs影响了202个已知或预测的基因,包括38个基因响应细胞死亡及生物胁迫,及56个编码转座子表达蛋白的基因。通过RepeatMasker分析,发现lsPAVs序列中包含大量的反转录转座元件和DNA转座子的重复序列以及其他简单重复序列和低复杂度序列。另外,通过BreakSeq分析发现,51个lsPAVs中50个lsPAVs是通过非同源重组(NHR,non-homologousrecombination)导致,仅有一个变异通过非等位基因同源重组(NAHR,non-allelichomologous recombination)形成。基因组间lsPAVs在自然的选择压力下存在着广泛的遗传多样性,分析51个lsPAVs在高粱96自然品种中的分布频率,发现51个lsPAVs在自然群体中分布频率存在很大差异,这种现象与lsPAV影响的基因功能相关,与其序列特征关系不大。根据lsPAVs在高粱遗传分离群体上的分析,发现lsPAVs存在着动态进化过程。通过关联分析手段,发现21个lsPAVs与15个重要农艺性状相关,共挖掘出41个位点,其中有10个lsPAVs影响多个性状,反之发现有10个性状存在关联显著的多态性位点,另外发现其中有23个lsPAVs位点与已经报道的QTLs位点基本一致。
     本研究首次对高粱基因组内大片段获得与缺失变异(lsPAVs)的发生,分布,遗传多样性及功能进行了研究,并对lsPAVs进行重要农艺性状的关联分析,建立lsPAVs-性状关系。本研究从新的角度解决甜高粱分子育种的瓶颈,为高粱及相关作物育种提供新手段,为植物功能基因组学研究提供理论参考。
Background
     The presence/absence variants (PAVs) are a major source of genome structurevariation and have profound effects on human diseases as well as on genome sizesand phenotypic variation in animals. Little is understood about PAVs in plantgenomes. Sorghum (Sorghum bicolour) is a multi-functional C4crop providing food,feed, fibre and fuel, particularly in low-input water-limiting agriculture systems.Here we report our effort to dissect PAVs’ occurrence, diversity and associationswith biofuel-associated traits in sorghum.
     Results
     Three sorghum genomes were resequenced to12×coverage each and5364PAVswere uncovered, only including96lsPAVs (large-size PAVs)(larger than30kilobases) which affected5.2Mb genomic sequences. The lsPAVs were studied andthe occurrence of51large-size PAVs was confirmed as simple insertion and deletionevents. These lsPAVs affected a total size of2.92Mb of the sorghum genomecontaining202known and predicted genes, of which38were annotated to encodecell death and stress response genes. Detailed analysis of the genomic sequenceswithin and surrounding the lsPAVs demonstrated that there existed56expressedtransposon proteins and high numbers of repeats sequences of various retroelements,DNA transposons, simple repeats and low complexity sequences, suggesting that thelsPAVs resulted from transposable activities and non-homologous recombination.The frequency and distribution of these PAVs varied substantially in a panel of96sorghum inbred lines, and the low-and high-frequency lsPAVs differed in their gene categories. Our further association analysis demonstrated that21lsPAVs weresignificantly associated with the variation in15agronomic traits,10of the lsPAVsaffected more than one traits and more than half of the identified loci localised inprevious mapped QTLs intervals.
     Conclusions
     This report, for the first time, shed new lights on the occurrence, diversity andfunctions of lsPAVs in sorghum genomes, and established lsPAVs-trait associations.Our research exemplifies a new perspective to explore genome structure variation forgenetic improvement in plant breeding.
引文
1. Ashley-Koch A, Yang Q, Olney RS: Sickle hemoglobin (HbS) allele and sickle cell disease:a HuGE review. Am J Epidemiol2000,151:839-845.
    2. Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, Gupta RV, MontgomeryJ, Morenzoni MM, Nilsen GB, et al: A sequence-based variation map of8.27millionSNPs in inbred mouse strains. Nature2007,448:1050-1053.
    3. Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, Eversole KA, Gill CA, Green RD,Hamernik DL, Kappes SM, Lien S, et al: Genome-wide survey of SNP variation uncoversthe genetic structure of cattle breeds. Science2009,324:528-532.
    4. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH,Carson AR, Chen W, et al: Global variation in copy number in the human genome.Nature2006,444:444-454.
    5. Collard BC, Vera Cruz CM, McNally KL, Virk PS, Mackill DJ: Rice molecular breedinglaboratories in the genomics era: Current status and future considerations. Int J PlantGenomics2008,2008:524847.
    6. Ganal MW, Altmann T, Roeder MS: SNP identification in crop plants. Current Opinion inPlant Biology2009,12:211-217.
    7. Langridge P, Fleury D: Making the most of 'omics' for crop breeding. Trends inBiotechnology2011,29:33-40.
    8. Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B:Large-scale identification and analysis of genome-wide single-nucleotidepolymorphisms for mapping in Arabidopsis thaliana. Genome Res2003,13:1250-1257.
    9. Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH: An SNP resource for ricegenetics and breeding based on subspecies indica and japonica genome alignments.Genome Res2004,14:1812-1819.
