用户名: 密码: 验证码:
三种海洋红藻和两株放线菌次级代谢产物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是一个巨大的天然产物宝库,约占地球表面积70%的海洋蕴藏着80%的生物资源。由于海洋生态环境的特殊性,导致海洋生物能够产生大量结构独特多变和活性特殊多样的代谢产物。我国海域辽阔,海洋资源丰富,为寻找结构新颖、生理活性独特的先导化合物,加强对海洋资源的开发利用,本论文对中国沿海的三种海洋红藻和两株放线菌次生代谢产物以及生物活性进行研究,为新药研究与开发提供模式结构和药物前体。
     对红藻似瘤凹顶藻Laurencia similis乙酸乙酯萃取物进行分离纯化,从中得到单体化合物35个,通过波谱学方法(IR、MS、NMR等)鉴定了他们的结构。分别为:2, 2′, 5, 5′, 6, 6′-sixibromo-3, 3′-bi-1H-indole (1),3,5-dibromo- 1-methyl-indole (2),3',5',6,6'-tetrabromo-2,4-dimmethyldiphenyl ether (3),1,2,5- tribromo-3-bromoamino-7-bromomethylnaphthalene (4),2,5,8-tribromo-3-bromo- amino-7-bromomethylnaphthalene (5) , 2,5,6-tribromo-3-bromoamino-7-bromo- methylnaphthalene (6), 2,5,6,5',6'-pentabromo-3,4,3',4'-tetramethoxybenzophenone (7), (4E)-1-bromo-5-[(1'S*,3'R*)-3'-bromo-2',2'-dimethyl-6'-methylenecyclohexyl] -3-methylpent-4-ene-2,3-diol (8),4-hydroxy-Palisadin C (9),Isopalisol (10),Luzonensol (11),Palisadin B (12),Aplysistatin (13),Palisadin A (14),5-Acetoxypalisadin B (15),Aristolan-1(10)- en-9-ol (16),Aristol-8-en-1-one (17),Aristolan-9-en-1-one (18),Aristolan-1(10)-en- 9-one (19),Aristofone (20),Aristolan-1(10)-8-diene (21),Aristolan-1,9-diene (22),10-Hydroxyaristolan-9-one (23),7,11,15-trimethyl-3-methylene-hexadecan-1,2-diol (24),3β-Hydroxyergosta- 5,24(28)-dien-7-one (25),Isofucosterol (26),β-sitosterol (27),豆甾-4-烯-3α,6β-二醇(28),Cholesta-5-en-3β-ol (29),Stigmasterol (30),2,3,5,6-四溴-吲哚(31),2,3,6-tribromo-1H-indole (32),3,5,6-tribromo-1-methylindole (33),3,5,6-tribromo -1H-indole (34),2,3,5-tribromo-1-methylindole (35),其中化合物1-9为新化合物,化合物10-15、20和化合物24-30均为首次从该种海藻中得到。对新化合物1-9进行PTP1B酶抑制剂活性筛选,新化合物1、3、7显示强的PTP1B酶抑制活性。
     对红藻齐藤凹顶藻Laurencia saitoi乙酸乙酯萃取物进行分离纯化,从中得到单体化合物11个,通过波谱学方法(IR、MS、NMR等)鉴定了他们的结构,分别为:2-hydroxyl-Luzofuranone (1),2-hydroxyl-Luzofuranone B (2),4-hydroxyl-Palisudin C (3) , 2-bromo-γ-ionone (4) , Aplysistatin (5) ,5-Acetoxypalisadin B (6),Palisadin B (7),Palisadin A (8),Pacifigorgiol (9),豆甾-4-烯-3α,6β-二醇(10),2, 3, 5, 6-四溴-吲哚(11),其中化合物1-4为新化合物,所有化合物均为首次从该种海藻中得到。通过MTT法对分离得到的新化合物1-4进行肿瘤细胞毒活性筛选,结果显示4个新化合物对所测肿瘤细胞株均无明显的活性。
     对红藻瘤状软骨凹顶藻Chondrophycus papillous乙酸乙酯萃取物进行分离纯化,从中得到单体化合物5个,通过波谱学方法(MS、NMR等)鉴定了他们的结构,分别为邻苯二甲酸二丁酯(1),邻苯二甲酸二异辛酯(2),胆甾醇(3),3,7,11,15-tetramethyl-hexadec-2-en-1-ol (4),4-羟基苯甲醛(5),所有化合物均为首次从该种海藻中得到。
     对海洋放线菌M159乙酸乙酯萃取物进行分离纯化,从中得到单体化合物13个,通过波谱学方法(MS、NMR等)鉴定了他们的结构,分别为:5-(4',6'-dihydroxy-6-methyloctyl)furan-2(5H)-one (A),phenethyl alcohol (1),4-羟基苯甲醛(2),anthranilic acid (3),4-Hydroxy-3-methoxy- phenyl-propionic acid (4),5-(6,7-dihydroxy-6-methyloctyl)furan-2(5H)-one (5),p-Hydroxyphenylethyl alcohol (6),3-Indoleacrylic acid (7),Indol-3-carboxylic acid (8),Adenine cordyceposide (9),腺嘌呤核苷(10),尿嘧啶核苷(11),Thymidine (12),其中化合物A为新化合物。所有化合物均为首次从该株放线菌中得到。
     对海洋放线菌L211乙酸乙酯萃取物进行分离纯化,从中得到单体化合物15个,通过波谱学方法(MS、NMR等)鉴定了7个结构,分别为:spatozoate (1) , anthranilic acid (2) , 3-Indolylethanol (3) , 1-Acetyl-β-carbolin (4) ,p-Hydroxyphen- ylethyl alcohol (5),Indole-3-acetic acid (6),Indol-3-carboxylic acid (7),所有化合物均为首次从该株放线菌中得到。
The sea, covering nearly 70% of the world's surface, contain 80% resources. Because of the particular ecological environment, marine organism are rich of secondary metabolites owning novel structure and unique bioactive. In order to search for new bioactive compounds from marine organism, three red algae and two actinomycetes were investigated.
