用户名: 密码: 验证码:
红树植物红海榄、白骨壤叶片衰老过程中氮磷和单宁含量季节动态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以红海榄(Rhizophora stylosa)和白骨壤(Avicennia marina)为研究对象,比较分析了两种红树植物叶片的氮磷含量、内吸收效率、内吸收程度、成熟叶氮磷比及季节变化;同时对红海榄叶片总酚、缩合单宁含量、蛋白质结合能力及季节变化规律进行了研究;并探讨了红海榄叶片总酚与氮磷含量及成熟叶氮磷比之间的相关性,研究结果显示:
     1.广西山口两种红树植物叶片氮磷含量存在明显的种间差异,红海榄四个季节成熟叶和衰老叶中氮含量平均值分别为:9.35±0.88 mg·g~(-1)和1.45±0.92mg·g~(-1),白骨壤分别为:17.26±1.43 mg·g~(-1)和6.07±1.34 mg·g~(-1):红海榄四个季节成熟叶和衰老叶中磷含量平均值分别为:1.04±0.08 mg·g~(-1)和0.55±0.09mg·g~(-1),白骨壤分别为:1.58±0.26 mg·g~(-1)和0.67±0.08 mg·g~(-1),白骨壤叶片氮磷含量均显著高于红海榄。
     随着叶片的衰老,两种红树叶片氮磷含量都显著降低,发生了不同程度的内吸收,红海榄和白骨壤氮平均內吸收效率分别为84.79%和64.71%,磷平均内吸收效率分别为47.75%和57.05%;两种红树氮内吸收效率显著高于磷内吸收效率,另外,与白骨壤相比,红海榄具有较高的氮内吸收效率,而磷内吸收效率则低于白骨壤,随着季节的变化,两种红树氮磷含量基本都表现为冬春季较高,夏秋季较低。
     红海榄成熟叶氮磷比随着季节的变化在8.24±0.29~9.79±1.12之间波动,白骨壤则在9.21±0.91~13.98±1.87之间波动,表明两种红树都存在氮限制,并且红海榄比白骨壤表现更为明显的氮限制。
     红海榄和白骨壤衰老叶中氮含量分别为0.15%和0.61%,磷含量分别为0.06%和0.07%,根据Killingbeck完全内吸收的标准(衰老叶中氮、磷含量低于0.7%和0.05%),表明了两种红树均为氮的完全内吸收和磷的不完全内吸收。
     2.广东湛江高桥、广西山口两个地点红海榄成熟叶和衰老叶氮磷含量存在差异;湛江高侨红海榄叶片氮磷含量显著高于山口。
     随着叶片的衰老,两个地点红海榄叶片氮磷含量都显著降低,发生了不同程度的内吸收,湛江高桥红海榄氮内吸收效率(83.51%)与山口红海榄氮内吸收效率(84.79%)接近;湛江高桥红海榄磷内吸收效率(43.28%)与山口红海榄磷内吸收效率(47.75%)基本一致,两个地点红海榄均具有比较高的氮内吸收效率,并且氮内吸收效率显著高于磷内吸收效率;随着季节的变化,两个地点红海榄叶片氮磷含量基本都表现为冬春季较高,夏秋季较低。
     湛江高桥红海榄四个季节氮磷比在8.72±0.46~9.76±0.79之间,且波动平缓,表明同样存在氮限制。
     湛江高桥和山口红海榄衰老叶中的氮平均含量分别为:0.20%和0.15%,磷平均含量分别为0.07%和0.06%,根据标准,同样两个地点红海榄均为氮的完全内吸收和磷的不完全内吸收。
     3.广东湛江高桥和广西山口红海榄叶片总酚、缩合单宁及蛋白质结合能力,除了两个地点成熟叶之间蛋白质结合能力存在显著差异外,其余均不存在显著差异,两个地点红海榄叶片总酚含量不同季节介于125.13±37.06~286.55±58.06mg·g~(-1)之间,总缩合单宁含量不同季节介于47.69±7.83~127.42±4.81 mg·g~(-1)之间,并且总缩合单宁中将近90%以上都是可溶缩合单宁,结合缩合单宁只占总缩合单宁的一小部分。两个地点红海榄蛋白质结合能力介于182.76±54.19~1047.49±182.73 cm~2·g~(-1)之间。
     随着叶片的衰老,两个地点总酚、可溶缩合单宁、总缩合单宁及蛋白质结合能力基本升高,但结合缩合单宁下降:随着季节的变化,总酚和缩合单宁含量基本为秋冬较高,春夏较低,蛋白质结合能力则表现为冬春强于秋夏,与上述氮磷含量的季节变化规律相类似。
     4.两个地点红海榄总酚和氮磷及成熟叶氮磷比的相关性分析表明:红海榄叶片总酚含量与氮磷含量之间均存在显著负相关,但与成熟叶氮磷比之间没有显著相关性。
     5.与白骨壤相比,红海榄适应潮间带生境的营养保存机制体现在以下方面:高的营养内吸收效率,低的营养损失以及高的单宁水平。
The seasonal dynamics of nitrogen and phosphorus concentrations,resorption efficiency(RE) and resorption proficiency(RP) of N and P,nitrogen to phosphorus ratios(N:P) in the leaves of Rhizophora stylosa and Avicennia marina were studied. In addition,the seasonal dynamics of total phenolics(TP),extractable condensed tannin(ECT),bound condensed tannin(BCT) and total condensed tannin(TCT) contents and protein precipitation capacity(PPC) of R.stylosa leaves at two sites were discussed.Furthermore,the relationships between TP and nutrient concentrations,TP and N:P of R.stylosa leaves were also studied.
     The results showed as follows:
