用户名: 密码: 验证码:
番茄材料PI 114490抗疮痂病T3小种相关基因的分离和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由黄单胞杆菌属(Xanthomonas)引起的疮痂病已成为世界范围内番茄生产的毁灭性病害之一。番茄疮痂病病原菌的多样性以及抗药性给依赖于农药的化学防治带来巨大挑战,而利用抗性材料并揭示抗病机理被认为是防治该病长期有效的经济环保措施。番茄疮痂病抗性材料对病原菌的抗性反应可分为过敏反应抗性和田间抗性。目前针对番茄疮痂病的田间和过敏反应抗性遗传分析已做了较深入的研究,但是关于田间抗性反应所调控的差异表达谱还没有研究报道。
     本论文利用cDNA-AFLP (cDNA-amplified fragment length polymorphism)技术分离田间抗性材料PI114490和感病材料OH88119受T3小种侵染第3、4和5d的差异表达基因。使用256对引物组合共获得71个差异表达基因,其中有60个基因在两材料接菌后3、4和5d持续上调表达,利用RT-PCR或qRT-PCR对18个上调表达基因的表达模式进行了确认,表明抗、感材料会激活部分相同的防御反应以应对T3小种的侵染。
     利用RNA-seq技术对两份材料接种T3小种后6h和6d以及接水对照的数字表达谱进行了分析。6个样品平均得到7M的读段(reads),每个样品的clean read约匹配到21,526个基因,占番茄参考基因总数(34,727)的62%。利用维恩图和聚类分析对两材料接菌两个时间点的差异表达基因进行了交叉比较。总体而言,抗病材料PI114490在6h和6d的差异表达基因数目同比多于感病材料OH88119。接菌6h抗、感材料分别仅有78个和15个基因上调表达,功能注释表明可诱导的防御反应在接菌6h时可能还未被激活。抗、感材料接菌6d的差异表达数目同比多于6h,其中有326个差异基因在两材料中共同上调表达,这些基因可能参与了可诱导的基础防御反应。KEGG分析显示,涉及植物激素信号转导和植物-病原菌互作等防御反应相关途径中的基因在PI114490接菌6d上调表达的数目多于OH88119。而且与防御反应有关的NBS-LRR和、VRKY家族中的差异表达基因在抗病材料中也多于感病材料。比较并筛选cDNA-AFLP和RNA-seq两种技术获得的表达模式相同的差异基因,有14个基因在抗、感材料中都上调表达。cDNA-AFLP和RNA-seq的结果为了解番茄疮痂病田间抗性机理和分子标记辅助选择提供了大量有价值的差异表达基因。
     面对大量的上调表达基因,利用病毒诱导的基因沉默技术(Virus-induced gene silencing, VIGS)筛选到一个编码U-box的基因-(?)KPUB24,该基因沉默植株接种T3小种后叶片表面的病斑数多于对照,利用农杆菌介导的瞬时表达技术显示该基因的过表达植株接种T3小种后叶片内病原菌数量少于对照,推测SlPUB24基因可能在番茄疮痂病田间抗性反应中起正调控的作用。洋葱表皮亚细胞定位显示该基因主要在细胞质中表达。为了进一步验证该基因的功能,构建番茄稳定遗传转化体系并将该基因的特异沉默载体S1PUB24-RNAi转入抗病材料PI114490,而过表达载体35S-S1PUB24转入感病材料OH88119,经PCR分子鉴定都已获得20株以上的To代阳性植株。
     本论文所获得的差异表达谱信息和SlPUB24的功能对于番茄-疮痂病病原菌的互作机理以及番茄抗疮痂病遗传育种研究具有重要的理论意义和潜在的应用价值。
Bacterial spot caused by several Xanthomonas sp. is one of the most devastating diseases in tomato (Solanum lycopersicum L.). Due to the existence of multiple pathogen species and races, marginal efficacy of commonly applied chemicals, development of resistance to these chemicals in bacterial populations, and a lack of available disease resistance traits in commercial cultivars, control of the disease has not been effective once epidemics start. Exploiting host resistance gene(s) combined with important defense response genes for developing durable resistant cultivars is considered as an effective approach to manage the disease. The resistance response to bacterial spot can be divided into hypersensitive response and field resistance response. The genetics of hypersensitive resistance to X. perforans race T3has been intensively investigated, and regulatory genes during the infection of race T3have been identified through transcriptional profiling. However, no work on isolating regulatory genes for field resistance has been reported.