    10. Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D: Sequencing ofnatural strains of Arabidopsis thaliana with short reads. Genome Res2008,18:2024-2033.
    11. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD,Grills GS, Ross-Ibarra J, et al: A first-generation haplotype map of maize. Science2009,326:1115-1117.
    12. Huang X, Lu G, Zhao Q, Liu X, Han B: Genome-wide analysis of transposon insertionpolymorphisms reveals intraspecific variation in cultivated rice. Plant Physiol2008,148:25-40.
    13. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA,Zwonitzer JC, Kresovich S, McMullen MD, Ware D, et al: Genome-wide association studyof quantitative resistance to southern leaf blight in the maize nested associationmapping population. Nat Genet.
    14. Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT,Fu G, Hinds DA, et al: Common sequence polymorphisms shaping genetic diversity inArabidopsis thaliana. Science2007,317:338-342.
    15. McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM,Hoen DR, Bureau TE, et al: Genomewide SNP variation reveals relationships amonglandraces and modern varieties of rice. Proc Natl Acad Sci U S A2009,106:12273-12278.
    16. Wang L, Hao L, Li X, Hu S, Ge S, Yu J: SNP deserts of Asian cultivated rice: genomicregions under domestication. Journal of Evolutionary Biology2009,22:751-761.
    17. Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, et al:Genome-wide patterns of genetic variation among elite maize inbred lines. NatureGenetics2010,42:1027-U1158.
    18. Hurles ME, Dermitzakis ET, Tyler-Smith C: The functional impact of structural variationin humans. Trends Genet2008,24:238-245.
    19. Muller HJ: Bar Duplication. Science1936,83:528-530.
    20. Bridges CB: The Bar "Gene" a Duplication. Science1936,83:210-211.
    21. Scherer SW, Lee C, Birney E, Altshuler DM, Eichler EE, Carter NP, Hurles ME, Feuk L:Challenges and standards in integrating surveys of structural variation. Nat Genet2007,39:S7-15.
    22. Zhang F, Gu W, Hurles ME, Lupski JR: Copy number variation in human health, disease,and evolution. Annu Rev Genomics Hum Genet2009,10:451-481.
    23. Wain LV, Armour JA, Tobin MD: Genomic copy number variation, human health, anddisease. Lancet2009,374:340-350.
    24. Feuk L, Carson AR, Scherer SW: Structural variation in the human genome. Nat RevGenet2006,7:85-97.
    25. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, BarnesC, Campbell P, et al: Origins and functional impact of copy number variation in thehuman genome. Nature2009.
    26. Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM, Aburatani H, JonesKW, Tyler-Smith C, Hurles ME: Copy number variation: new insights in genomediversity. Genome Research2006,16:949-961.
    27. Flavell R: Repetitive DNA and chromosome evolution in plants. PhilosophicalTransactions of the Royal Society of London B, Biological Sciences1986,312:227-242.
    28. Meyers BC, Tingey SV, Morgante M: Abundance, distribution, and transcriptionalactivity of repetitive elements in the maize genome. Genome Research2001,11:1660-1676.
    29. Gao L, McCarthy EM, Ganko EW, McDonald JF: Evolutionary history of Oryza sativaLTR retrotransposons: a preliminary survey of the rice genome sequences. BmcGenomics2004,5:18.
    30. Flavell R, Bennett M, Smith J, Smith D: Genome size and the proportion of repeatednucleotide sequence DNA in plants. Biochemical genetics1974,12:257-269.
    31. Faris JD, Haen KM, Gill BS: Saturation mapping of a gene-rich recombination hot spotregion in wheat. Genetics2000,154:823-835.
    32. Sandhu D, Gill KS: Gene-containing regions of wheat and the other grass genomes.Plant Physiology2002,128:803-811.
    33. Lagercrantz U, Ellegren H, Andersson L: The abundance of various polymorphicmicrosatellite motifs differs between plants and vertebrates. Nucleic Acids Research1993,21:1111-1115.
    34. Khush GS: Origin, dispersal, cultivation and variation of rice. In Oryza: From Moleculeto Plant. Springer;1997:25-34
    35. Rostoks N, Park Y-J, Ramakrishna W, Ma J, Druka A, Shiloff BA, SanMiguel PJ, Jiang Z,Brueggeman R, Sandhu D: Genomic sequencing reveals gene content, genomicorganization, and recombination relationships in barley. Functional&IntegrativeGenomics2002,2:51-59.
    36. Fu H, Dooner HK: Intraspecific violation of genetic colinearity and its implications inmaize. Proceedings of the National Academy of Sciences2002,99:9573-9578.
    37. Han B, Xue Y: Genome-wide intraspecific DNA-sequence variations in rice. Currentopinion in plant biology2003,6:134-138.
    38. Sato S, Kaneko T, Nakamura Y, Asamizu E, Kato T, Tabata S: Structural analysis of aLotus japonicus genome. I. Sequence features and mapping of fifty-six TAC cloneswhich cover the5.4Mb regions of the genome. DNA research2001,8:311-318.