     1.There was significant difference in the N and P concentrations of the leaves between R.stylosa and A.marina at Shankou,Guangxi province.The N concentrations of mature and senescent leaves averaged 9.35±0.88 mg·g~(-1) and 1.45±0.92 mg·g~(-1) for R.stylosa,and 17.26±1.43 mg·g~(-1) and 6.07±1.34 mg·g~(-1) for A. marina respectively.The P concentrations of mature and senescent leaves averaged 1.04±0.08 mg·g~(-1) and 0.55±0.09mg·g~(-1) for R.stylosa,and 1.58±0.26 mg·g~(-1) and 0.67±0.08 mg·g~(-1) for A.marina respectively.The N and P concentrations of A. marina leaves were significantly higher than those of R.stylosa leaves.
     The N and P concentrations both decreased with leaf senescence for R.stylosa and A.marina,indicating that N and P were resorbed before leaf abscission.The average N resorption efficiency was 84.79%for R.stylosa and 64.71%for A.marina, and the P resorption efficiency averaged 47.75%for R.stylosa and 57.05%for A. marina.The NRE of R.stylosa was higher than that of A.marina,but the PRE was lower than that of A.marina.The seasonal dynamics of N and P concentrations were similar for R.stylosa and A.marina,higher in winter and spring than that in summer and autumn.
     The N:P ratio in the mature leaves ranged from 9.02±0.90 to 11.20±2.14 for R. stylosa and from 9.21±0.91 to 13.98±1.87 for A.marina respectively,indicating both R.stylosa and A.marina were N-limited.The NRE was higher than PRE for two species at the same site.In addition,average N and P concentrations in senescent leaves were 0.15%and 0.06%for R.stylosa,and 0.61%and 0.07%for A.marina respectively,which were in the range indicative of complete resorption of N,and incomplete resorption of P.
     2.The N and P concentrations of R.stylosa leaves at Gaoqiao of Zhanjiang city in Guangdong province were higher than those of R.stylosa leaves at Shankou in Guangxi province.The N and P concentrations of R.stylosa at both sites decreased with leaf senescence.The NRE and PRE of R.stylosa at Gaoqiao were close to those at Shankou.The N and P concentrations of R.stylosa leaves at both sites were higher in winter and spring than that in summer and autumn.
     The N:P ratio in mature leaves of R.stylosa at Gaoqiao ranged from 8.72±0.46 to 9.76±0.79,also showing N-limitation.The NRE for R.stylosa at two sites were higher than PRE.In addition,average N and P concentrations in senescent leaves were 0.20%and 0.07%at Gaoqiao,and 0.15%and 0.06%at Shankou,which were in the range indicative of complete resorption of N,and incomplete resorption of P.