     In this study, cDNA-amplified fragment length polymorphism technique was used to identify differentially expressed transcripts between resistant tomato accession PI114490and susceptible variety OH88119at3,4and5days post-inoculation of the pathogen. Using256selective primer combinations, a total of79differentially expressed transcript-derived fragments (TDFs) representing71genes were obtained. Of which,60were up-regulated at different levels in two tomato lines,4were down-regulated in both tomato lines,4were uniquely up-regulated and2were uniquely down-regulated in PI114490, and1was specific up-regulated in OH88119. The expression patterns of19representative TDFs were further confirmed by semi-quantitative and/or quantitative real time RT-PCR. These results suggested that the two tomato lines involve activation of partly similar defensive mechanism in response to race T3.
     RNA-seq was used to investigate transcript dynamics response to X. perforans race T3in the resistant line PI114490and susceptible line OH88119. A total of six samples were examined, which were mock-treatment and race T3post-inoculation at6h (6HPI) and6d (6DPI) for both two tomato lines. An average of7million reads was generated with approximately21,526mapped genes in each samples, accounting for approximately62%of reference tomato genes. The differentially expressed genes (DEGs) between two tomato lines and two time-points were compared through venn diagram and cluster analysis. Overall, the number of DEGs response to race T3was more in PI114490than that in OH88119at both two inoculation stages, and the number of DEGs at6DPI was significantly more than6HPI in both tomato lines. Only78and15genes were up-regulated at6HPI in PI114490and OH88119, respectively, while the down-regulated genes were numerically greater, demonstrating that the inducible defense response against race T3might have not been activated at6HPI. Accumulation expression levels of326co-up regulated genes in two tomato lines at6DPI were likely to involve in basal inducible defense response, while the specific and strongly induced genes at6DPI might be correlated with the absence of symptom in PI114490. KEGG enrichment analysis indicated the number of up-regulated genes which related to the process of defense response including plant hormone signal transduction and plant-pathogen interaction pathway were more in PI114490than that in OH88119at6DPI. The differentially expressed genes containing NBS-LRR domain, defense-related WRKY transcription factor were presented, which might take prominent roles in defense process. Comparing the cDNA-AFLP analysis and RNA-seq data discovered14common up-regulated genes. These data will provide a valuable resource for mechanism studies underlying X. perforans interaction with tomato plants.
     Virus-induced gene silencing (VIGS) was used to validate the function of up-regulated genes. A gene encoding U-box protein, tentatively named SIPUB24, that may be related to the process of resistance was identified. SIPUB24VIGS-silenced plants showed numerically greater small black foliar lesions after inoculation with race T3than control plants. Using Agrobacterium-mediated transient expression assay to over-expressed SIPUB24in tomato leaves results in less race T3bacterial growth than control. So we speculated that SIPUB24gene might play a positive regulation role in tomato field-resistance to bacterial spot race T3. Subcellular localization showed the S1PUB24-eGFP fusion protein accumulated in the cytoplasm of transiently transformed onion epidermal. To further validate the function of SIPUB24, silencing vector of S1PUB24-RNAi and over-expression vector of35S-S1PUB24was transformated into tomato line PI114490and OH88119, respectively. Integration of S1PUB24-RNAi and35S-S1PUB24into tomato genome was confirmed by PCR, and at least twenty positive generation plants were obtained for disease evaluation.
     The results of differentially expressed profiling and SIPUB24, obtained in this study, will help to uncover the mechanisms of tomato-X.perforans interaction, and have potential application value on tomato resistance breeding for bacterial spot.
引文
崔元玗,杨华,孙晓军,廖建军,郝薇丽(2005)新疆番茄细菌性病害研究初报[J].新疆农业科学,42(4):229-231.
    郭士成,庄纪然,李强,董勤成(2008)费县番茄疮痂病的调查及综合防治[J].中国蔬菜,(5):60-62.
    孙福在,朱红,郑建秋,易齐(1991)京郊和大同地区发生番茄细菌性疮痂病[J].植物保护,17(4):50-51.
    孙福在,杜志强,焦志亮,赵廷昌,程伯瑛(1999)辣椒、番茄细菌性疮痂病及生理小种鉴定[J].植物病理学报,29(3):265-269.
