用户名: 密码: 验证码:
间歇式可再生能源分布式发电对配电系统的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年,电力市场化改革不断深入,燃煤发电和核电的环境成本、经济成本逐渐增大,用户对电力供应的可靠性要求日益提高,随着可再生能源等新的发电技术获得快速发展,分布式发电得到了越来越多的重视。
     分布式发电具有很多优点,例如,可降低系统损耗,延缓输电网和配电网的升级改造,提高供电可靠性以及降低温室效应等。但同时分布式电源与配电网间的相互作用也将会产生一些问题,如果得不到合理的解决,接入系统的分布式电源可能会降低系统运行可靠性和电能质量,因此开发有效的分析工具对配电网和分布式电源间的相互影响进行全面的研究是很有必要的。
     本文以间歇式电源对配电网的影响为研究重点。(1)研究了风能/光能混合发电作为电源连接到配电网后对配电网可靠性的影响;(2)建立了风能/光能混合发电系统的模型,发展了配电系统三项潮流计算方法,用于仿真其对配电系统可靠性的影响;(3)建立了用于电压和电能损耗研究的定速风机模型,并验证了模型的有效性;(4)建立了完整的变速异步风力发电系统仿真模型和控制器模型;在电气部分引入了无差控制策略,采用电压分序方法将电压分解为正序和负序两部分进行控制,以提高故障情况下电流控制器的性能;为了避免锁相环自身模型的不准确性影响整个控制系统的控制效果,通过虚拟磁链计算取代了锁相环。通过算例仿真分析,验证了在外部系统短路故障情况下的风力发电系统故障低电压穿越能力和控制器控制效果。
     本文工作可为电力系统的规划和运行人员提供参考,帮助他们选择可替代能源发电技术以提高系统的可靠性水平,并选择合适的分析方法对间歇式电源进行研究。
In the last few years, deregulation of electric power sector, the economic and environmental concerns over electrical energy derived from fossil and nuclear fuels, the advancement in technology, and the growing requirements for high reliability have created renewed interest in smaller distributed generators operating in parallel with the electric distribution networks.
     There are several benefits associated with the use of Distributed Generation (DG), such as the system power losses reduction, transmission and distribution upgrades deferral, improved supply reliability and green house effects reduction. However, the interactions between DG and the distribution system in which it is embedded involve several phenomena that are worth careful investigations. If not properly handled, the integration of DG can result in lower reliability and even in a reduction in power quality. Hence it is necessary to develop analytical tools and to conduct thorough analyses and careful studies of the interactions between DG technologies and the distribution system.
     This thesis is concerned with the interactions between DG and the electric power distribution system and the impacts that the first can have on the second one’s performance. The analysis is focused on determining the impacts of Intermittent DGs (IDGs) on distribution network performances i.e. power quality and reliability, power losses, voltage profile, short circuit current levels, protection coordination and the impact of power system events on the operation of IDGs. The thesis first presents the operational and planning impacts of IDGs on the power system. Secondly, model and simulation algorithm of Wind/PV hybrid generation system suitable for reliability impact study are developed. Case studies were carried out to validate the model and to examine the effect that Wind/PV hybrid IDGs had on system reliability. Thirdly, steady state models that support voltage profile and power losses impacts assessment of fixed speed wind turbine systems are presented and validated. Fourthly, model and dead-beat control structures suitable for grid fault response simulations of the fixed speed and variable speed wind turbine systems, and for ride-through capability analysis of variable speed wind turbine units are suggested. Since the induction machine is currently the most widely used electrical generator in wind turbine applications, a big effort has been paid in dynamic and steady state modelling of Wind Energy Conversion Systems (WECSs) based on it. The basic control structure for these generation units in grid-connected mode is treated. A controller design method based on predictive dead-beat control strategy is presented. The target was to develop a control structure for the active and reactive power that achieves fault ride-through capability of Variable Speed Asynchronous Machine (VSAM) WECSs. The response of a VSAM-WECS to grid disturbances is simulated. A 30% voltage dip (70%remaining voltage) is handled very well.
     From the results of case studies and contribution, this work provides another reference for system planners and operators in choosing the alternative supply source to achieve a desired reliability level for their systems, and in choosing a suitable evaluation methodology when dealing with intermittent distributed generations.
引文
[1] S. Varming, C. Gaardestrup and J. E. Nielsen, “review of technical options and constraints for integration of distributed generation in electricity networks”, SUSTELNET project report, 2003.