     35 compounds were isolated from EtOAc-soluble portion of red alga Laurencia similis by chromatography including normal phase silica gel, Sephadex LH-20 gel, as well as recrystallization. Structures were elucidated by spectroscopic methods including IR, MS and NMR. They were 2, 2′, 5, 5′, 6, 6′-sixibromo-3, 3′-bi-1H-indole (1), 3,5-dibromo-1-methyl-indole (2), 3',5',6,6'-tetrabromo-2,4- dimmethyldiphenyl ether (3), 1,2,5-tribromo-3-bromoamino-7-bromomethyl- naphthalene (4), 2,5,8-tribromo-3-bromoamino-7-bromomethylnaphthalene (5), 2,5,6-tribromo-3-bromoamino-7-bromomethylnaphthalene (6), 2,5,6,5',6'-penta- bromo-3,4,3',4'-tetramethoxybenzophenone (7), (4E)-1-bromo-5-[(1'S*,3'R*)-3'- bromo-2',2'-dimethyl-6'-methylenecyclohexyl]-3-methylpent-4-ene-2,3-diol (8), 4-hydroxypalisadin C (9), Isopalisol (10), Luzonensol (11), Palisadin B (12), Aplysistatin (13), Palisadin A (14), 5-Acetoxypalisadin B (15), Aristolan-1(10)-en- 9-ol (16), Aristol-8-en-1-one (17), Aristolan-9-en-1-one (18), Aristolan-1(10)-en-9- one (19), Aristofone (20), Aristolan- 1(10)-8-diene (21), Aristolan-1,9-diene (22), 10-Hydroxyaristolan-9-one (23), 7,11,15-trimethyl-3-methylene-hexadecan-1,2- diol (24), 3β-Hydroxyergosta-5,24(28)-dien-7-one (25), Isofucosterol (26),β-sitosterol (27), Stigmast-4-en-3α,6β-diol (28), Cholesta-5-en-3β-ol (29), Stigmasterol (30), 2,3,5,6-tetrabromo-1H-indole (31), 2,3,6-tribromo-1H-indole (32), 3,5,6-tribromo-1-methylindole (33), 3,5,6-tribromo-1H-indole (34), 2,3,5- tribromo-1-methylindole (35). Compounds of 10-15、20、24-30 were obtained from this species for the first time including nine new compounds 1-9. The inhibitory effects on protein tyrosine phosphatase 1B (PTP1B) activity of nine new compounds were evaluated, compound 1, 3, 7 showed strong inhibitory PTP1B activity at the concentration of 5μg/ml.
     11 compounds were isolated from EtOAc-soluble portion of red alga Laurencia saitoi by chromatography including normal phase silica gel , Sephadex LH-20 gel, as well as recrystallization. Structures were elucidated by spectroscopic methods including IR, MS and NMR. They were 2-hydroxyl-Luzofuranone (1), 2-hydroxyl-Luzofuranone B (2), 4-hydroxyl- Palisudin C (3), 2-bromo-γ-ionone (4), Aplysistatin (5), 5-Acetoxypalisadin B (6), Palisadin B (7), Palisadin A (8), Pacifigorgiol (9), Stigmast-4-en-3α,6β-diol (10), 2, 3, 5, 6-tetrabromo-1H-indole (11). All of the compounds were obtained from this species for the first time including four new compounds, 1-4. Cytotoxicity of new compounds was screened by MTT method on human cancer cell lines including HCT-8, BEl-7402, BGC-823 and A549. All the compounds showed no significantly activity.
     From the red alga Chondrophycus papillous, 5 compounds were isolated and identified. They were Dibutyl orthophthalates (1), 1,2-benzenedicar boxylic acid (2), cholesterol (3), Phytol (4), p-hydroxy phenyl aldehyde (5). These compounds were all obtained from this species for the first time.
     From actinomycetes M159, 13 compounds were isolated and identified, including a new compound 5-(4',6'-dihydroxy-6-methyloctyl)furan-2(5H)-one (A) and other known compounds phenethyl alcohol (1), 4-hydroxybenzal- dehyde (2), anthranilic acid (3), 4-Hydroxy-3-methoxy-phenylpropionic acid (4), 5-(6,7- dihydroxy-6-methyl-octyl)-furan-2(5H)-one (5), p-Hydroxyphenylethyl alcohol (6), 3-Indoleacrylic acid (7), Indol-3-carboxylic acid (8), Adenine cordyceposide (9), adenosine (10), uridine (11), Thymidine (12). All of the compounds were obtained from this marine strain for the first time.
     From actinomycetes L211, 15 compounds were isolated and 7 compounds were identified, including spatozoate (1), anthranilic acid (2), 3-indolylethanol (3), 1-acetyl-β-carbolin (4), p-hydroxyphenylethyl alcohol (5), indole-3-acetic acid (6), indole-3-carboxylic acid (7). All of the compounds were obtained from this marine strain for the first time.
引文
[1] Mann J. Secondary metabolism.2nd eds.Oxford:Clarendon Press,1987.
    [2] Banner A. H., Scheuer P. J., Sasaki S., et al. Observations on ciguatera-type toxin infish.Ann.N.Y.Acad.Sci.1960, 90: 770-772.
    [3] Masuda M., Abe T., Suzuki T., et al. Morphological and chemotaxonomic studies on Laurencia composita and L. okamurae (Ceramiales,Rhodophyta). Phycologia. 1996, 35(6): 550–562.
    [4] Rudi A., Kashman Y., Chelodane barekoxide and zaatirin-three new diterpenoids from the marine spone Chelonaplysilla erecta. J. Nat. Prod. 1992, 55: 1 408-1 414.
    [5] Kuniyoshi M., Marma M. S., Higa T., et al. New bromoterpenes from the red alga Laurencia luzonensis. J. Nat. Prod, 2001, 64(6): 696–700.
    [6] Topcu G., Aydogmus Z., Imre S., et al. Brominated sesquiterpenes from the red alga Laurencia obtusa. J. Nat. Prod, 2003, 66(11): 1 505–1 508.
    [7] Koenig, G. M., Wright, A. D., New C15 acetogenins and sesqui- terpenes from the red alga Laurencia sp.cf.L.gracilis. J. Nat. Prod, 1994, 57(4): 477-485.
    [8] Vazquez, J. T., Chang, M., Nakanishi, K., et al. Puertitols novel sesquiterpenes from Laurencia obtusa.Structure elucidation and absolute configuration and conformation based on circular dichroism. J. Nat. Prod. 1988, 51(6): 1 261-1 264.
    [9] Norte, M., Gonzalez, R., Padilla, A., et al. New halogenated sesquiterpenes from the red alga Laurencia caespitosa. Can. J. Chem., 1991, 69(3): 518-520.
    [10] Sun J., Shi D.Y., Ma M., et al. Sesquiterpenes from the red alga Laurencia tristicha. J. Nat. Prod, 2005, 68(6): 915–919.
    [11] Davyt D., Fernandez R., Suescun L., et al. Bisabolanes from the red alga Laurencia scoparia. J. Nat. Prod, 2006, 69(7), 1 113–1 116.
    [12] Kladi M., Vagias C., Papazafiri P., et al. New sesquiterpenes from the red alga Laurencia microcladia. Tetrahedron. 2007, 63(32): 7 606–7 611.