    孙会军,刘小茜,李文慧,杨文才(2011a)番茄材料LA1589抗疮痂病T3小种基因初步定位.河北农业大学学报,34(6):65-69.
    孙会军,张洁云,王园园,Jay W. Scott, David M. Francis,杨文才(2011b)番茄疮痂病T3小种抗性QTL的分析[J].园艺学报,38(12):2297-2308.
    王传祥,英昌芹(2008)番茄疮痂病的发生规律及防治方法[J].吉林蔬菜,(4):50-51.
    杨文才,陈佳,张晓敏,David M. Francis (2007)番茄疮痂病病原菌分类、抗性遗传和分子标记辅助选择进展[J].中国农业科学,40(2):283-290.
    杨文才.番茄疮痂病抗性遗传研究和基因定位最新进展[J].园艺学报,2013,40(9):1731-1740.
    杨子祥,苏银玲,杨长楷,麻继仙,但忠,木万福(2014)云南干热区番茄疮痂病的发生与防治[J].长江蔬菜,(1):52-54.
    张晓敏,王慧,杨文才(2008)新疆和云南番茄疮痂病病原菌初步研究//唐克轩黄丹枫王世平园艺学进展(第八辑).上海:上海交通大学出版社:530.
    张晓敏,David M. Francis,杨文才(2009)我国部分番茄主栽品种抗疮痂病评价和标记辅助选择[J].华北农学报,24(4):183-187.
    赵思峰,廖依学,王昌,李明,彭珊,刘钦伟,魏玉华(2004)新疆加工番茄病虫草害发生概况及综合防治技术[J].新疆农业科学,41(5):274-276.
    Abeles FB, Morgan PW, Saltveit ME, Jr. (1992) Ethylene in plant biology, Second edition. Abeles, F B, P W Morgan and M E Saltveit, Jr Ethylene in plant biology, Second edition xv+414p Academic Press, Inc: San Diego, California, USA; London, England, UK Illus Maps ISBN 0-12-041451-1: xv+414p-xv+414p.
    Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415 (6875):977-983.
    Astua-Monge G, Minsavage GV, Stall RE, Vallejos CE, Davis MJ, Jones JB (2000) Xv4-vrxv4:a new gene-for-gene interaction identified between Xanthomonas campestris pv. vesicatoria race T3 and the wild tomato relative Lycopersicon pennellii. Molecular Plant-Microbe Interactions 13(12):1346-1355.
    Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, Parker JE (2002) Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295 (5562):2077-2080.
    Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295 (5562): 2073-2076.
    Bachem CWB, Oomen R, Visser RGF (1998) Transcript imaging with cDNA-AFLP:A step-by-step protocol. Plant Molecular Biology Reporter 16 (2):157-173.
    Balaji V, Gibly A, Debbie P, Sessa G (2007) Transcriptional analysis of the tomato resistance response triggered by recognition of the Xanthomonas type Ⅲ effector AvrXv3. Functional & Integrative Genomics 7 (4):305-316.
    Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R, Iraki N, Manulis-Sasson S, Rechavi G, Barash I, Sessa G (2008) Tomato transcriptional changes in response to Clavibacter michiganensis subsp michiganensis reveal a role for ethylene in disease development. Plant Physiology 146 (4):1797-1809.
    Bent AF, Innes RW, Ecker JR, Staskawicz BJ (1992) Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent pseudomonas and xanthomonas pathogens. Molecular Plant-Microbe Interactions 5 (5):372-378.
    Bhattarai KK, Li Q, Liu Y, Dinesh-Kumar SP, Kaloshian I (2007) The Mi-I-mediated pest resistance requires Hsp90 and Sgtl. Plant Physiology 144 (1):312-323.
    Bhattarai KK, Atamian HS, Kaloshian I, Eulgem T (2010) WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1. The Plant Journal 63 (2):229-240.
    Broekaert WF, Delaure SL, De Bolle MFC, Cammue BPA (2006) The role of ethylene in host-pathogen interactions. Annual Review of Phytopathology 44:393-416.
    Buettner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS microbiology reviews 34 (2):107-133.
    Chen ZZ, Xue CH, Zhu S, Zhou FF, Ling XFB, Liu GP, Chen LB (2005) GoPipe:Streamlined Gene Ontology annotation for batch anonymous sequences with statistics. Progress in Biochemistry and Biophysics 32 (2):187-190.
    Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-Domain protein JAZ10 in Arabidopsis.The Plant Cell 21 (1):131-145.
    Chung HS, Cooke TF, DePew CL, Patel LC, Ogawa N, Kobayashi Y, Howe GA (2010) Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling. The Plant Journal 63 (4): 613-622.
    Costa JR, Araujo ER, Becker WF, Ferreira MASV, Quezado-Duval AM (2012) Occurrence and characterization of the species complex causing tomato bacterial spot in "Alto Vale do Rio do Peixe", SC, Brazil. Tropical Plant Pathology 37 (2):149-154.
    Damian L, Petrocelli S, Blanco F, Holuigue L, Ottado J, Graciela Orellano E (2011) Transcriptome analysis reveals novel genes involved in nonhost response to bacterial infection in tobacco. Journal of Plant Physiology 168 (4):382-391.
    Demianski AJ, Chung KM, Kunkel BN (2012) Analysis of Arabidopsis JAZ gene expression during Pseudomonas syringae pathogenesis. Molecular Plant Pathology 13 (1):46-57.
    De Young BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nature Immunology 7 (12):1243-1249.
    Dinari A, Niazi A, Afsharifar AR, Ramezani A (2013) Identification of upregulated genes under cold stress in cold-tolerant chickpea using the cDNA-AFLP approach. PLoS ONE 8 (1):e52757.
    Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends in plant science 10(2):71-78.
    Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G (2013) Dissection of Tomato Lycopene Biosynthesis through Virus-Induced Gene Silencing. Plant Physiology 163 (2):986-998.
    Fu DQ, Ghabrial S, Kachroo A (2009) GmRAR1 and GmSGTl are required for basal, R gene-mediated and systemic acquired resistance in Soybean. Molecular Plant-Microbe Interactions 22 (1):86-95.
    Froehlich JE, Itoh A, Howe GA (2001) Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiology 125 (1):306-317.
    Gabriels SHEJ, Takken FLW, Vossen JH, de Jong CF, Liu Q, Turk SCHJ, Wachowski LK, Peters J, Witsenboer HMA, de Wit PJGM, Joosten MHAJ (2006) cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Molecular Plant-Microbe Interactions 19 (6):567-576.
    Gibly A, Bonshtien A, Balaji V, Debbie P, Martin GB, Sessa G (2004) Identification and expression profiling of tomato genes differentially regulated during a resistance response to Xanthomonas campestris pv. vesicatoria. Molecular Plant-Microbe Interactions 17 (11):1212-1222.
    Glades Crop Care (1999) Crop profiles for south Florida tomatoes. http://www.gladescropcare.com/CPtomatoes. pdf:1-24. Accessed 11 June 2012.
    Grant MR, Jones JDG (2009) Hormone (Dis) harmony moulds plant health and disease. Science 324 (5928): 750-752.
    Gu KY, Yang B, Tian DS, Wu LF, Wang DJ, Sreekala C, Yang F, Chu ZQ, Wang GL, White FF, Yin ZC (2005) R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature 435 (7045):1122-1125.
    Gu YQ, Martin GB (1998) Molecular mechanisms involved in bacterial speck disease resistance of tomato. Philosophical Transactions of the Royal Society B-Biological Sciences 353 (1374):1455-1461.
    Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. The Plant Cell 12 (5):771-785.
    Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang CM, He XH, Han Y, Martin GB (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. The Plant Cell 14(4):817-831.
    Gurlebeck D, Thieme F, Bonas U (2006) Type Ⅲ effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. Journal of Plant Physiology 163 (3):233-255.
    Gao L, Tu ZJ, Millett BP, Bradeen JM (2013) Insights into organ-specific pathogen defense responses in plants:RNA-seq analysis of potato tuber-Phytophthora infestans interactions. BMC Genomics 14(1): 340.
    Hamza AA, Robene-Soustrade I, Boyer C, Laurent A, Jouen E, Wicker E, Prior P, Pruvost O, Dottin M (2010a) A new type of strain of Xanthomonas euvesicatoria causing bacterial spot of tomato and pepper in Grenada. Plant Disease 94 (10):1264-1264.