    39. Thomas Jr C: The genetic organization of chromosomes. Annual review of genetics1971,5:237-256.
    40. Bennetzen JL: Mechanisms and rates of genome expansion and contraction in floweringplants. Genetica2002,115:29-36.
    41. Bennetzen JL: Transposable elements, gene creation and genome rearrangement inflowering plants. Current Opinion in Genetics&Development2005,15:621-627.
    42. Ma J, Devos KM, Bennetzen JL: Analyses of LTR-retrotransposon structures revealrecent and rapid genomic DNA loss in rice. Genome Research2004,14:860-869.
    43. Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF: Differential lineage-specificamplification of transposable elements is responsible for genome size variation inGossypium. Genome Research2006,16:1252-1261.
    44. Hawkins JS, Grover CE, Wendel JF: Repeated big bangs and the expanding universe:Directionality in plant genome size evolution. Plant Science2008,174:557-562.
    45. Vinogradov AE: Evolution of genome size: multilevel selection, mutation bias ordynamical chaos? Current Opinion in Genetics&Development2004,14:620-626.
    46. Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S,Wing RA: Doubling genome size without polyploidization: dynamics ofretrotransposition-driven genomic expansions in Oryza australiensis, a wild relative ofrice. Genome Research2006,16:1262-1269.
    47. Vitte C, Panaud O, Quesneville H: LTR retrotransposons in rice (Oryza sativa, L.):recent burst amplifications followed by rapid DNA loss. Bmc Genomics2007,8:218.
    48. Wang H, Liu J-S: LTR retrotransposon landscape in Medicago truncatula: more rapidremoval than in rice. Bmc Genomics2008,9:382.
    49. Du C, Swigoňová Z, Messing J: Retrotranspositions in orthologous regions of closelyrelated grass species. Bmc Evolutionary Biology2006,6:62.
    50. Long M, Langley CH: Natural selection and the origin of jingwei, a chimeric processedfunctional gene in Drosophila. Science1993,260:91-95.
    51. Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR: Pack-MULE transposable elementsmediate gene evolution in plants. Nature2004,431:569-573.
    52. Volff JN: Turning junk into gold: domestication of transposable elements and thecreation of new genes in eukaryotes. Bioessays2006,28:913-922.
    53. Morgante M, De Paoli E, Radovic S: Transposable elements and the plant pan-genomes.Current opinion in plant biology2007,10:149-155.
    54. Vo lker J, Gindikin V, Klump HH, Plum GE, Breslauer KJ: Energy landscapes of dynamicensembles of rolling triplet repeat bulge loops: Implications for DNA expansionassociated with disease states. Journal of the American Chemical Society2012,134:6033-6044.
    55. Ryan CP, Crespi BJ: Androgen receptor polyglutamine repeat number: models ofselection and disease susceptibility. Evolutionary Applications2012.
    56. Hancock JM: The contribution of slippage-like processes to genome evolution. Journal ofmolecular evolution1995,41:1038-1047.
    57. Jin Y-K, Bennetzen JL: Integration and nonrandom mutation of a plasma membraneproton ATPase gene fragment within the Bs1retroelement of maize. The Plant CellOnline1994,6:1177-1186.
    58. Li W-H, Gu Z, Wang H, Nekrutenko A: Evolutionary analyses of the human genome.Nature2001,409:847-849.
    59. Wang W, Zheng H, Fan C, Li J, Shi J, Cai Z, Zhang G, Liu D, Zhang J, Vang S: High rate ofchimeric gene origination by retroposition in plant genomes. The Plant Cell Online2006,18:1791-1802.
    60. Kumar A, Bennetzen JL: Plant retrotransposons. Annual review of genetics1999,33:479-532.
    61. Feschotte C, Jiang N, Wessler SR: Plant transposable elements: where genetics meetsgenomics. Nature Reviews Genetics2002,3:329-341.
    62. Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T,Suzuki-Migishima R, Ogonuki N, Miki H: Deletion of Peg10, an imprinted gene acquiredfrom a retrotransposon, causes early embryonic lethality. Nature Genetics2005,38:101-106.
    63. Franchini LF, Ganko EW, McDonald JF: Retrotransposon-gene associations arewidespread among D. melanogaster populations. Molecular biology and evolution2004,21:1323-1331.
    64. Ganko EW, Greene CS, Lewis JA, Bhattacharjee V, McDonald JF: LTRretrotransposon-gene associations in Drosophila melanogaster. Journal of molecularevolution2006,62:111-120.
    65. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, BarnesC, Campbell P, et al: Origins and functional impact of copy number variation in thehuman genome. Nature2010,464:704-712.
    66. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, BuchwaldM, Tsui LC: Identification of the cystic fibrosis gene: genetic analysis. Science1989,245:1073-1080.
    67. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, ColeJL, Kennedy D, Hidaka N, et al.: Identification of the cystic fibrosis gene: chromosomewalking and jumping. Science1989,245:1059-1065.