    [13] Nai-Yun Ji, Xiao-Ming Li, Ke Li, et al. Sesquiterpenes and other metabolites from the marine red alga Laurencia composita(Rhodomelaceae). Helvetica Chimica Acta, 2008, 12: 2 012-2 015.
    [14] Norte M., Fernandez J. J., Padilla A., et al. Bisabolane halogenated sesquiterpenes from Laurencia. Phytochemistry, 1992, 31(1): 326~327.
    [15] Ayyad S. N., Dawidar A. M., Dias H. W., et al. Three halogenated metabolites from Laurencia obtuse. Phytochemistry. 1990, 29(10): 3 193-3 196.
    [16] Takeda S., Iimura Y., Tanaka K., et al. A new naturally occurring racemic compound from the marine red alga Laurencia obtuse (Hudson) (Lamouroux). Chem. Lett, 1990, (1): 155-156.
    [17]徐效华,卢建华,姚广民等,.略大凹顶藻化学成分的研究.天然产物研究与开发, 2001,13(5): 5-8.
    [18] Masuda M., Itoh T., M., Y. et al. Sesquiterpenoids of Laurencia majuscule (Ceramiales, Rhodophyta) from the Ryukyu Islands. Japan. Phycol. Res. 1997, 45(2): 59-64.
    [19] Koenig G. M., Wright A. D., New C15 acetogenins and sesquiterpenes from the red alga Laurencia sp.cf.L.gracilis. J. Nat. Prod., 1994, 57(4): 477-485.
    [20] Ahmad V. U., Ali M. S., Pinnatifinone, a new halogenated chamigrene from the red algaLaurencia pinnatifida. Sci. Pharm, 1991, 59(3): 243-246.
    [21] Ahmad V. U., Ali, M. S., Terpenoids from marine red alga Laurencia pinnatifida. Phytochemistry, 1991, 30(12): 4 172-4 174.
    [22] Brito I., Cueto M., Dorta E., et al. Bromocyclococanol, a halogenated sesquiterpene with a novel carbon skeleton from the red alga Laurencia obtusa. Tetrahedron Lett, 2002a, 43(14): 2 551–2 553.
    [23] Dorta E., Díaz-Marrero A. R., Cueto M., et al. Chamigrenelactone, a polyoxygenated sesquiterpene with a novel structural type and devoid of halogen from Laurencia obtusa. Tetrahedron Lett, 2004, 45(38): 7 065–7 068.
    [24] Martin J. D., Caballero P., Fernandez J.J., et al. Metabolites from Laurencia obtusa. Phytochemistry, 1989, 28(12): 3 365-3 367.
    [25] Elsworth, John F.; Thomson, Ronald H. A new chamigrane from Laurencia glomerata. J. Nat. Prod, 1989, 52(4): 893-895.
    [26] Davyt D., Fernandez R., Suescun L., et al. New sesquiterpene derivatives from the red alga Laurencia scoparia. Isolation, structure determination, and anthelmintic activity. J. Nat. Prod, 2001, 64(12): 1 552–1 555.
    [27] Kennedy D. J., Selby I. A., Thomson R. H. Chamigrane metabolites from Laurencia obtusa and L. scoparia. Phytochemistry, 1988, 27(6): 1 761-1 766.
    [28] Rovirosa J., Soto H., Cueto M., et al. Sesquiterpenes from Laurencia claviformis. Phytochemistry, 1999, 50(5): 745–748.
    [29] Kimura J., Kamada N., Tsujimoto Y., Fourteen chamigrane derivatives from a red alga, Laurencia nidifica. Bull. Chem. So.c Jpn., 1999, 72(2): 289–292.
    [30] Vairappan C. S., Suzuki M., Abe T., et al. Halogenated metabolites with antibacterial activity from the Okinawan Laurencia species. Phytochemistry, 2001b, 58(3): 517–523.
    [31] Suzuki M., Daitoh M., Vairappan C. S., et al. Novel halogenated metabolites from the Malaysian Laurencia pannosa. J. Nat. Prod, 2001, 64(5): 597–602.
    [32] Francisco M. E. Y., Erickson K. L., Ma’iliohydrin, a cytotoxic chamigrene dibromohydrin from a Philippine Laurencia species. J. Nat. Prod, 2001, 64(6): 790–791.
    [33] Jongaramruong J., Blackman A. J., Skelton B. W., et al. Chemical relationships between the sea hare Aplysia parvula and the red seaweed Laurencia filiformis from Tasmania. Aust J. Chem, 2002, 55(4): 275–280.
    [34] N. Y. Ji, X. M. Li, K. Li, et al. Diterpenes, sesquiterpenes, and a C15-acetogenin from the marine red alga Laurencia mariannensis. J. Nat. Prod, 2007, 70(12): 1901–1905.
    [35] N. Y. Ji, X. M. Li, K. Li, et al. Aristolane sesquiterpenes and highly brominated indoles from the marine red alga Laurencia similes (Rhodomelaceae). Helvetica Chimica Acta, 2007, 90(2): 385–391.
    [36] N. Y. Ji, X. M. Li, C. M. Cui, et al. Terpenes and polybromoindoles from the marine red alga Laurencia decumbens (Rhodomelaceae). Helvetica Chimica Acta, 2007, 90(9): 1731–1736.
    [37] N. Y. Ji, X. M. Li, Y. Zhang, et al. Two new halogenated chamigrane-type sesquiterpenes and other secondary metabolites from the marine red alga Laurencia okamurai and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2007, 35(9): 627–630.
    [38] N. Y. Ji, X. M. Li, K. Li, et al. Halogenated sesquiterpenes from the marine red alga Laurencia saitoi (Rhodomelaceae). Helvetica Chimica Acta, 2008, 9: 1 132-1 135.
    [39] N. Y. Ji, X. M. Li, K. Li, et al. Sesquiterpenes and other metabolites from the marine red alga Laurencia composita(Rhodomelaceae). Helvetica Chimica Acta, 2007, 4: 665-668.
    [40] Coll J. C., Wright A. D., Tropical marine algae: New sesquiterpenes from Laurencia majuscule (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae). Aust. J. Chem., 1989, 42(9): 1 591-1 603.
    [41] N-Y Ji, X-M Li, K Li, et al. Laurane-derived sesquiterpenes from the marine red alga Laurencia tristicha (Rhodomelaceae). Natural Product Research, 2008, 22(8): 715–718.
    [42] Kladi M., Vagias C., Furnari G., et al. Cytotoxic cu parene sesquiterpenes from Laurencia microcladia.Tetrahedron Lett, 2005, 46(34): 5 723–5 726.