    [2] “Modeling new form of generation and storage”, CIGRE technical brochure, TF 38.01.10, November 2000.
    [3] R. C. Dugan and T. E. Mcdermott, “Distributed generation,” IEEE Industry Applications Magazine, Vol. 8, No. 2, pp. 19-25, Mar/Apr 2002.
    [4] I. E. Samahy, E. E. Saadany, “The effect of DG on power quality in a deregulated environment”, IEEE Power Engineering General Society meeting, Vol.3, pp.2969-2976, 2005.
    [5] M. T, “Reviewing the impacts of distributed generation on distribution system protection”, IEEE Power Engineering Society Summer Meeting, Vol. 1, pp. 103-105, 2002
    [6] P. P. Barker, R.W. De Mello, “Determining the impact of distributed generation on power systems. I. Radial distribution systems”, IEEE Power Engineering Society General Summer Meeting, Vol. 3, pp. 1645-1656, Seattle, WA, 2006.
    [7] R. C. Dugan and T. E. Mcdermott, “Operating Conflicts for Distributed Generation on Distribution Systems”, IEEE Industry Applications Magazine, Vol. 8, No. 2, pp.19-25, 2002.
    [8] A. Girgis, S. Brahma, “ Effect Of Distributed Generation On Protective Device Coordination In Distribution Subsystem,” IEEE Large Engineering Systems Conference on Power Engineering, pp. 115-119, Canada 2001.
    [9] T.E. McDermott, R.C. Dugan, “Distributed generation impact on reliability and power quality indices”, IEEE rural electric power conference, pp. D3-D3_7, 2002
    [10] G. Kaur, M. Y. Vaziri, “Effects of Distributed Generation (DG) Interconnections on Protection of Distribution Feeders”, IEEE Power Engineering Society General Meeting, 2006
    [11] T. Ackerman, G. Anderson, and L. Soder, “ Distributed generation: a definition”, Electric Power Systems Research, Vol. 57, pp. 195-204, 2001.
    [12] G. Pepermans, J. Driesen, D. Haeseldonckx, W. D’haeseleer and R. Belmans, “Distributed generation: definition, benefits and issues”, University of Leuven Energy Institute, August 2003.
    [13] W. El-Khattam and M. M. A. Salama, “Distributed generation technologies, definition and benefits”, Electric Power Systems Research, Vol. 71, pp. 119-128, 2004.
    [14] P. Dondi, D. Bayoumi, C. Haederli, D. Julian, and M. Suter, “Network integration of distributed power generation”, Electric Power Systems Research, Vol. 106, pp. 1-9, 2002.
    [15] T. Ackerman, G. Anderson, and L. Soder, “Electricity Market Regulations and their Impact on Distributed Generation”, IEEE International Conference on Electric Utility Deregulation and Restructuring and Power Technologies 2000, pp 608-613, April 2000
    [16] IEA, “Distributed Generation in Liberalised Electricity Markets”, Paris, 2002
    [17] R. C. Dugan and T. E. Mcdermott, “Distributed Generation”, IEEE Industry Application Magazine, Vol. 8, pp. 19-25, 2002
    [18] K. Voorspools and W. D’haeseleer, “The evaluation of small cogeneration for residential heating”, International Journal of Energy Research, Vol. 26, 1175–1190, 2002.
    [19] K. Voorspools and W. D’haeseleer, “The impact of the implementation of cogeneration in a given energetic context”, IEEE Transactions on Energy Conversion Vol. 18, 135–141, 2003.
    [20] Resource Dynamics Corporation, “Assessment of Distributed Generation Technology Applications”, February 2001, www.distributed-generation.com
    [21] California Distributed Energy Resource Guide website at http://www.energy.ca.gov/distgen/index.html
    [22] Greenpeace and European Wind Energy Association, Wind Force 12, “ a blueprint to achieve 12% of the world’s electricity from wind power by 2020”, May 2004.
    [23] K. E. Johnson, “Adaptive Torque Control of Variable Speed Wind Turbines”, U.S National Renewable Energy Laboratory, August 2004. available at http://www.osti.gov/bridge/
    [24] T. Burton, D. Sharpe, N. Jenkins, E. Bossayi, “Wind Energy Handbook”, John Wiley & Sons Ltd, 2001, England
    [25] Wind Turbines Manufacturers: www.bonus.dk, www.vestas.dk, www.negmicon.dk, www.made.es.