     3.There was no significant difference for TP,ECT,BCE,TCT of R.stylosa at both sites,except for the PPC in mature leaves of R.stylosa at Shankou and Gaoqiao. The TP and TCT contents of R.stylosa at both sites were from 125.13±37.06 mg·g~(-1) to 286.55±58.06 mg·g~(-1),and from 47.69±7.83 to 127.42±4.81 mg·g~(-1) respectively. ECT accounted for 90%in TCT.The PPC of R.stylosa at both sites were from 182.76±54.19 to 1047.49±182.73 cm~2·g~(-1).TP,ECT,TCT concents and PPC of R.stylosa leaves almost increased,while BCT decreased with senescence at two sites.TP,ECT, TCT contents were higher in autumn and winter than that in spring and summer, while,PPC,which was consistent with the observation of nutrients,was higher in spring and winter than in summer and autumn.
     4.There was a significantly negative linear relationship between TP and nutrient contents,while no significant relationships were observed between TP in mature and senescent leaves and N:P of R.stylosain leaves at both sites.
     5.Compared to A.marina,R.stylosa had more advantage mechanisms of adaptation in the intertidal coastline surroundings,including higher resorption efficiency,lower nutrient losses and higher tannins level.
引文
[1]Kost J.A.,Boerner R.E.J.Foliar nutrient dynamics and nutrient use efficiency in Comus-Florida[J].Oecologia,1985,66(4):602-606.
    [2]Aerts R.Nutrient use efficiency in evergreen and deciduous species from heathlands[J].Oecologia,1990,84:391-397.
    [3]Killingbeck K.T.The terminological jungle revisited:making a case for use of the term resorption[J].Oikos,1986,46:263-264.
    [4]Killingbeck K.T.Nutrients in senesced leaves:keys to the search for potential resorption and resorption proficiency[J].Ecology,1996,77(6):1716-1727.
    [5]Rejmankova E.Nutrient resorption in wetland macrophytes:comparison across several regions of different nutrient status[J].New Phytologist,2005,167(2):471-482.
    [6]Chapin Ⅲ F.S.,Kedrowski R.A.Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees[J].Ecology 1983,64:376-391.
    [7]Aerts R.Nutrient resorption from senescing leaves of perennials:are there general patterns?[J].Journal of Ecology,1996,84(4):597-608.
    [8]苏波,韩兴国,黄建辉,渠春梅.植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略[J].生态学报,2000,20(2):335-343.
    [9]Wang D.,Bormann F.H.,Lugo A.E.,Bowden Y.D.Comparison of nutrient use efficiency and biomass production in five tropical tree taxa[J].Forest Ecology and Management,1991,46:1-21.
    [10]Boerner R.E.J.Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility[J].Journal of Applied Ecology,1984,21:1029-1040.
    [11]Bridgham S.D.,Pastor J.,McClaugherty C.A.,Richardson C.J.Nutrient-use efficiency:A litterfall index,a model,and a test along a nutrient-availability gradient in North Carolina Peatlands[J].The American Naturalist,1995,145(1):1-21.
    [12]Arco J.M.D.,Escudero A.,Garrido M.V.Effects of site characteristics on nitrogen retranslocation from senescing leaves[J].Ecology 1991,72:701-708.
    [13]Chapin Ⅲ F.S.,Moilanen L.Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves[J].Ecology,1991,72:709-715.
    [14]彭少麟.热带亚热带恢复生态学研究与实践[M].北京:科学出版社,2003.
    [15]王文卿,林鹏.树木叶片衰老过程中养分元素内吸收研究[J].武汉植物学研究,1999,17(增刊):117-122.
    [16]Nambiar E.K.S.,Fife D.N.Growth and nutrient retranslocation in needles of radiate pine in relation to nitrogen supply[J].Annals of Botany,1987,60:147-156.
    [17]G(u|¨)sewell S.,Koerselman M.Variation in nitrogen and phosphorus concentrations of wetland plants[J].Perspectives in Plant Ecology Evolution and Systematics,2002,5:37-61.
    [18]G(u|¨)sewell S.N:P ratios in terrestrial plants:variation and functional significance[J].New Phytologist,2004,164(2):243-266.
    [19]Sinclair A.G.,Morrison J.D.,Smith L.C.,Dodds K.G.Determination of optimum nutrient element ratios in plant tissue[J].Journal of Plant Nutrition,1997,20(9):1069-1083.
    [20]Schmidt 1.K.,Michelsen A.,Jonasson S.Effects of labile soil carbon on nutrient partitioning between an arctic graminoid and microbes[J].Oecologia,1997,112(4):557-565.