    68. Berglund J, Nevalainen EM, Molin AM, Perloski M, Lupa TL, Andre C, Zody MC, Sharpe T,Hitte C, Lindblad-Toh K, et al: Novel origins of copy number variation in the dog genome.Genome Biol2012,13:R73.
    69. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M,Chi MY, et al: Large-scale copy number polymorphism in the human genome. Science2004,305:525-528.
    70. Iafrate AJ, Feuk T, Van Puymbroeck L, Rivera MN, Listewnik ML, Ying QP, Scherer SW,Lee C: Detection of large-scale variation in the human genome. Journal of MolecularDiagnostics2004,6:411-411.
    71. Eichler E, Sharp AJ, Locke DL, Tuzun E, Pinkel D: Fine-scale structural variation of thehuman genome. Journal of Medical Genetics2005,42:S34-S34.
    72. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA,Schwartz S, Segraves R, et al: Segmental duplications and copy-number variation in thehuman genome. American Journal of Human Genetics2005,77:78-88.
    73. Hastings PJ, Lupski JR, Rosenberg SM, Ira G: Mechanisms of change in gene copynumber. Nature Reviews Genetics2009,10:551-564.
    74. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D,Carriero NJ, Du L, et al: Paired-end mapping reveals extensive structural variation inthe human genome. Science2007,318:420-426.
    75. Yu CE, Dawson G, Munson J, D'Souza I, Osterling J, Estes A, Leutenegger AL, Flodman P,Smith M, Raskind WH, et al: Presence of large deletions in kindreds with autism.American Journal of Human Genetics2002,71:100-115.
    76. Petrov DA: Mutational equilibrium model of genome size evolution. TheoreticalPopulation Biology2002,61:531-544.
    77. Olson MV: When less is more: Gene loss as an engine of evolutionary change. AmericanJournal of Human Genetics1999,64:18-23.
    78. Locke DP, Segraves R, Carbone L, Archidiacono N, Albertson DG, Pinkel D, Eichler EE:Large-scale variation among human and great ape genomes determined by arraycomparative genomic hybridization. Genome Research2003,13:347-357.
    79. Frazer KA, Chen XY, Hinds DA, Pant PVK, Patil N, Cox DR: Genomic DNA insertionsand deletions occur frequently between humans and nonhuman primates. GenomeResearch2003,13:341-346.
    80. Liu G, Zhao SY, Bailey JA, Sahinalp SC, Alkan C, Tuzun E, Green ED, Eichler EE, ProgmNCS: Analysis of primate genomic variation reveals a repeat-driven expansion of thehuman genome. Genome Research2003,13:358-368.
    81. Berglund J, Nevalainen EM, Molin AM, Perloski M, Andre C, Zody MC, Sharpe T, Hitte C,Lindblad-Toh K, Lohi H: Novel origins of copy number variation in the dog genome.Genome Biology2012,13:R73.
    82. Dong Y, Xie M, Jiang Y, Xiao N, Du X, Zhang W, Tosser-Klopp G, Wang J, Yang S, Liang J:Sequencing and automated whole-genome optical mapping of the genome of a domesticgoat (Capra hircus). Nature Biotechnology2012.
    83. Fang X, Zhang Y, Zhang R, Yang L, Li M, Ye K, Guo X, Wang J, Su B: Genome sequenceand global sequence variation map with5.5million SNPs in Chinese rhesus macaque.Genome Biology2011,12:R63.
    84. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H: The oystergenome reveals stress adaptation and complexity of shell formation. Nature2012.
    85. Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK: A high-resolution survey ofdeletion polymorphism in the human genome. Nat Genet2006,38:75-81.
    86. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K,Cheetham RK, et al: Mapping copy number variation by population-scale genomesequencing. Nature2011,470:59-65.
    87. Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, Weigel D, Berry CC, Winzeler E, ChoryJ: Large-scale identification of single-feature polymorphisms in complex genomes.Genome Research2003,13:513-523.
    88. Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y,Tanisaka T, Wessler SR: Unexpected consequences of a sudden and massive transposonamplification on rice gene expression. Nature2009,461:1130-1134.
    89. Salathia N, Lee HN, Sangster TA, Morneau K, Landry CR, Schellenberg K, Behere AS,Gunderson KL, Cavalieri D, Jander G, Queitsch C: Indel arrays: an affordable alternativefor genotyping. Plant Journal2007,51:727-737.
    90. DeBolt S: Copy number variation shapes genome diversity in Arabidopsis overimmediate family generational scales. Genome Biol Evol,2:441-453.
    91. Lu P, Han X, Qi J, Yang J, Wijeratne AJ, Li T, Ma H: Analysis of Arabidopsis genome-widevariations before and after meiosis and meiotic recombination by resequencingLandsberg erecta and all four products of a single meiosis. Genome Research2012,22:508-518.
    92. Kumar R, Qiu J, Joshi T, Valliyodan B, Xu D, Nguyen HT: Single Feature PolymorphismDiscovery in Rice. PLoS One2007,2.
    93. Yu P, Wang C, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Tang S, Wei X: Detection of copynumber variations in rice using array-based comparative genomic hybridization. BMCGenomics2011,12.