    [26] S. Müller, M. Deicke, R.W. De Doncker, “Doubly-fed Induction Generator Systems”, IEEE Industry Applications Magazine, pp. 26-33, May/June 2002.
    [27] T. Thiringer, J. Linders, “Control by Variable Rotor Speed of a Fixed-Pitch Wind Turbine Operating in a Wide Speed Range”. Paper 92 SM 523-1 EC, IEEE/PES 1992 Summer Meeting, Seattle
    [28] V. Akhmatov, “Full load converter connected asynchronous generators for MW class wind turbines”, Wind Engineering, Vol. 29, No. 4, pp. 341-351, 2002.
    [29] H Slootweg, E. DeVries, “Inside wind turbines. Fixed speed vs. variable speed, Journal of Renewable Energy World, Vol. 6, No. 1, January/February 2003;
    [30] T. Gilmore, R.G. Sladky, “Ratings of semiconductors for AC drives”, IEEE Trans. on Industry Applications, Vol. 37, No. 2, pp. 434-441, March/April 2001.
    [31] H. Hansen, L. Helle, F. Blaabjerg et all, “Conceptual survey of generators and power electronics for wind turbines”, RIS?-R-1205EN, 2002, ISBN 87-550-2743-1.
    [32] M. Pfaffenlehner, T. Laska, R. Mallwitz, A. Mauder, F. Pfirsch. C. Schaeffer, “1700V-IGBT3 Field Stop technology with optimized trench structure – Trend setting for the high power applications in industry and traction”, IEEE Proceedings of 14th international symposium on power semiconductor devices and ICs, pp. 105-108, 4-7 June 2002
    [33] Distributed Generation technologies. http://www.distributed-generation.com/technologies.htm
    [34] H. Gilbert, R. Hacker, J. thornycroft, D. Munro, E. Rudkin, “Co-ordinated experimental research into PV power interaction with the supply network- Phase1”, Tech. Report of the Energy Technology Support Unit, 1999, www.dti.gov.uk/files/file16531.pdf
    [35] Institution of Electric Engineering- Renewable Energy Section “Solar Energy Course”, http://emsolar.ee.tu-berlin.de/~ilse/solar/index_e.html
    [36] W. De. Soto, “Improvement and Validation of a Model for Photovoltaic Array Performance”, thesis submitted at the University of Wisconsin-Madison, 2004.
    [37] K. H. Hussein, I. Muta, T. Hoshino and M. Osakada, “Maximum photovoltaic power tracking- an algorithm for rapidly changing atmospheric conditions”, IEEE Proc. on Generation, Trans. And Dist., Vol.142, pp. 59-64, 1995.
    [38] C. Hua, J. Lin and C. Shen, “Implementation of a DSP-controlled photovoltaic system with peak power tracking”, IEEE Trans. on Industrial Electronics, Vol. 45, No. 1, pp. 99-107, 1998.
    [39] M. Veerachary, T. Senjyu, K. Uezato, “Voltage-Based Maximum Power Point Tracking Control of PV System”, IEEE Trans. on Aerospace and Electronic Systems, Vol. 38, No. 1, pp. 262-270, 2002.
    [40] P. Midya, P. T. Krein, R. J. Turnbull, R. Reppa, J. Kimball, “Dynamic maximum power point tracker for photovoltaic applications”, IEEE 27th annual conference on Power electronics, Vol. 2, pp. 1710-1716, 1996.
    [41] N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli, “Optimization of perturb and observe maximum power point tracking method”, IEEE Trans. on Power Electronics, Vol. 20, No. 4, pp.963-973, 2005.
    [42] C. R. Sullivan, M. J. Powers, “A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle”, IEEE 24th annual conference on Power electronics, pp. 575-580, Seattle, WA, 1993.
    [43] R. E. Brown, L. A. A. Freeman, “Analyzing the Reliability Impact of Distributed Generation”, IEEE Power Engineering Society General Summer Meeting, Vol. 2, pp. 1013-1018, Vancouver, BC, Canada, 2001.
    [44] G. W. Ault, J. R. McDonald, “Planning for Distributed Generation Within Distribution Networks in Restructured Electricity Markets”, IEEE Power Engineering Review, Vol. 20, No. 2, pp.52-54, 2000.