    Hamza AA, Robene-Soustrade I, Jouen E, Gagnevin L, Lefeuvre P, Chiroleu F, Pruvost O (2010b) Genetic and pathological diversity among Xanthomonas strains responsible for bacterial spot on tomato and pepper in the southwest Indian ocean region. Plant Disease 94 (8):993-999.
    Hert AP, Roberts PD, Momol MT, Minsavage GV, Tudor-Nelson SM, Jones JB (2005) Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains. Applied and Environmental Microbiology 71 (7):3581-3588.
    Hoffman T, Schmidt JS, Zheng XY, Bent AF (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiology 119 (3): 935-949.
    Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. The Plant Journal 30 (3):315-327.
    Horvath DM, Stall RE, Jones JB, Pauly MH, Vallad GE, Dahlbeck D, Staskawicz BJ, Scott JW (2012) Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PloS ONE 7 (8):e42036.
    Hotson A, Chosed R, Shu HJ, Orth K, Mudgett MB (2003) Xanthomonas type Ⅲ effector XopD targets SUMO-conjugated proteins in planta. Molecular Microbiology 50 (2):377-389.
    Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, Cao S, Liu Y (2012) Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics 287 (6):495-513
    Huang CH, Vallad GE (2011) Evaluation of Actigard for management of bacterial spot of tomato, Spring 2010. Plant Disease Management Reports 5:V066.
    Hutton SF, Scott JW, and Jones JB (2010a) Inheritance of resistance to bacterial spot race T4 from three tomato breeding lines with differing resistance backgrounds. Journal of the American Society for Horticultural Science 135(2):150-158.
    Hutton SF, Scott JW, Yang W, Sim S-C, Francis DM, Jones JB (2010b) Identification of QTL associated with resistance to bacterial spot race T4 in tomato. Theoretical and Applied Genetics 121 (7): 1275-1287.
    Liu J, Liu X, Dai L, Wang G (2007) Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. Journal of Genetics and Genomics 34 (9):765-776.
    Jones JB, Scott JW (1986) Hypersensitive response in tomato to Xanthomonas campestris pv. vesicatoria. Plant Disease 70(4):337-339.
    Jones JB, Bouzar H, Somodi GC, et al (1998a) Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. vesicatoria in Florida. Phytopathology 88:33-38.
    Jones JB, Stall RE, Bouzar H (1998b) Diversity among Xanthomonads pathogenic on pepper and tomato. Annu Rev Phytopathol 36:41-58.
    Jones JB, Bouzar H, Stall RE, Almira EC, Roberts PD, Bowen BW, Sudberry J, Strickler PM, Chun J (2000) Systematic analysis of xanthomonads(Xanthomonas spp.) associated with pepper and tomato lesions. International Journal of Systematic and Evolutionary Microbiology 50:1211-1219.
    Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW (2004) Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology 27 (6):755-762.
    Jones JB, Lacy GH, Bouzar H, Minsavage GV, Stall RE, Schaad NW (2005) Bacterial spot-Worldwide distribution, importance and review. Proceedings of the 1st International Symposium on Tomato Diseases (695):27-33.
    Jorgensen JH (1996) Effect of three suppressors on the expression of powdery mildew resistance genes in barley. Genome 39 (3):492-498.
    Kabelka E, Yang WC, Francis DM (2004) Improved tomato fruit color within an inbred backcross line derived from Lycopersicon esculentum and L-hirsutum involves the interaction of loci. Journal of the American Society for Horticultural Science 129 (2):250-257.
    Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38:355-360.
    Kavitha R, Umesha S (2007) Prevalence of bacterial spot in tomato fields of Karnataka and effect of biological seed treatment on disease incidence. Crop Protection 26 (7):991-997.
    Kim KH, Kang YJ, Kim DH, Yoon MY, Moon JK, Kim MY, Van K, Lee SH (2011) RNA-Seq analysis of a Soybean near-isogenic line carrying bacterial leaf pustule-resistant and-susceptible alleles. DNA Research 18 (6):483-497.
    Kim SH, Nikolaeva EV, Kang S (2013) Molecular diagnosis of bacterial spot pathogens on pepper and tomato in Pennsylvania[C]//PHYTOPATHOLOGY.3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA:AMER PHYTOPATHOLOGICAL SOC,103(6):74-74.
    Kornev KP, Matveeva EV, Pekhtereva ES, Polityko VA, Ignatov AN, Punina NV, Schaad NW (2009) Xanthomonas species causing bacterial spot of tomato in the Russian Federation. Ii International Symposium on Tomato Diseases 808:243-245.