    94. Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, Wu W, Richmond T, Kitzman J, RosenbaumH, et al: Maize inbreds exhibit high levels of copy number variation (CNV) andpresence/absence variation (PAV) in genome content. PLoS Genet2009,5:e1000734.
    95. Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M:Genome-wide patterns of genetic variation among elite maize inbred lines. NatureGenetics2010,42:1027-1030.
    96. Belo A, Beatty MK, Hondred D, Fengler KA, Li B, Rafalski A: Allelic genome structuralvariations in maize detected by array comparative genome hybridization. Theor ApplGenet2009.
    97. Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM:Pervasive gene content variation and copy number variation in maize and itsundomesticated progenitor. Genome Research2010,20:1689-1699.
    98. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B:Resequencing of31wild and cultivated soybean genomes identifies patterns of geneticdiversity and selection. Nature Genetics2010,42:1053-1059.
    99. McHale LK, Haun WJ, Xu WW, Bhaskar PB, Anderson JE, Hyten DL, Gerhardt DJ,Jeddeloh JA, Stupar RM: Structural variants in the soybean genome localize to clustersof biotic stress-response genes. Plant Physiol2012,159:1295-1308.
    100. Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK,Clemente TE: Copy Number Variation of Multiple Genes at Rhg1Mediates NematodeResistance in Soybean. Science2012,338:1206-1209.
    101. Bruce M, Hess A, Bai J, Mauleon R, Diaz MG, Sugiyama N, Bordeos A, Wang G-L, LeungH, Leach JE: Detection of genomic deletions in rice using oligonucleotide microarrays.BMC Genomics2009,10.
    102. Durrant C, Zondervan KT, Cardon LR, Hunt S, Deloukas P, Morris AP: Linkagedisequilibrium mapping via cladistic analysis of single-nucleotide polymorphismhaplotypes. American Journal of Human Genetics2004,75:35.
    103. Lindblad-Toh K, Winchester E, Daly MJ, Wang DG, Hirschhorn JN, Laviolette J-P, Ardlie K,Reich DE, Robinson E, Sklar P: Large-scale discovery and genotyping ofsingle-nucleotide polymorphisms in the mouse. Nature Genetics2000,24:381-386.
    104. Bhattramakki D, Rafalski A: Discovery and application of single nucleotidepolymorphism markers in plants. Plant genotyping: The DNA fingerprinting of plants2001:179-192.
    105. Klein RJ, Zeiss C, Chew EY, Tsai J-Y, Sackler RS, Haynes C, Henning AK, SanGiovanni JP,Mane SM, Mayne ST: Complement factor H polymorphism in age-related maculardegeneration. Science2005,308:385-389.
    106. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ,Meitinger T, Braund P, Wichmann H-E: Genomewide association analysis of coronaryartery disease. New England Journal of Medicine2007,357:443-453.
    107. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, Wichmann H-E, MeitingerT, Hunter D, Hu FB: A common genetic variant is associated with adult and childhoodobesity. Science2006,312:279-283.
    108. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S,Hirschhorn JN, Daly MJ: Genome-wide association analysis identifies loci for type2diabetes and triglyceride levels. Science2007,316:1331-1336.
    109. Neale DB, Savolainen O: Association genetics of complex traits in conifers. Trends inPlant Science2004,9:325-330.
    110. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, KresovichS, Goodman MM, Buckler ES: Structure of linkage disequilibrium and phenotypicassociations in the maize genome. Proceedings of the National Academy of Sciences2001,98:11479-11484.
    111. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES: Dwarf8polymorphisms associate with variation in flowering time. Nature Genetics2001,28:286-289.
    112. Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L:Resequencing50accessions of cultivated and wild rice yields markers for identifyingagronomically important genes. Nature Biotechnology2011.
    113. Mitchell SE, Casa AM, Tuinstra MR, Brown PJ, Pressoir G, Rooney WL, Franks CD,Kresovich S: Community resources and strategies for association mapping in sorghum.Crop Science2008,48:30-40.
    114. Flint‐Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J,Kresovich S, Goodman MM, Buckler ES: Maize association population: a high‐resolution platform for quantitative trait locus dissection. The Plant Journal2005,44:1054-1064.
    115. Maccaferri M, Sanguineti MC, Natoli V, Ortega JLA, Salem MB, Bort J, Chenenaoui C, DeAmbrogio E, del Moral LG, De Montis A: A panel of elite accessions of durum wheat(Triticum durum Desf.) suitable for association mapping studies. Plant GeneticResources: Characterization and Utilization2006,4:79-85.
    116. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N,Varshney RK, Marshall DF: Recent history of artificial outcrossing facilitateswhole-genome association mapping in elite inbred crop varieties. Proceedings of theNational Academy of Sciences2006,103:18656-18661.
    117. Wilson LM, Whitt SR, Ibá ez AM, Rocheford TR, Goodman MM, Buckler IV ES:Dissection of maize kernel composition and starch production by candidate geneassociation. The Plant Cell Online2004,16:2719-2733.