    [45] W. S. Andrade, C. L. T. Borges, D. M. Falcao, “Modeling reliability aspects of distributed generation connected to distribution systems”, IEEE Power Engineering Society General Meeting, 6 pp, 2006.
    [46] P.Wang and R.Billinton, “Time-sequential simulation technique for rural distribution system reliability cost/worth evaluation including wind generation as alternative supply”, IEE Proc.-Gener. Transm.Distrib. Vol. 148, No.4, July 2001.
    [47] R.Billinton and P.Wang, “Reliability Benefit Analysis of Adding WTG to a Distribution System”, IEEE Trans on energy conversion, Vol. 16. No.2, June 2001.
    [48] J. A. Momoh and R. A. Sowah: “Distribution system reliability in a Deregulated Environment: A case study”, IEEE Transmission and distribution conference and exposition, Vol. 2, pp. 562-567, 2003.
    [49] P. P. Barker, R.W. De Mello, “Determining the impact of distributed generation on power systems. I. Radial distribution systems”, IEEE Power Engineering Society General Summer Meeting, Vol. 3, pp. 1645-1656, Seattle, WA, 2006.
    [50] A. Luque, S. Hegedus, “Handbook of Photovoltaic Science and Engineering”, John Wiley & Sons Ltd, 2003, England
    [51] M. Kolhe, K. Agbossou, J. Hamelin, and T. K. Bose, “Analytical model for predicting the performance of photovoltaic array coupled with a wind turbine in a stand-alone renewable energy system based on hydrogen”, Renewable Energy, Vol. 28, pp. 727-742, 2003.
    [52] RETScreen , “Photovoltaic Project Analysis”, RETScreen International e-Textbook, case studies and real project, April 2003
    [53] PVSYST 3.3, Software for Photovoltaic systems. http://www.pvsyst.com
    [54] B.S.Borowy and Z.M.Salameh: ‘Methodology for Optimum Sizing the combination of a Battery bank and PV Array in Wind/PV hybrid system’, IEEE Trans on energy conversion, Vol. 11. No.2, June 1996.
    [55] HOMER, The optimization model for distributed power. http://www.nrel.gov/homer/
    [56] B.M.Zatzeck and A.M.Robison: “WATSUN-PV 4.0 Modifications to include Wind Turbine Generators, AC load shedding, and operation with Zero-capacityDiesel Generator”, IEEE, Electrical and Computer Engineering. Canadian Conference on Vol. 2, pp. 655-658, Calgary, Alta (Canada) 26-29 May 1996.
    [57] R.Billinton and L.Gan: ‘Wind power modeling and application in generating adequacy assessment’, WESCANEX 93. “Communications, Computers and Power in the Modern Environment”, IEEE Conference Proceedings, , Saskatoon, Sask (Canada), pp. 100-106, 17-18 May 1993.
    [58] Reliability Test System Task Force of the Application of Probability Methods Subcommittee: “IEEE Reliability Test system”, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-98, No. 6, pp. 2047-2054, Nov/Dec 1979.
    [59] R.Billinton and P.Wang: “Teaching Distribution system Reliability Evaluation Using Monte Carlo Simulation”, IEEE Transactions on power systems, Vol.14, No.2, pp. 397-403, May 1999.
    [60] ‘IEEE Trial Use Guide for Electric Power Distribution Reliability Indices’, IEEE Std 1366, December 1998
    [61] R. Billinton an R. N. Allan: “Reliability Evaluation of power system”, New York: Plenum, 1984.
    [62] K. Nam, H.D.Chiang, B.yuan and G.Darling: ‘Fast Service Restoration for large-scale Distribution Systems With Priority Customers and Constraints’, Power Industry Computer Applications, IEEE 20th International Conference, Columbus, OH (USA) on 11-16 May, pp. 3-9, 1997.
    [63] R.Billinton and P.Wang: “A generalized method for distribution system reliability evaluation”, WESCANEX 95. Communications, Power, and Computing. IEEE Conference Proceedings, Winnipeg, Man (Canada), Vol 2, pp. 349 – 354, 15-16 May 1995.
    [64] R.N.Allan, R.Billinton, I.Sjarief, L.Goel and K.S.So: “A Reliability Test System for Educational Purposes- Basic Distribution System Data and Results”, IEEE Transactions on power systems, Vol.6, No.2, pp. 813-820, May 1991
    [65] J. A. P. Lopes, F. P. M. Barbosa, J. C. Pides, “Simulation of MV distribution networks with asynchronous local generation sources”, Proceedings of IEEE electrotechnical conference, vol.2, pp.1453-1456, Ljubljana (Slovenia) 22-24 May 1991.