    Kumagai MH, Donson J, Dellacioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences of the United States of America 92 (5):1679-1683.
    Lelliot RA, Stead DE (1987) Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific Publication Ltd., Oxford.
    Li Q, Xie QG, Smith-Becker J, Navarre DA, Kaloshian I (2006) Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Molecular Plant-Microbe Interactions 19 (6):655-664.
    Li Cy, Deng Gm, Yang J, Viljoen A, Jin Y, Kuang RB, Zuo CW, Lv ZC, Yang QS, Sheng O, Wei YR, Hu CH, Dong T and Yi Gj (2012) Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporwn f. sp cubense tropical race 4. BMC Genomics 13: 374.
    Liu YL, Schiff M, Dinesh-Kumar SP (2002a) Virus-induced gene silencing in tomato. The Plant Journal 31 (6):777-786.
    Liu YL, Schiff M, Marathe R, Dinesh-Kumar SP (2002b) Tobacco Rarl, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. The Plant Journal 30 (4):415-429.
    Lin YT, Jan FJ, Lin CW, Chung CH, Chen JC, Yeh SD, Ku HM. (2013) Differential gene expression in response to Papaya ringspot virus infection in Cucumis metuliferus using cDNA-amplified fragment length polymorphism analysis. PLoS ONE 8:e68749.
    Major IT, Nicole MC, Duplessis S, Seguin A (2010) Photosynthetic and respiratory changes in leaves of poplar elicited by rust infection. Photosynthesis Research 104 (1):41-48.
    Melech-Bonfil S, Sessa G (2010) Tomato MAPKKKe is a positive regulator of cell-death signaling networks associated with plant immunity. The Plant Journal 64(3):379-391.
    Melech-Bonfil S, Sessa G (2011) The S1MKK2 and S1MPK2 genes play a role in tomato disease resistance to Xanthomonas campestris pv. vesicatoria. Plant signaling & behavior 6 (1):154-156.
    Mbega ER, Mabagala RB, Adriko J, Lund OS, Wulff EG, Mortensen CN (2012) Five species of Xanthomonads associated with bacterial leaf spot symptoms in tomato from Tanzania. Plant Disease 96 (5):760-761.
    Metz M, Dahlbeck D, Morales CQ, Al Sady B, Clark ET, Staskawicz BJ (2005) The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana. The Plant Journal 41 (6):801-814.
    Miranda M, Ralph SG, Mellway R, White R, Heath MC, Bohlmann J, Constabel CP (2007) The transcriptional response of hybrid poplar (Populus trichocarpa x P-deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Molecular Plant-Microbe Interactions 20 (7):816-831.
    Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JDG, Parker JE (2002) Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. The Plant Cell 14 (5):979-992.
    Muskett PR, Parker JE (2003) Role of SGT1 in the regulation of plant R gene signalling. Microbes and Infection 5 (11):969-976.
    Ng P, Wei CL, Sung WK, Chiu KP, Lipovich L, Ang CC, Gupta S, Shahab A, Ridwan A, Wong CH, Liu ET, Ruan Y (2005) Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nature Methods 2 (2):105-111.
    Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany 56 (421): 2907-2914.
    O'Donnell PJ, Schmelz EA, Moussatche P, Lund ST, Jones JB, Klee HJ (2003) Susceptible to intolerance-a range of hormonal actions in a susceptible Arabidopsis pathogen response. The Plant Journal 33 (2): 245-257.
    Orlowska E, Fiil A, Kirk H-G, Llorente B, Cvitanich C (2012) Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthom infestans. Plant Cell Reports 31 (1):187-203.
    Pasquali G, Goddijn OJM, Dewaal A, Verpoorte R, Schilperoort RA, Hoge JHC, Memelink J (1992) Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Molecular Biology 18 (6):1121-1131.
    Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DAW, Xiao SY, Coleman MJ, Dow M, Jones JDG, Shirasu K, Baulcombe DC (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proceedings of the National Academy of Sciences of the United States of America 99 (16):10865-10869.
    Pei C, Wang H, Zhang J, Wang Y, Francis DM, Yang W (2012) Fine mapping and analysis of a candidate gene in tomato accession PI 128216 conferring hypersensitive resistance to bacterial spot race T3. Theoretical and Applied Genetics 124 (3):533-542.