    [43] Mao S. C., Guo Y. W., A laurane sesquiterpene and rearranged derivatives from the Chinese red alga Laurencia okamurai Yamada. J. Nat. Prod, 2006, 69(8): 1 209–1 211.
    [44] Mao S. C., Guo Y. W., Cuparene-derived sesquiterpenes from the Chinese red alga Laurencia okamurai Yamada. Helv Chim Acta, 2005, 88(5): 1 034–1 039.
    [45] Kladi M, Vagias C, Papazafiri P, Furnari G, Roussis V. New sesquiterpenes from the red alga Laurencia microcladia. Tetrahedron, 2007, 63(32): 7 606–7 611.
    [46] Caccamese S., Amico V., Placido N., Two new rearranged sesquiterpenoids from the red alga Laurencia obtusa. J. Nat. Prod, 1990, 53(5): 1 287-1 296.
    [47] Amico V., Caccamese S., Neri P., Brasilane-type sesquiterpenoids from the Mediterranean red alga Laurencia obtusa. Phytochemistry, 1991, 30(6): 1 921-1 927.
    [48] Iliopoulou D., Vagias C., Galanakis D., et al. Roussis, Brasi- lane-type sesquiterpenoids from Laurencia obtusa. Vassilios Organic Letters, 2002, 4(19): 3 263-3 266.
    [49] De N, R., Coll J. C., Bruce F., Tropical marine algae. IX. A new sesquiterpenoid metabolite from the red alga Laurencia marianensis. Aust. J. Chem, 1993, 46(6): 933-937.
    [50] Wright A. D., Koenig G. M., Sticher O., New sesquiterpenes and C15 acetogenins from the marine red alga Laurencia implicata. J. Nat. Prod, 1991, 54(4): 1 025-1 033.
    [51] Wright A. D., Goclik E., Koenig G. M., Three new sesquiterpenes from the red alga Laurencia perforata. Journal of Natural Products, 2003, 66(3): 435-437.
    [52] Erickson K. L., Beutler J. A., Gray G. N., Majapolene A, a cytotoxic peroxide, and related sesquiterpenes from the red alga Laurencia majuscula. J. Nat. Prod, 1995, 58(12): 1848-1860.
    [53] Coll J. C., Skelton B. W., White A. H., et al. Tropical marine algae. V. The structure determination of two novel sesquiterpenes from the red alga Laurencia tenera (Rhodophyceae, Ceramiales, Rhodomelaceae). Aust. J. Chem, 1989, 42(10): 1 695-1 703.
    [54] Norte M., Fernandez J. J., Souto M. L., Viridianol, a rearranged sesquiterpene with a novel carbon skeleton from Laurencia viridis. Tetrahedron Lett, 1994, 35(26): 4 607-4 610.
    [55] Caccamese S., Amico V., Neri P., et al. The structure of laurobtusol, a new rearranged sesquiterpenoid from the Mediterranean red alga Laurencia obtusa. Tetrahedron, 1991, 47(48): 10 101-10 108.
    [56] Guella G., Skropeta D., Mancini I., The first 6,8-cycloeudesmane sesqui- terpene from a marine organism:the red seaweed Laurencia microcladia from the Baia di Calenzana, Elba Island. Chemical Sciences, 2002, 57(10): 1 147-1 151.
    [57] Guella G., Skropeta D., Breuils S., Calenzanol, the first member of a new class of sesquiterpene with a novel skeleton,isolated from the red seaweed Laurencia microcladia from the Bay of Calenzana, Elba Island. Tetrahedron Letters, 2001, 42(4): 723-725.
    [58] Xu X. H., Zeng L. Mei., Su J. Y., Tricyclic sesquiterpene from Laurencia majuscula. Chem. Res. Chin. Univ, 1997, 13(2): 176-178.
    [59] Guella G., Pietra F., A new-skeleton diterpenoid,new prenylbisabolanes, and their putative biogenetic precursor, from the red seaweed Laurencia mircrocladia from Il Rogiolo: assigning the absolute configuration when two chiral halves are connected by single bonds. Helv Chim Acta, 2000b, 83(11): 2 946–2 952.
    [60] Kuniyoshi M., Wahome P. G., Miono T., et al. Terpenoids from Laurencia luzonensis. J. Nat. Prod, 2005, 68(9): 1 314–1 317.
    [61] Fernández J. J., Souto M. L., Gil L. V., et al. Isolation of naturally occurring dactylomelane metabolites as Laurencia constituents. Tetrahedron, 2005, 61(37): 8 910–8 915.
    [62] Mihopoulos N., Vagias C., Mikros E., et al. Prevezols A and B: new brominated diterpenes from the red alga Laurencia obtusa. Tetrahedron Lett, 2001, 42(22): 3 749–3 752.
    [63] Iliopoulou D., Mihopoulos N., Vagias C., et al. Novel cytotoxic brominated diterpenes from the red alga Laurencia obtusa. J Org Chem, 2003a, 68(20): 7 667–7 674.
    [64] Mohammed K. A., Hossain C. F., Zhang L., et al. Laurenditerpenol, a new diterpene from the tropical marine alga Laurencia intricata that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. J. Na.t Prod, 2004, 67(12): 2 002–2 007.
    [65] Takahashi Y., Suzuki M., Abe T., et al. Anhydroaplysiadiol from Laurencia japonensis. Phytochemistry, 1998, 48(6): 987–990.
    [66] Iliopoulou D., Mihopoulos N., Roussis V., et al. New brominated labdane diterpenes from the red alga Laurencia obtusa. J. Nat. Prod, 2003b, 66(9):1 225–1 228.
    [67] Suzuki M., Kawamoto T., Vairappan C. S., et al. Halogenated metabolites from Japanese Laurencia spp. Phytochemistry, 2005, 66(23): 2 787–2 793.
    [68] Iliopoulou D., Mihopoulos N., Vagias C., et al. Novel cytotoxic brominated diterpenes from the red alga Laurencia obtusa. J Org Chem, 2003a, 68(20): 7 667–7 674.
    [69] Kurata K., Taniguchi K., Agatsuma Y., et al. Diterpenoid feeding-deterrents from Laurencia saitoi. Phytochemistry, 1998, 47(3): 363–369.
    [70] Lyakhova E. G., Kalinovsky A. I., Kolesnikova S. A., et al. Halogenated diterpenoids from the red alga Laurencia nipponica. Phytochemisty, 2004, 65(18): 2 527–2 532.
    [71] Manríquez C. P., Souto M. L., Gavín J. A., et al. Several new squalene-derived triterpenes from Laurencia. Tetrahedron, 2001, 57(15): 3 117–3 123.
    [72] Souto M. L., Manríquez C. P., Norte M., et al. Novel marine polyethers. Tetrahedron, 2002, 58(40): 8 119–8 125.