    [66] A. E. Feijoo, J. Cidras, “ Modeling of wind farm in the load flow analysis”, IEEE Trans. Power Syst., Vol. 15, No. 1, pp.110-115, February 2000.
    [67] D. Shirmohammadi, H. W. Hong, A. Semlyen, G. X. Luo, “ A compensation-based power flow method for weakly meshed distribution and transmission networks”, IEEE Trans. Power Syst., Vol.3, No. 6, pp.753-762, May 1988.
    [68] G. X. Luo, A. Semlyen, “ Efficient load flow for large weakly meshed networks”, IEEE Trans. Power Syst., Vol.5, No. 4, pp.1309-1316, November 1990.
    [69] C. S. Cheng, D. Shirmohammadi, “A three-phase power flow method for real-time distribution system analysis”, IEEE Trans. Power Syst., Vol.10, No. 2, pp.671-679, May 1995.
    [70] M. E. Baran, E. A. Staton,“ Distribution transformer models for branch current based feeder analysis”, IEEE Trans. Power Syst., Vol.12, No. 2, pp.698-703, May 1997.
    [71] Y. Zhu, K. Tomsovic, “ Adaptive power flow method for distribution systems with dispersed generation”, IEEE Trans. Power Delivery, Vol.12, No. 3, pp.822-827, July 2002.
    [72] Z. Wang, F. Chen, J. Li, “Implementing Transformer nodal admittance matrices into Backward/Forward sweep-based power flow analysis for unbalanced radial distribution systems”, IEEE Trans. Power Syst., Vol. 19, No. 4, pp.1831-1836, November 2004.
    [73] T. H. Chen, M. S. Chen, K. J. Hwang, P. Kotas, E. A. Chebli, “Distribution system power flow analysis – A rigid Approach”, IEEE Trans. Power Delivery, Vol.. 6, No. 3, pp.1146-1152, July 1991.
    [74] W. M. Lin, Y. S. Su, H. C. Chin, J. H. Teng, “Three-Phase unbalanced distribution power flow solutions with minimum data preparation”, IEEE Trans. Power Syst., Vol. 14, No. 3, pp.1178-1183, August 1999.
    [75] T. H. Chen, M. S. Chen, T. Inoue, P. Kotas, E. A. Chebli, “Three-phase cogenerator and transformer models for distribution system analysis ”, IEEE Trans. Power Delivery, Vol. 6, No. 4, pp.1671-1681, October 1991.
    [76] R. D. Zimmerman, H. D. Chiang, “Fast decoupled power flow for unbalanced radial distribution systems”, IEEE Trans. Power Syst., Vol. 10, No. 4, pp.2045-2052, November 1995.
    [77] R. G. Cespedes, “ New method for the analysis of distribution networks”, IEEE Trans. Power Delivery, Vol. 6, No. 1, pp.391-396, January 1990.
    [78] W. H. Kersting, W. H. Phillips, “Distribution feeder line models”, IEEE Trans. on Industry Applications. Vol. 31. No. 4, July/August 1995.
    [79] S. S. Murthy, C. S. Jha, P. S. N. Rao, “Analysis of grid connected induction generators driven by hydro/wind turbines under realistic system constraints”, IEEE Trans. on Energy conversion. Vol. 5, No. 1, pp 1-7, March 1990
    [80] T. Oomori, T. Genji, T. Yura, T. Watanabe, S. Takayama, Y. Fukuyama, “Development of equipment models for fast distribution three-phase unbalanced load flow analysis”, Electrical Engineering in Japan. Vol. 142, No. 3, pp 8-19, 2003.
    [81] W. H. Kersting, “Radial distribution test feeders”, [online] available: http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders.html
    [82] IEEE distribution planning working group report, “Radial distribution test feeders”, IEEE Trans. Power Syst., Vol. 6, No. 3, pp.975-985, August 1991.
    [83] J. Rodriguez, J. L. Fernandez, and D. Beato, “Incidence on power system dynamics of high penetration of fixed speed and doubly fed wind energy systems: study of the Spanish case”, IEEE Trans. Power Syst., vol. 17, No. 4, pp. 1089–1095, Nov. 2002.