    Pohronezny K, Volin RB (1983) The effect of bacterial spot on yield and quality of fresh-market tomatoes. Hortscience 18(1):69-70.
    Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol MT, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB (2011) Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics 12(1):146.
    Polesani M, Desario F, Ferrarini A, Zamboni A, Pezzotti M, et al. (2008) cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genomics 9:142.
    Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink E, van Oeveren J, de Wit E, Boorsma A, Voetdijk B, van der Spek H, Grivell LA, Simons G (2003) Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics 82 (6):606-618.
    Robbins MD, Darrigues A, Sim SC, Masud MAT, Francis DM (2009) Characterization of hypersensitive resistance to bacterial spot race T3 (Xanthomonas perforans) from tomato accession PI 128216. Phytopathology 99 (9):1037-1044.
    Roemer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318 (5850):645-648.
    Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. The Plant Cell 10 (6):937-946.
    Santaella M, Suarez E, Lopez C, Gonzalez C, Mosquera G, Restrepo S, Tohme J, Badillo A, Verdier VR (2004) Identification of genes in cassava that are differentially expressed during infection with Xanthomonas axonopodis pv. manihotis. Molecular Plant Pathology 5 (6):549-558.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C-T method. Nature Protocols 3 (6):1101-1108.
    Schornack S, Ballvora A, Gurlebeck D, Peart J, Baulcombe D, Baker B, Bonas U, Lahaye T (2004) The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3.The Plant Journal 37(1):46-60.
    Schornack S, Meyer A, Romer P, Jordan T, Lahaye T (2006) Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. Journal of Plant Physiology 163 (3):256-272.
    Scott JW, Stall RE, Jones JB, Somodi GC (1996) A single gene controls the hypersensitive response of Ha 7981 to race 3 (T3) of the bacterial spot pathogen. Rpt Tomato Genet Coop 46:23.
    Scott J W, Miller S A, Stall R E, et al (1997) Resistance to race T2 of the bacterial spot pathogen in tomato. HortScience 32(4):724-727.
    Scott JW, Jones JB, Somodi GC (2001) Inheritance of resistance in tomato to race T3 of the bacterial spot pathogen. Journal of the American Society for Horticultural Science 126 (4):436-441.
    Scott JW, Francis DM, Miller SA, Somodi GC, Jones JB (2003) Tomato bacterial spot resistance derived from PI 114490; Inheritance of resistance to race T2 and relationship across three pathogen races. Journal of the American Society for Horticultural Science 128 (5):698-703.
    Sharlach M, Dahlbeck D, Liu L, Chiu J, Jimenez-Gomez JM, Kimura S, Koenig D, Maloof JN, Sinha N, Minsavage GV, Jones JB, Stall RE, Staskawicz BJ (2013) Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from Solarium pennellii LA716. Theoretical and Applied Genetics 126 (3): 601-609.
    Shi C, Chaudhary S, Yu K, Park SJ, Navabi A, McClean PE (2011) Identification of candidate genes associated with CBB resistance in common bean HR45(Phaseolus vulgaris L.) using cDNA-AFLP. Molecular Biology Reports 38 (1):75-81.
    Stall RE, Jones JB, Minsavage GV (2009) Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. Annual review of phytopathology 47:265-284.
    Starr MP, Stephens WL (1964) Pigmentation and taxonomy of genus xanthomonas. Journal of Bacteriology 87 (2):293.
    Strauss T, van Poecke RMP, Strauss A, Roemer P, Minsavage GV, Singh S, Wolf C, Strauss A, Kim S, Lee HA, Yeom SI, Parniske M, Stall RE, Jones JB, Choi D, Prins M, Lahaye T (2012) RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome. Proceedings of the National Academy of Sciences of the United States of America 109 (47):19480-19485.
    Sun HJ, Wei JL, Zhang JY, Yang WC (2014) A comparison of disease severity measurements using image analysis and visual estimates using a category scale for genetic analysis of resistance to bacterial spot in tomato. European Journal of Plant Pathology 139:125-136.
    Tamir-Ariel D, Navon N, Burdman S (2007) Identification of genes in Xanthomonas campestris pv. vesicatoria induced during its interaction with tomato. Journal of Bacteriology 189 (17):6359-6371.