    [73] Suzuki M., Matsuo Y., Takahashi Y., et al. Callicladol, a novel cytotoxic bromotriterpene polyether from a Vietnamese species of the red algal genus Laurencia. Chem. Lett, 1995, (11): 1 045-1 046.
    [74] Sakemi S., Higa T., Jefford C. W., et al. Venustatriol: a new antiviral triterpene tetracyclic ether from Laurencia venusta. Tetrahedron Lett, 1986, 27(36): 4 287-4 290.
    [75] Norte M., Fernandez J. J., Souto Maria. L., et al. Thyrsenols A and B, two unusual polyether squalene derivatives. Tetrahedron, 1997, 53(9): 3 173-3 178.
    [76] Kladi M., Xenaki H., Vagias C., et al. New cytotoxic sesquiterpenes from the red algae Laurencia obtusa and Laurencia microcladia. Tetrahedron, 2006, 62(1): 182–189.
    [77] Kladi M., Vagias C., Papazafiri P., et al. New sesquiterpenes from the red alga Laurencia microcladia. Tetrahedron, 2007, 63(32): 7 606–7 611.
    [78] Suzuki M., Nakano S., Takahashi Y., et al. Bisezakyne-A and-B, halogenated C15 acetogenins from a Japanese Laurencia species. Phytochemistry, 1999, 51(5): 657–662.
    [79] Iliopoulou D., Vagias C., Harvala C., et al. C15 acetogenins from the red alga Laurencia obtusa. Phytochemistry, 2002b, 59(1): 111–116.
    [80] Mihopoulos N., Vagias C., Scoullos M., et al. Laurencienyne B, a new acetylenic cyclic ether from the red alga Laurencia obtusa. Nat. Prod. Lett (Nat Prod Res), 1999, 13(2): 151–156.
    [81] Aydogmus Z., Mre S., A new halogenated C15 non-terpenoid compound from the marinered alga, Laurencia obtusa. Acta Pharm Turc (Acta Pharm Sci), 1999, 41(3): 93–95.
    [82] Aydogmus Z., Imre S., Ersoy L., et al. Halogenated secondary metabolites from Laurencia obtusa. Nat. Prod. Res, 2004, 18(1): 43–49.
    [83] Takahashi Y., Suzuki M., Abe T., et al. Japonenynes, halogenated C15 acet- ogenins from Laurencia japonensis. Phytochemistry, 1999, 50(5): 799–803.
    [84] Takahashi Y., Daitoh M., Suzuki M., et al. Halogenated metabolites from the new Okinawan red alga Laurencia yonaguniensis. J. Nat. Prod, 2002, 65(3): 395–398.
    [85] Suzuki M., Daitoh M., Vairappan C. S., et al. Novel halogenated metabolites from the Malaysian Laurencia pannosa. J. Nat. Prod, 2001, 64(5): 597–602.
    [86] Vairappan C. S., Daitoh M., Suzuki M., et al. Antibacterial halogenated metabolites from the Malaysian Laurencia species. Phytochemistry, 2001a, 58(2): 291–297.
    [87] Vairappan C. S., Suzuki M., Abe T., et al. Halogenated metabolites with antibacterial activity from the Okinawan Laurencia species. Phytochemistry, 2001b, 58(3): 517–523.
    [88] Suzuki M., Takahashi Y., Mitome Y., et al. Brominated metabolites from an Okinawan Laurencia intricata. Phytochemistry, 2002, 60(8): 861–867.
    [89] Lyakhova E. G., Kalinovsky A. I., Dmitrenok A. S., et al. Structures and absolute stereochemistry of nipponallene and neonipponallene,new brominated allenes from the red alga Laurencia nipponica. Tetrahedron Lett, 2006, 47(37): 6 549–6 552.
    [90] Guella G., Mancini I., Oeztunc A., Conformational bias in macrocyclic ethers and observation of high solvolytic reactivity at a masked furfuryl (=2-furylmethyl) C-atom. Helv Chim Acta, 2000a, 83(2): 336–348.
    [91] EI-Gamal A. A., Wang W. L., Duh C. Y., Sulfur-containing polybromoindoles from the Formosan red alga Laurencia brongniartii. J. Nat. Prod, 2005, 68(5): 815–817.
    [92] Tanaka J., Higa T., Bernardinelli G., et al. Sulfur-containing polybromoindoles from the red alga Laurencia brongniartii. Tetrahedron, 1989, 45(23): 7 301-7 310.
    [93] Takahashi Y., Suzuki M., Abe T., et al. Japonenynes, halogenated C15 acetogenins from Laurencia japonensis. Phytochemistry, 1999, 50(5): 799-803.
    [94] Su J.Y., Xu X. H., Zeng L. M., et al. New iodolactone from Laurencia majuscula. Gaodeng Xuexiao Huaxue Xuebao, 1997, 18(8): 1 333-1 334.
    [1] G.. T. Carter, K. L. Rinehart, L. H. Li, et al. Brominated indoles from laurencia brongniartii Tetrahedron Lett. 1978. 19: 4 479-4 482.
    [2] N.Y. Ji, X.M. Li, L.P. Ding, et al. Aristolane Sesquiterpenes and Highly Brominated Indoles from the Marine Red Alga Laurencia similis (Rhodomelaceae). Helv. Chim. Acta, 2007. 90. 385-391.
    [3] B. Hugon, F. Anizon, C. Bailly, et al. Synthesis and biological activities of isogranulatimide analogues. Bioorganic & Medicinal Chemistry 2007. 15: 5 965- 5 980.
    [4] Fuente J. A. de la, Manzanaro S., Martin M. J. Synthesis, Activity, and Molecular Modeling Studies of Novel Human Aldose Reductase Inhibitors Based on a Marine Natural Product J. Med. Chem. 2003, 46: 5 208-5 221.
    [5] Frlund B., L. Jensen S., Guandalini L. Potent 4-Aryl- or 4-Arylalkyl- Substituted 3-Isoxazolol GABAA Antagonists: Synthesis, Pharmacology, and Molecular Modeling. J. Med. Chem., 2005, 48: 427-439.
    [6] Pettit G. R., Toki B., Herald D. L., Antineoplastic Agents. 379. Synthesis of Phenstatin Phosphate. J. Med. Chem. 1998, 41: 1 688-1 695.
    [7] Kurata K., Amiya T., Chem. Lett. 1977: 1435
    [8] Serra S., Fuganti C., Brenna E., et al. Synthesis, Olfactory Evaluation, and Determination of the Absolute Configuration of the 3,4-Didehydroionone Stereoisomers Helv. Chim. Acta 2006, 89: 1 110-1 122.