    [84] Z. Chen and E Spooner: “Grid power quality with variable speed wind turbines,” IEEE Trans. Energy Convers., vol. 16, No. 2, pp. 148–153, Apr. 2001.
    [85] V. Akhmatov, “Analysis of Dynamic Behavior of Electric Power Systems With Large Amount of Wind Power” Ph.D. thesis, Technical Univ.Denmark, Lyngby, Denmark, Apr. 2003.
    [86] R.M Zavadil, J.C Smith: “Status of Wind-related US National and Regional Grid Code activities”, Power Engineering Society General Meeting, June 2005 IEEE, Vol.2, pp 1258-1261 Knoxville, TN, USA.
    [87] S.Bernard, D.Beaulieu, G. Trudel: “Hydro-Quebec Grid Code for Wind Farm Interconnection”, Power Engineering Society General Meeting, June 2005 IEEE, Vol.2, pp 1248-1252 Montreal, Que., Canada
    [88] S.K Salman, B. Badrzadeh, J. Penman: “ Modelling wind turbine -generators for fault ride-through studies”, University Power Engineering Conference, Sept 2004 IEEE, Vol.1, pp 634-638, Aberdeen, UK.
    [89] I. Erlich, U. Bachmann: “Grid Code Requirements Concerning Connection and Operation of Wind Turbines in Germany ”, Power Engineering Society General Meeting, June 2005 IEEE, Vol.2, pp 1253-1257, Duisburg University, Germany.
    [90] J. G. Slootweg, S. W. H. de Haan, H. Polinder: “General Model for Representing Variable Speed Wind turbines in Power System Dynamics Simulations”, IEEE Trans. Power Syst., vol. 18, no. 1, pp. 144–151, Feb. 2003.
    [91] T. Thiringer, A. Petersson, T. Petru: “Grid disturbance response of wind turbines equipped with induction generator and doubly-fed induction generator”, Power Engineering Society General meeting, Vol.3, pp. 1542-1547, IEEE July 2003,
    [92] J. G. Slootweg, H. Polinder , W. L. Kling: “Dynamic Modelling of a wind turbine with doubly fed induction generator”, Power Engineering Society General meeting, IEEE 2001, Vol. 1, pp. 644-649, July 2001, Vancouver, BC, Canada.
    [93] J. G. Slootweg, H. Polinder, W. L. Kling: “Representing wind turbine electrical generating systems in fundamental frequency simulations”, IEEE Trans. Energy. Conversion, Vol. 18, No.4, pp. 516-524, Dec 2003.
    [94] M. Molinas, S.Vazquez, T. Takaku, et al: “ Improvement of transient stability margin in power systems with integrated wind generation using STATCOM: an experimental verification ”, IEEE International Conference on Future power Systems, pp 1-6, Trondhien, Norway , Nov 2005.
    [95] Chai Chompoo-inwai, C. Yingvivatanapong, K. Methaprayoon, et al: “ Reactive Compensation Techniques to Improve the Ride-through Capability of Wind Turbine During Disturbance”, IEEE Transactions on Industry Application, vol. 41, No. 6, pp. 666–672, Dec. 2005.
    [96] M.R. Rathi, N. Mohan: “A novel robust low voltage and fault ride through for wind turbine application operating in weak grids”, 32 nd annual conference of IEEE, pp 2481-2486, Nov 2005, Mineapolis, MN, USA.
    [97] J. Morren and S. W. de Hann: “Ride through of wind turbines with doubly-fed induction generator during a voltage dip”, IEEE Trans Energy Convers., Vol. 20, no.2, pp. 435-441, June 2005.
    [98] G. Saccomando, J. Svensson: “Transient Operation of Grid Connected Voltage Source Converter Under Unbalanced Voltage Conditions”, IEEE 36th conference on industry applications Vol. 4, pp. 2419-2424, Chicago, IL, Oct 2001.
    [99] G. Saccomando, J. Svensson, A. Sannino: “Improving voltage disturbance rejection for variable-speed wind turbines”, IEEE Trans Energy Convers., Vol. 17, No. 3, pp. 422-428, Sept 2002.
    [100] M. Molinas, B. Naess, W. Gullvik, T. Undeland: “Cage induction generators for wind turbines with power electronics converters in the light of the new grid codes”, 2005 European Conference on power electronics and applications, pp. 1-10, Trondhien, Norway , IEEE Sept 2005.