    118. Nilsson N-o: Linkage disequilibrium mapping of the bolting gene in sea beet usingAFLP markers. Genet Res, Camb2001,77:61-66.
    119. Kraakman AT, Niks RE, Van den Berg PM, Stam P, Van Eeuwijk FA: Linkagedisequilibrium mapping of yield and yield stability in modern spring barley cultivars.Genetics2004,168:435-446.
    120. Breseghello F, Sorrells ME: Association mapping of kernel size and milling quality inwheat (Triticum aestivum L.) cultivars. Genetics2006,172:1165-1177.
    121. Parisseaux B, Bernardo R: In silico mapping of quantitative trait loci in maize.Theoretical and Applied Genetics2004,109:508-514.
    122. Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC: Linkagedisequilibrium in European elite maize germplasm investigated with SSRs. Theoreticaland Applied Genetics2005,111:723-730.
    123. BelóA, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A: Whole genomescan detects an allelic variant of fad2associated with increased oleic acid levels inmaize. Molecular Genetics and Genomics2008,279:1-10.
    124.卢庆善:高粱学.中国农业出版社;1999.
    125.卢庆善:甜高粱.中国农业科学技术出版社;2008.
    126.张丽敏,刘智全,陈冰嬬,郝东云,高士杰,景海春:我国能源甜高粱育种现状及应用前景.中国农业大学学报2012,6:008.
    127. Rooney WL, Blumenthal J, Bean B, Mullet JE: Designing sorghum as a dedicatedbioenergy feedstock. Biofuels Bioproducts&Biorefining-Biofpr2007,1:147-157.
    128. Carpita NC, McCann MC: Maize and sorghum: genetic resources for bioenergy grasses.Trends Plant Sci2008,13:415-420.
    129. Srinivas G, Satish K, Madhusudhana R, Nagaraja Reddy R, Murali Mohan S, Seetharama N:Identification of quantitative trait loci for agronomically important traits and theirassociation with genic-microsatellite markers in sorghum. TAG Theoretical and AppliedGenetics2009,118:1439-1454.
    130. Shiringani AL, Frisch M, Friedt W: Genetic mapping of QTLs for sugar-related traits in aRIL population of Sorghum bicolor L. Moench. Theor Appl Genet2010,121:323-336.
    131. Feltus F, Hart G, Schertz K, Casa A, Kresovich S, Abraham S, Klein P, Brown P, Paterson A:Alignment of genetic maps and QTLs between inter-and intra-specific sorghumpopulations. TAG Theoretical and Applied Genetics2006,112:1295-1305.
    132. Winn JA, Mason RE, Robbins AL, Rooney WL, Hays DB: QTL mapping of a high proteindigestibility trait in Sorghum bicolor. International journal of plant genomics2009,2009.
    133. Srinivas G, Satish K, Murali Mohan S, Nagaraja Reddy R, Madhusudhana R, Balakrishna D,Venkatesh Bhat B, Howarth C, Seetharama N: Development of genic-microsatellitemarkers for sorghum staygreen QTL using a comparative genomic approach with rice.TAG Theoretical and Applied Genetics2008,117:283-296.
    134. Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G: Genetic analysis of post-floweringdrought tolerance and components of grain development in Sorghum bicolor (L.)Moench. Molecular breeding1997,3:439-448.
    135. Tuinstra M, Grote E, Goldsbrough P, Ejeta G: Identification of quantitative trait lociassociated with pre-flowering drought tolerance in sorghum. Crop Science1996,36:1337-1344.
    136. Tuinstra M, Ejeta G, Goldsbrough P: Evaluation of near-isogenic sorghum linescontrasting for QTL markers associated with drought tolerance. Crop Science1998,38:835-842.
    137. Sanchez A, Subudhi P, Rosenow D, Nguyen H: Mapping QTLs associated with droughtresistance in sorghum (Sorghum bicolor L. Moench). Plant Molecular Biology2002,48:713-726.
    138. Crasta O, Xu W, Rosenow D, Mullet J, Nguyen H: Mapping of post-flowering droughtresistance traits in grain sorghum: association between QTLs influencing prematuresenescence and maturity. Molecular and General Genetics MGG1999,262:579-588.
    139. Tao Y, Henzell R, Jordan D, Butler D, Kelly A, McIntyre C: Identification of genomicregions associated with stay green in sorghum by testing RILs in multiple environments.TAG Theoretical and Applied Genetics2000,100:1225-1232.
    140. Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT: Molecular mappingof QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench).Genome2000,43:461-469.
    141. Guan Y, Wang H, Qin L, Zhang H, Yang Y, Gao F, Li R: QTL mapping of bio-energyrelated traits in Sorghum. Euphytica2011:1-10.
    142. Shiringani AL, Friedt W: QTL for fibre-related traits in grain×sweet sorghum as a toolfor the enhancement of sorghum as a biomass crop. TAG Theoretical and AppliedGenetics2011,123:999-1011.