    Tang X, Tang Z, Huang S, Liu J, Liu J, Shi W, Tian X, Li Y, Zhang D, Yang J, Gao Y, Zeng D, Hou P, Niu X, Cao Y, Li G, Li X, Xiao F, Liu Y (2013) Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development. Planta 238(5):923-936.
    Teper D, Salomon D, Sunitha S, Kim JG, Mudgett MB, Sessa G (2014) Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14-3-3 isoforms to suppress effector-triggered immunity. The Plant Journal 77 (2):297-309.
    Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Buttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klosgen U, Patschkowski T, Ruckert C, Rupp O, Schneiker S, Schuster SC, Vorholter FJ, Weber E, Puhler A, Bonas U, Bartels D, Kaiser O (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. Journal of Bacteriology 187 (21):7254-7266.
    Tor M, Gordon P, Cuzick A, Eulgem T, Sinapidou E, Mert-Turk F, Can C, Dangl JL, Holub EB (2002) Arabidopsis SGTlb is required for defense signaling conferred by several downy mildew resistance genes. The Plant Cell 14 (5):993-1003.
    Torp J, Jorgensen JH (1986) Modification of barley powdery mildew resistance gene Ml-a12 by induced mutation. Canadian Journal of Genetics and Cytology 28 (5):725-731.
    Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL (2002) RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. The Plant Cell 14 (5):1005-1015.
    Truman W, Bennettt MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proceedings of the National Academy of Sciences of the United States of America 104 (3):1075-1080.
    Turnage MA, Muangsan N, Peele CG, Robertson D (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. The Plant Journal 30 (1):107-114.
    Vallad GE, Huang CH (2011a) Evaluation of bacteriocides and Actigard for management of bacterial spot of tomato, Spring 2010. Plant Disease Management Reports 5:V067.
    Vallad GE, Huang CH (2011b) Evaluation of Quintec for management of bacterial spot of tomato, Spring 2010. Plant Disease Management Reports 5:V061.
    van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology 44:135-162.
    Vuylsteke M, Peleman JD, van Eijk MJT (2007) AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nature Protocols 2 (6):1399-1413.
    Wang Y, Gao M, Li Q, Wang L, Wang J, Jeon JS, Qu N, Zhang Y, He Z (2008) OsRAR1 and OsSGTl physically interact and function in rice basal disease resistance. Molecular Plant-Microbe Interactions 21 (3):294-303.
    Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq:an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136-138.
    Wang H, Hutton SF, Robbins MD, Sim SC, Scott JW, Yang W, Jones JB, Francis DM (2011) Molecular Mapping of Hypersensitive Resistance from Tomato'Hawaii 7981'to Xanthomonas perforans Race T3. Phytopathology 101 (10):1217-1223.
    Wasternack C (2007) Jasmonates:An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany 100 (4):681-697.
    Whalen MC, Wang JF, Carland FM, Heiskell ME, Dahlbeck D, Minsavage GV, Jones JB, Scott JW, Stall RE, Staskawicz BJ (1993) Avirulence gene avrRxv from Xanthomonas campestris pv. vesicatoria specifies resistance on tomato line Hawaii 7998. TOMATO LINE HAWAH-7998. Molecular Plant-Microbe Interactions 6 (5):616-627.
    Yang WC, Miller SA, Scott JW, Jones JB, Francis DM (2005a) Mining tomato genome sequence databases for molecular markers:application to bacterial resistance and marker assisted selection. Acta Horticulturae 695:241-250.
    Yang WC, Sacks EJ, Lewis-Ivey ML, Miller SA, Francis DM (2005b) Resistance in Lycopersicum esculentum intraspecific crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology 95:519-527.
    Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO:a web tool for plotting GO annotations. Nucleic Acids Research 34(suppl 2):293-297.
    Yu ZH, Wang JF, Stall RE, Vallejos CE (1995) Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) dye. Genetics 141 (2): 675-682.
    Zaccardelli M, Campanile F, Villecco D, Parisi M (2011) Infections of bacterial spot on processing tomato in Southern Italy. Acta Horticulturae (914):71-73.
    Zhang S, Mersha Z, Fu Y (2011) Field evaluation of Actigard for bacterial spot disease management on tomato in South Florida,2010. Plant Disease Management Reports 5:V016.
    Zhou JM, Tang XY, Martin GB (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. TheEMBO Journal 16(11): 3207-3218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700