    [9] Yuan Z. H., Han L. J., Fan X., et al. Two new norisoprenoid derivatives from the red alga Gymnogongrus flabelliformis Chin. Chem. Lett. 2006, 17: 1 205-1 208.
    [10] R. D. Nys, A. D. Wright, G. M. Koenig. Five New Sesquiterpenes from the Red Alga Laurencia flexilis. J. Nat. Prod. 1993, 56: 877-883.
    [11] Masayuki K., Mong S. M., Tatsuo H., et al. New Bromoterpenes from the Red Alga Laurencia luzonensis. J. Nat. Prod. 2001, 64: 696-700.
    [12] Paul V. J., Fenical W., Palisadins A, B and related monocyclofarnesol-derived sesquiterpenoids from the red marine alga Laurencia cf. palisada. Tetrahedron Lett. 1980, 21: 2 787–2 790.
    [13] Pettit G. R., Herald C. L., Allen M. S., et al. Antineoplastic agents. 48. The isolation and structure of aplysistatin J. Am.Chem. Soc. 1977, 99: 262-263.
    [14] Shide L., Olbrich A., Mayer R., et al. Gansongon, a New Aristolane Ketone from Nardostachys chinesis Batalin and Structure Revision of an Aristolenol Planta Med. 1987, 53: 556-558.
    [15] Ji N.Y., Li X. M., Ding L.P., et al. Aristolane Sesquiterpenes and Highly Brominated Indoles from the Marine Red Alga Laurencia similis (Rhodomelaceae) Helv. Chim. Acta 2007, 90: 385-391.
    [16] Ruecker G., Kretzuschmar U., 9-Aristolen-la-01 und 1.2.9.1-Tetradehydro- aristolan, neue Sesquiterpene mit einem Aristolan-Geruest Liebigs Ann. Chem. 1971, 748: 214-217.
    [17] Takeshita H., Shimooda I., Hatsui T., Synthetic Photochemistry. XXL. The Sensitized Photooxygenation of Calarene. A Facile Hock Cleavage of an Allylhydroperoxide and Structure Revision for AristolenolsBull. Chem. Soc. Jpn. 1980, 53: 3 721-3 722.
    [18] Vidari G., Che Z., Garlaschelli L., New nardosinane and aristolane sesquiterpenes from the fruiting bodies of Russula lepida. Tetrahedron Lett. 1998, 39: 6 073-6 076.
    [19] Julio G. U., Isidro S. M. et al. Acetophenones and terpenoids fromSenecio Gallicus.Phytochemistry, 1987, 26(4): 1 113-1 115
    [20] Geoffrey D. B., Liang G.Y., Lai-King S., Terpenoids form the seeds of Artemisia annua.Phytochemistry, 2003, 64: 303-323
    [21] Abimael D. R., Ana L. A., New cembranoid diterpenes and a geranylgeraniol derivative from the common Caribbean sea whip Eunicea succinea. J. Nat. Prod. 1997, 60: 1 134-1 138.
    [22] Francesco D. E., Riccardis L. M., Marine Sterols Side-Chain-Oxygenated Sterols, Possibly of Abiotic Origin, From the New Caledonian Sponge Stelodoryx Chlorophylla. J Nat. Prod. 1993, 56 (2): 282-287.
    [23]汤海峰,易扬华,姚新生。叶托马尾藻中的生物活性甾体成分。中国药学杂志,2002,37(4):262-265。
    [24] Della Greca M., Monaco P., Previtera L., Stigmasterols form the Typha latifolia. J Nat. Prod., 1990, 53(6): 1430.
    [25]李国玉,王金辉,李铣。苦马豆果皮的甾醇类成分研究.中草药. 2003, 34(5): 392-394。
    [26]杨若林,王洪钟,郑桂兰等。文蛤Meretrix meretrix化学成分研究.中国海洋药物, 2003, 2: 31-32.
    [27]肖定军,邓松之,曾陇梅。南海海绵Clathria fasciculate化学成分研究。中国海洋药物,2002, 21 (2):1-4。
    [28] Francesco De Riccardis, Luigi Minale, Maria Iorizzi, et al. Marine Sterols. Side-Chain-Oxygenated Sterols, Possibly of Abiotic Origin, From the New Caledonian Sponge Stelodoryx Chlorophylla. J. Nat. Prod. 1993, 56 (2): 282-287.
    [29]封士兰,何兰,王敏。百合花化学成分的研究。中国中药杂志,1995,20(6):356-358。
    [30] M. Masuda, S. Kawaguchi, Y. Takahashi, et al. Halogenated secondary metabolites of Laurencia similis (Rhodomelaceae, Rhodophyta). Botanica Marina. 1999, 42: 199-201.
    [31] Carter G. T., Rinehart K. L., Li L. H., et al. Brominated indoles from Laurencia brongniartii.Tetrahedron Lett, 1978, 19(46): 4479–4482.
    [32] Carmichael J., Degraff W. G., Gazdar A. F., et al. Evaluation of a tetrozolium based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res., 1987, 47(4): 936-942.
    [33] Jing Y. S., Yong L. Z., Long M. Z., Terpenoinds from the Laurencia karlae Phytochemistry, 1995 40(1): 195-197.
    [34] Masayuki K., Mong S. M., Tatsuo H., et al. New Bromoterpenes from the Red Alga Laurencia luzonensis. J. Nat. Prod. 2001, 64: 696-700.
    [1] M. Kuniyoshi, P. G. Wahome, T. Miono, et al. Terpenoids from Laurencia luzonensis J. Nat. Prod., 2005, 68: 1 314-1 317.
    [2] Rocky D. N., Anthopudt W. G., Abrielme K., Five new sesquiterpenes from the red alga Laurencia flexilis J. Nat. Prod. 1993, 56 (6): 877-883.
    [3] S. Serra, C. Fuganti, E. Brenna, Synthesis, Olfactory Evaluation, and Determination of the Absolute Configuration of the 3,4-Didehydroionone Stereoisomers . Helv. Chim. Acta 2006, 89: 1 110-1 122.
    [4] Z. H. Yuan, L. J. Han, X. Fan, Two new norisoprenoid derivatives from the red alga Gymnogongrus flabelliformis. Chin. Chem. Lett. 2006, 17: 1 205-1 208.
    [5] Paul V. J., Fenical W., Palisadins A, B and related monocyclofarnesol-derived sesquiterpenoids from the red marine alga Laurencia cf palisade. Tetrahedron Lett. 1980, 21: 2 787–2 790.
    [6] Pettit G. R., Herald C. L., Allen M. S., et al. Antineoplastic agents. 48. The isolation and structure of aplysistatin. J Am Chem Soc. 1977, 99: 262-263.