    143. Lin YR, Schertz KF, Paterson AH: Comparative analysis of QTLs affecting plant heightand maturity across the Poaceae, in reference to an interspecific sorghum population.Genetics1995,141:391.
    144. Pereira M, Lee M: Identification of genomic regions affecting plant height in sorghumand maize. TAG Theoretical and Applied Genetics1995,90:380-388.
    145. Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P:Quantitative trait loci for grain quality, productivity, morphological and agronomicaltraits in sorghum (Sorghum bicolor L. Moench). TAG Theoretical and Applied Genetics1998,97:605-616.
    146. Hart G, Schertz K, Peng Y, Syed N: Genetic mapping of Sorghum bicolor (L.) MoenchQTLs that control variation in tillering and other morphological characters. TAGTheoretical and Applied Genetics2001,103:1232-1242.
    147. Klein R, Rodriguez-Herrera R, Schlueter J, Klein P, Yu Z, Rooney W: Identification ofgenomic regions that affect grain-mould incidence and other traits of agronomicimportance in sorghum. TAG Theoretical and Applied Genetics2001,102:307-319.
    148. Natoli A, Gorni C, Chegdani F, Ajmone Marsan P, Colombi C, Lorenzoni C, Marocco A:Identification of QTLs associated with sweet sorghum quality. Maydica2002,47:311-322.
    149. Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, Lynne McIntyre C:Identification of QTL for sugar-related traits in a sweet×grain sorghum (Sorghumbicolor L. Moench) recombinant inbred population. Molecular breeding2008,22:367-384.
    150. Bian YL, Yazaki S, Inoue M, Cai HW: QTLs for Sugar Content of Stalk in SweetSorghum (Sorghum bicolor L. Moench). Agricultural Sciences in China2006,5:736-744.
    151. Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S:Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar andgrain nonstructural carbohydrates. Crop Science2008,48:2165-2179.
    152. Mace E, Singh V, Van Oosterom E, Hammer G, Hunt C, Jordan D: QTL for nodal rootangle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traitsassociated with drought adaptation. TAG Theoretical and Applied Genetics2012,124:97-109.
    153. Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG, Guimaraes CT, Gomide RL,Andrade CLT, Albuquerque PEP, Caniato FF, et al: Studying the genetic basis of droughttolerance in sorghum by managed stress trials and adjustments for phenological andplant height differences. Theoretical and Applied Genetics2012,124:1389-1402.
    154. Agrama H, Widle G, Reese J, Campbell L, Tuinstra M: Genetic mapping of QTLsassociated with greenbug resistance and tolerance in Sorghum bicolor. TAG Theoreticaland Applied Genetics2002,104:1373-1378.
    155. Wu Y, Huang Y: Molecular mapping of QTLs for resistance to the greenbug Schizaphisgraminum (Rondani) in Sorghum bicolor (Moench). TAG Theoretical and AppliedGenetics2008,117:117-124.
    156. Shehzad T, Iwata H, Okuno K: Genome-wide association mapping of quantitative traitsin sorghum (Sorghum bicolor (L.) Moench) by using multiple models. Breeding science2009,59:217-227.
    157. Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B:Identification of QTLs for eight agronomically important traits using anultra-high-density map based on SNPs generated from high-throughput sequencing insorghum under contrasting photoperiods. Journal of Experimental Botany2012,63:5451-5462.
    158. Mace ES, Jordan DR: Integrating sorghum whole genome sequence information with acompendium of sorghum QTL studies reveals uneven distribution of QTL and ofgene-rich regions with significant implications for crop improvement. Theoretical andApplied Genetics2011,123:169-191.
    159. Moose SP, Mumm RH: Molecular plant breeding as the foundation for21st century cropimprovement. Plant Physiol2008,147:969-977.
    160. Hamblin MT, Buckler ES, Jannink JL: Population genetics of genomics-based cropimprovement methods. Trends Genet,27:98-106.
    161. Able JA, Langridge P, Milligan AS: Capturing diversity in the cereals: many options butlittle promiscuity. Trends Plant Sci2007,12:71-79.
    162. Paterson AH: Genomics of sorghum. International journal of plant genomics2008,2008:362451.
    163. Draye X, Lin YR, Qian XY, Bowers JE, Burow GB, Morrell PL, Peterson DG, Presting GG,Ren SX, Wing RA, Paterson AH: Toward integration of comparative genetic, physical,diversity, and cytomolecular maps for grasses and grains, using the sorghum genome asa foundation. Plant Physiology2001,125:1325-1341.
    164. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G,Hellsten U, Mitros T, Poliakov A, et al: The Sorghum bicolor genome and thediversification of grasses. Nature2009,457:551-556.
    165. Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS: Genome evolution inthe genus Sorghum (Poaceae). Ann Bot2005,95:219-227.
    166. Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF, Jiang S, Ramachandran S, LiuCM: Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghumbicolor). Genome Biology2011,12:R114.
    167. Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF, Jiang S, Ramachandran S, LiuCM, Jing HC: Genome-wide patterns of genetic variation in sweet and grain sorghum(Sorghum bicolor). Genome Biol2011,12:R114.