    [101] P. Rosas: “ Dynamic influences of Wind Power on the power”, Ph.D. thesis, ?rsted Institute, Technical University of Denmark, March 2003.
    [102] P. S?rensen, A. D. Hansen, P. A. C. Rosas: “Wind models for simulation of power fluctuations from wind farms”, ELSVER Journal of Wind Engineering and Industrial Aerodynamics Vol. 90, No. 12-15, pp. 1381-1402, Dec 2002.
    [103] J. G. Slootweg, S. W. H. de Haan, H. Polinder, W. L. Kling, “Aggregated Modelling of Wind Parks with Variable Speed Wind Turbines in Power System Dynamics Simulations”, Proceedings of the 14th Power Systems Computation Conference, Sevilla, 2002.
    [104] E. S. Abdin, W. Xu: “Control design and dynamic performance analysis of a wind turbine-induction generator unit”, IEEE Trans. Energy. Conversion, Vol. 15, No. 1, pp. 91-96, March 2000.
    [105] P. C. Krause: “Analysis of Electric Machinery”, McGraw-Hill Book Company, NY. 1986
    [106] D. G. Holmes, T. A. Lipo: “Pulse Width Modulation for Power Converters: Principles and Practice”, Wiley-IEEE Press, October 2003
    [107] S. E. Aimani, “Modelisation de differentes technologies d’ eoliennes integrees dans un reseau de moyenne tension”, Ph.D. thesis, Universite des sciences et technologies de LILE, France.
    [108] R. Ottersten, J. Svensson: “Vector current controlled voltage source converter-deadbeat control and saturation strategies”, IEEE Trans. Power. Electronic, Vol. 17, No.2, pp. 279-285, March 2002
    [109] J. L. Duarte, A. V. Zwam, C. Wijnands, et al.: “Reference frames fit for controlling PWM rectifiers”, IEEE Trans. Industrial Electronic, Vol. 45, No.3, pp. 279-285, June 1999.
    [110] E.ON. Netz 2003. “Grid Code for High and Extra High Voltage”, E.ON. Netz. GmbH, Bayreuth, Germany, August 2003, 51 p., Available http://www.eonnetz.com/Ressources/downloads/enenarhseng1.pdf,(24.4.2007)
    [111] S. K. Salman, B. Badrzadeh, J. Penman, “Modelling Wind Turbine-Generators for Fault Ride-Through Studies”, 39th International Universities Power Engineering Conference, Vol. 2, pp. 634-638, 6-8 Sept. 2004, IEEE
    [112] Eltra. 2004, “Wind Turbines Connected to Grids with Voltages Below 100 kV – technical regulation for the properties and regulation of the wind turbines”, TF 3.2.6, 41 p., May 19, 2004. Available: http://www.folkecenter.net/mediafiles/folkecenter/pdf/GRID_Windturbines_connected_to_grids_with_voltages_below_100kV_2004.pdf (24.4.2007)
    [113] Eltra. 2004, “Wind Turbines Connected to Grids with Voltages above 100 kV –Technical regulation for the properties and regulation of the wind turbines”, TF 3.2.5, 34 p., December 3, 2004. Available: http://www.eltra.dk (6.6.2006).
    [114] Scottish grid code SB/2. 2002. “Scottish Grid Code Panel Review”, Report SB/2, http://www.Scottish-outhern.co.uk/ssegroup/KeyDocummentsPDFs/ConsultationDoc.pdf
    [115] J. B. Ekanayake, L. Holdsworth, X. G . Wu, N. Jenkins, “Dynamic Modeling of Doubly Fed Induction Generator Wind Turbines”, IEEE Transaction on Power Systems, Vol. 18, No. 2, pp. 803-809, May 2003.
    [116] S. K. Salman, A. L. J. Teo, “Windmill Modeling Consideration and Factors Influencing the Stability of A Grid-Connected Wind Power-Based Embedded Generator”, IEEE Transactions on Power Systems, Vol. 18, No. 2, pp.793-802, May 2003.
    [117] R. J. Koessler, S. Pillutla, L. H. Trinh, D. L. Dickmander, “Integration of Large Wind Farms into Utility Grids Pt. I - Modeling of DFIG”, IEEE Power Engineering Society General Meeting, 2003, Vol. 3, p. 8, 13-17 July 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700