    [7] Jing Y. S., Yong L. Z., Long M. Z., Terpenoinds from the Laurencia karlae Phytochemistry, 1995. 40(1): 195-197.
    [8] Anthony. D. W., Abrielme. K., Otto S., New sesquiterpenes and C15 acetogenins from the marine red alga Laurencia implicate J. Nat. Prod. 1991. 54(4). 1 025-1 033.
    [9] Masayuki K., Mong S. M., Tatsuo H., et al. New Bromoterpenes from the Red Alga Laurencia luzonensis J. Nat. Prod. 2001, 64: 696-700.
    [10] Izac R. R., Poet S. E., Fenical W., et al. Tetrahedron Lett. 1982, 23: 3743.
    [11] Sheu J. H., Wang G. H., Sung P. L., et al. Cytotoxic sterols from the Formosan brown alga tubrinaria ornate. Planta Med. 1997, 63: 571-574.
    [12] M. Masuda, S. Kawaguchi, Y. Takahashi, et al. Halogenated secondary metabolites of Laurencia similis (Rhodomelaceae, Rhodophyta). Botanica Marina. 1999, 42: 199-202.
    [13] Carmichael J., Degraff W. G., Gazdar A. F., et al. Evaluation of a tetrozolium based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res., 1987, 47(4): 936-942.
    [14] Paul V. J., Fenical W., Palisadins A, B and related monocyclofarnesol-derived sesquiterpenoids from the red marine alga Laurencia cf. palisada. Tetrahedron Lett. 1980, 21, 2 787–2 790.
    [15] Pettit G. R., Herald C. L., Allen M. S., et al. Antineoplastic agents. 48. The isolation and structure of aplysistatin J. Am.Chem. Soc. 1977, 99: 262-263.
    [1] Shuichi H., Yoshinoric A., Takashi, et al. Phthalate esters of cryptotaenia Canadensis DC. VAR. Japonica makino (Umbelliferae). Tetrahedron Lett, 1967, 50: 5 601-5 603.
    [2] Kim Y J, Jonas J.Dynamics of Complex Phthalate Liquids. 2. Structural Effects of Side Chains. J. Phys. Chem., 1998, 102: 2 778-2 784.
    [3]肖定军,邓松之,曾陇梅.南海海绵Clathria fasciculate化学成分的研究(Ⅰ) .中国海洋药物, 2002, 2: 1-3.
    [4]王奇志,梁敬钰,陈军.吴茱萸化学成分研究Ⅱ.中国药科大学学报, 2005,36(6): 520-522.
    [5] James J. S. and John A. P.Isolation of free cis and trans- phytol from the red alga Gracilaria Andersoniana. Phytochemistry, 1976, 15: 1 076-1 077.
    [6] Geoffrey D B, Liang G Y and Lai-King Sy. Terpenoids form the seeds of Artemisia annua. Phytochemistry, 2003, 64: 303-323.
    [7] Roy A G, Eric O, Adam A. Assignments in the natural-abundance carbon-13 nuclear magnetic resonance spectrum of chlorophyll a and a study of segmental motion in neat phytol. J Am. Chem Soc, 1973, 95 (23): 7 553-7 558.
    [8] Zhou S M, Ma W J, Xiao D J, et al. Studies on the chemical constituents of the marine Sponge Topsentia Sp. from the South China Sea. Chin. J. Mar. Drugs, 2004, 23(5): 18-20.
    [1] Klayman D. L., Lin A. J., Acton N., et al. Isolation of artemisinin(qinghaosu)from Artemisia annua growing in the United States. J. Nat. Prod. 1984, (47): 715-717.
    [2] Banner A. H., Scheuer P. J., Sasaki S., et al. Observations on ciguatera-type toxin in fish. Ann. N. Y. Acad. Sci.1960, 90: 770-773.
    [3] Burkholder P. R., fister R. M., Leitz F. P., Production of a Pyrrole Antibiotic by a Marine Bacterium. Appl.Microbiol, 1966, 14: 649-653.
    [4] Asolkar R. N., Maskey R. P., Helmke E., et al. Chalcomycin B, a new macrolide antibiotic from the marine isolate Streptomyces sp. B7064. J. Antibiot., 2002, 55: 893-898.
    [5] Feling R. H., Buchanan G. O., Mincer T. J., et al. Salinoaporamide A: highly cytotoxic proteasome inhibitor from a novel microbial source,a marine bacterium of the new genus Salinospora. Angezo Chem Int Ed. 2003 (42): 35-39.
    [6] Bernan V. S., Montenegro D. A., Korshalla J. O., et al. Bioxalomycins, new antibiotics produced by the marine Streptornyces sp. LL31F508: taxonomy and fermentation. JAntibiot. 1994 (47): 1 417-l 424.
    [7] Zaccardi J., Alluri M., Ashcroft J., et al. Structures of the bioxalomycins and their relationship to naphthyridinomycin. J. Org. Chem., 1994 (59): 4 045-4 047.
    [8] Singh M. P., Petersen P. J., Jacobus N. V., et al. Bioxalomycinα2, a novel antibiotic produced by Streptomyces viridodiastaticus subsp.‘litoralis’LL-31f508: Mechanistic studies and biological activity. Anlimicrob Agents Chemother. 1994, (38): 1 808-l 812.
    [9] Maskey R. P., Helmke E., Fiebig H. H. and Laatsch H. Parimycin: isolation and structure elucidation of a novel cytotoxic 2,3-dihydroquiniyarin analogue of gamma-indomycinone from a marine streptomycete isolate. J. Antibiot., 2002, 55: 1031-1035.
    [10] Maskey R. P., Madhumati S., Uson I., et al. Gutingimycin: a high comples metabolite from a marine Streptomycete. Angew. Chem. Int. Ed., 2004, 43: 1281-1283.
    [11] Maskey R. P., Li F. C., Qin S., et al. Chandrananimycins A~C: Production of novel anti-cancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. Journal of Antibiotics. 2003 (56): 622-629.
    [12] Li F. C., Maskey R. P., Qin S., et al. Chinikomycin A and B: Isolation,structure elucidation and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045.Journal of Natural Products. 2005 (68): 349-353.
    [13] Wu S. J., Fotso S., Li F. C., et al. Marine bacteria, XXXI: N-Carboxamido-staurosporine and selina-4(14),7(11)- diene-8, 9-diol, new metabolites from a marine Streptomyces sp. J Antibiot. 2006 (59): 331-337.
    [14] Muraleedharan G. N., Basil A. B., A new fatty acid methyl ester and other biologically active compounds from Aspergillus niger. Phytochemistry. 1988, 27: 3 169-3 173。
    [15] William A. A., Latchezar S. T., Phenolic and polyketide metabolites of the aspen blue stain fungus Ophiostoma crassivaginata. Phytochemistry. 1995. 38: 371-372.