    168. Wang ML, Zhu C, Barkley NA, Chen Z, Erpelding JE, Murray SC, Tuinstra MR, Tesso T,Pederson GA, Yu J: Genetic diversity and population structure analysis of accessions inthe US historic sweet sorghum collection. Theoretical and Applied Genetics2009,120:13-23.
    169. Doyle JJ: A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochem Bull1987,19:11-15.
    170. Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocusgenotype data. Genetics2000,155:945-959.
    171. Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocusgenotype data: dominant markers and null alleles. Molecular Ecology Notes2007,7:574-578.
    172. Rosenberg NA: DISTRUCT: a program for the graphical display of populationstructure. Molecular Ecology Notes2003,4:137-138.
    173. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L: WEGO: aweb tool for plotting GO annotations. Nucleic Acids Research2006,34:W293-W297.
    174. Du Z, Zhou X, Ling Y, Zhang Z, Su Z: agriGO: a GO analysis toolkit for the agriculturalcommunity. Nucleic Acids Research2010,38:W64-W70.
    175. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L: KOBAS2.0:a web server for annotation and identification of enriched pathways and diseases.Nucleic Acids Research2011,39:W316-W322.
    176. Lam HYK, Mu XJ, Stuetz AM, Tanzer A, Cayting PD, Snyder M, Kim PM, Korbel JO,Gerstein MB: Nucleotide-resolution analysis of structural variants using BreakSeq anda breakpoint library. Nature Biotechnology2009,28:47-55.
    177. Earl DA: STRUCTURE HARVESTER: a website and program for visualizingSTRUCTURE output and implementing the Evanno method. Conservation GeneticsResources2012,4:359-361.
    178. Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using thesoftware STRUCTURE: a simulation study. Molecular Ecology2005,14:2611-2620.
    179. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F,Wallace I, Wilm A, Lopez R: Clustal W and Clustal X version2.0. Bioinformatics2007,23:2947-2948.
    180. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES: TASSEL:software for association mapping of complex traits in diverse samples. Bioinformatics2007,23:2633-2635.
    181. Zhu J, Weir BS: Mixed model approaches for diallel analysis based on a bio-model.Genetical research1996,68:233-240.
    182. Lisch D: How important are transposons for plant evolution? Nature Reviews Genetics2012,14:49-61.
    183. Feschotte C, Pritham EJ: DNA transposons and the evolution of eukaryotic genomes.Annual review of genetics2007,41:331.
    184. Schnable JC, Freeling M, Lyons E: Genome-wide analysis of syntenic gene deletion in thegrasses. Genome Biology and Evolution2012.
    185. Klein PE, Klein RR, Vrebalov J, Mullet JE: Sequence-based alignment of sorghumchromosome3and rice chromosome1reveals extensive conservation of gene order andone major chromosomal rearrangement. Plant Journal2003,34:605-621.
    186. Cardon LR, Palmer LJ: Population stratification and spurious allelic association. Lancet2003,361:598-604.
    187. Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, Lynne McIntyre C:Identification of QTL for sugar-related traits in a sweet×grain sorghum (Sorghumbicolor L. Moench) recombinant inbred population. Mol Breed2008,22:367-384.
    188. Srinivas G, Satish K, Madhusudhana R, Nagaraja Reddy R, Murali Mohan S, Seetharama N:Identification of quantitative trait loci for agronomically important traits and theirassociation with genic-microsatellite markers in sorghum. Theor Appl Genet2009,118:1439-1454.
    189. Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G: Genetic analysis of post-floweringdrought tolerance and components of grain development in Sorghum bicolor (L.)Moench. Mol Breed1997,3:439-448.
    190. Fernandez MGS, Hamblin MT, Li L, Rooney WL, Tuinstra MR, Kresovich S: Quantitativetrait loci analysis of endosperm color and carotenoid content in sorghum grain. CropSci2008,48:1732-1743.
    191. Tao Y, Henzell R, Jordan D, Butler D, Kelly A, McIntyre C: Identification of genomicregions associated with stay green in sorghum by testing RILs in multiple environments.Theor Appl Genet2000,100:1225-1232.
    192. Kebede H, Subudhi P, Rosenow D, Nguyen H: Quantitative trait loci influencing droughttolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet2001,103:266-276.
    193. Sanchez A, Subudhi P, Rosenow D, Nguyen H: Mapping QTLs associated with droughtresistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol2002,48:713-726.
    194. Knoll J, Gunaratna N, Ejeta G: QTL analysis of early-season cold tolerance in sorghum.Theor Appl Genet2008,116:577-587.
    195. Satish K, Srinivas G, Madhusudhana R, Padmaja P, Nagaraja Reddy R, Murali Mohan S,Seetharama N: Identification of quantitative trait loci for resistance to shoot fly insorghum. Theor Appl Genet2009,119:1425-1439.
    196. Xu J-H, Messing J: Organization of the prolamin gene family provides insight into theevolution of the maize genome and gene duplications in grass species. Proceedings of theNational Academy of Sciences of the United States of America2008,105:14330-14335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700