    [16] Zhou S. M., Ma W. J., Xiao D. J., et al. Studies on the chemical constituents of the marine Sponge Topsentia Sp. from the South China Sea. Chin. J. Mar. Drugs, 2004, 23(5): 18-20.
    [17] Sindler-Kulyk, M., Neckers, D. C. Photochemistry of 2-phenylbenzothiazole with ethoxyacetylene and ethoxypropyne. Synthesis of 1,5-benzothiazepines. Journal of Organic Chemistry, 1982. 47(25): 4 914-4 919.
    [18] Croisy, A., Ricci, A., Jancevska, M., et al. New thiopyran heterocycles. Chemistry Letters. 1976.1: 5-10.
    [19] Snyder, S. A., Kontes, F.; Explorations into Neolignan Biosynthesis: Concise Total Syntheses of Helicterin B, Helisorin, and Helisterculin A from a Common Intermediate. Journal of the American Chemical Society. 2009. 131(5): 1 745-1 752.
    [20] Beck, J. J., Kim, J. H., Campbell, B. C., et al. Fungicidal activities of dihydroferulic acid alkyl ester analogues. Journal of Natural Products. 2007. 70(5): 779-782.
    [21] Pei-Ji Zhao, Guo-Hong Lib, Yue-Mao Shen. New Chemical Constituents from the Endophyte Streptomyces Species LR4612 Cultivated on Maytenus hookeri. chemistry & biodiversity. 2006. 3: 337-342.
    [22] Q. Huang, Y. Tezuka, Y. Hatanala, et al. Studies on Metabolites of Mycoparasitic Fungi. III. New Sesquiterpene Alcohol from Trichoderma koningii. chemical & pharmaceutical bulletin. 1995, 43: 1 035-1 038.
    [23] Jorge A. P., Patricia B. Fl., Alicia M. S., Chondriamides A and B, new indolic metabolites from the red alga Chondria sp., Tetrahedron Lett., 1992. 33. 3 097-3 100.
    [24] Shaaban, K. A., Shaaban, M., Facey, P., et al. Marine bacteria. XXXIX. Electrospray ionization mass spectra of piperazimycins A and B and -butyrolactones from a marine-derived Streptomyces sp. Journal of Antibiotics. 2008. 61(12): 736-746.
    [25] Eggers, Mary E., Jog, Parag V., et al. Intramolecular sulfoxide electrophilic sulfenylation in 2- and 3-indoleanilides. Tetrahedron. 2007. 63(49): 12 185-12 194.
    [26] Liu, Haihe, Lin, Wenhan, Zhao, Xi, et al. Studies on chemical constituents of the endophyte fungus No.HA-094 in the mangrove tree from the South China Seacoast. Heilongjiang Yiyao. 2007. 20(6): 564-565.
    [27]叶冠,范明松,黄成钢等.抱茎苦荬菜化学成分研究.中国药学杂志, 2005, 40(21): 1 613-1 615.
    [28]张帆,落水忠,高宝莼等.蕨菜的化学成分研究.天然产物研究与开发, 2004, 16(2): 121-123.
    [29] Pei-Ji Zhao, Guo-Hong Li, Yue-Mao Shen; New Chemical Constituents from the Endophyte Streptomyces Species LR4612 Cultivated on Maytenus hookeri. Chemistry & Biodiversity. 2006. 3: 337-342.
    [1] Atta-ur-Rahman, M., Iqbal C., Safdar H., et al. Spatozoate and varninasterol from the brown alga Spatoglossum variabile, phytochemistry, 1999, 52: 495-499。
    [2] Sindler-Kulyk, M., Neckers, D. C., Photochemistry of 2-phenylbenzothiazole with ethoxyacetylene and ethoxypropyne. Synthesis of 1,5-benzothiazepines. Journal of Organic Chemistry, 1982. 47(25), 4 914-4 919.
    [3] Croisy, A., Ricci, A., Jancevska, M., et al. New thiopyran heterocycles. Chemistry Letters. 1976.1: 5-10.
    [4] Gordon B. Bailey & Arthur C. Gentile Indole Compounds Synthesized by Diplodia natalensis. Plant physiology. 1962, 37: 439-445.
    [5] Zhang Y., Morikawa T., Nakamura S., et al. Bioactive constituents from chinese natural medicines. XXV. New flavonol bisdesmosides, sarmenosides I, II, III, and IV, with hepatoprotective activity from Sedum sarmentosum (Crassulaceae). Heterocycles. 2007. 71(7): 1 565-1 576.
    [6] Morikawa T., Zhang Y., Nakamura S., et al. Bioactive constituents from Chinese natural medicines. XXII. Absolute structures of new megastigmane glycosides, sedumosides E1, E2, E3, F1, F2, and G, from Sedum sarmentosum (Crassulaceae). Chemical & Pharmaceutical Bulletin. 2007. 55(3): 435-441.
    [7] Ohmoto T., Koike K., Studies on the constituents of Picrasma quassioides Bennet. I. On thealkaloidal constituents. Chemical & Pharmaceutical Bulletin. 1982. 30(4), 1204-1209.
    [8] Q. Huang, Y. Tezuka, Y. Hatanaka, et al. Studies on Metabolites of Mycoparasitic Fungi. III. New Sesquiterpene Alcohol from Trichoderma koningii. chemical & pharmaceutical bulletin. 1995, 43: 1 035-1 038.
    [9] William A. A., Latchezar S. T., Phenolic and polyketide metabolites of the aspen blue stain fungus Ophiostoma crassivaginata. Phytochemistry. 1995, 38: 371-372.
    [10] Alejandro F. B., Juan E. O., Juan A. P., Acidic metabolites from Phycomyces blakesleeanus. Phytochemistry. 1996, 42: 1 427-1 433.
    [11] L. Haihe, L. Wenhan, Z. Xi, et al. Studies on chemical constituents of the endophyte fungus No.HA-094 in the mangrove tree from the South China Seacoast. Heilongjiang Yiyao. 2007. 20(6): 564-565.
    [12] Shaaban, K. A., Shaaban, M., Facey, P., et al. Marine bacteria. XXXIX. Electrospray ionization mass spectra of piperazimycins A and B and butyrolactones from a marine-derived Streptomyces sp. Journal of Antibiotics. 2008. 61(12): 736-746.
    [13] Eggers, M. E., Jog, P. V., Bates, D. K. Intramolecular sulfoxide electrophilic sulfenylation in 2- and 3-indoleanilides. Tetrahedron. 2007. 63(49): 12 185-12 194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700