    [21]Phoenix G.K.,Booth R.E.,Leake J.R.,Read D.J.,Grime J.P.,Lee J.A.Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland[J].New Phytologist,2004,161(1):279-289.
    [22]Tomassen H.B.M.,Smolders A.J.P.,Limpens J.,Lamers L.P.M.,Roelofs J.G.M.Expansion of invasive species on ombrotrophic bogs:desiccation or high N deposition?[J].Journal of Applied Ecology,2004,41(1):139-150.
    [23]Sterner R.,Elser J.Ecological stoichiometry:The biology of elements from molecules to the biosphere[M].Princeton:Princeton University Press,2002.
    [24]Koerselman W.,Meuleman A.F.The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation[J].Journal of Applied Ecology,1996,33(6):1441-1450.
    [25]林鹏.中国红树林生态系[M].北京:科学出版社,1997.
    [26]王文卿.红树植物叶片发育及衰老过程中元素动态和抗盐特征的研究[D].厦门:厦门大学博士论文,1997.
    [27]Mckee K.L.,Feller I.C.,Popp M.,Wanek W.Mangrove isotopic(delta N-15 and delta C-13) fractionation across a nitrogen vs.phosphorus limitation gradient[J].Ecology,2002,83(4):1065-1075.
    [28]Feller I.C.Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove(Rhizophora mangle)[J].Ecological Monographs,1995,65:477-505.
    [29]Lin G.H.,Sternberg L.L.D.S.Effects of growth form,salinity,nutrient and sulfide on photosynthesis,carbon isotope discrimination and growth of red mangroves(Rhizophora mangle L.)[J].Australian Journal of Plant Physiology,1992,19:509-517.
    [30]王文卿,林鹏.红树植物秋茄平¨红海榄叶片元素含量及季节动态的比较研究[J].生态学报,2001,21(8):1233-1238.
    [31]郑文教,林鹏,薛雄忠,陈荣华.几种红树植物叶片和胚轴碳氢氮含量[J].厦门大学学报(自然科学版),1995,34(3):437-441.
    [32]Lin Y.M.,Sternberg L.D.S.L.Nitrogen and phosphorus dynamics and nutrient resorption of rhizophora mangle leaves in south Florida,USA[J].Bulletin of Marine Science,2007,80(1):159-169.
    [33]Hutchings P.,Saenger P.Ecology of mangroves[M].St.Lucia,Qld:University of Queensland Press,1987.
    [34]Feller I.C.,Whigham D.E,McKee K.L.,Lovelock C.E.Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest,Indian River Lagoon,Florida[J].Oecologia,2003,134(3):405-414.
    [35]Lin Y.M.,Liu J.W.,Xiang P.,Lin P.,Ding Z.H.,Sternberg L.D.S.L.Tannins and nitrogen dynamics in mangrove leaves at different age and decay stages(Jiulong River Estuary,China)[J].Hydrobiologia,2007,583:285-295.
    [36]Lin Y.M.,Liu J.W.,Xiang E,Lin P.,Ye G.F.,Sternberg L.D.S.L.Tannin dynamics of propagules and leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary,Fujian,China[J].Biogeochemistry,2006,78(3):343-359.
    [37]Hernes P.J.,Benner R.,Cowie G.L.,Goni M.A.,Bergamaschi B.A.,Hedges J.I.Tannin diagenesis in mangrove leaves from a tropical estuary:A novel molecular approach[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3109-3122.
    [38] Benner R., Weliky K., Hedges J. I. Early diagenesis of mangrove leaves in a tropical estuary: molecular-level analyses of netural sugars and lignin-derived phenols [J]. Geochimica et Cosmochimica Acta, 1990,54: 1991-2001.
    [39] Hernes P. J., Hedges J. I. Determination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extracts [J]. Analytical Chemistry, 2000, 72(20): 5115-5124.
    [40] Haslam E. Plant polyphenols-vegetable tannins revisited [M]. Cambridge: Cambridge University Press, 1989.
    [41] Hemingway R. W., Karchesy J. J. Chemistry and significance of condensed tannins [M]. New York and London: Plenum Press, 1989.
    [42] Zucker W. V. Tannins: does structure determine function? An ecological perspective [J]. American Naturalist, 1983, 121:335-365.
    [43] Bryant J. P., Chapin III F. S., Klein D. R. Carbon/Nutrient balance of boreal plants in relation to vertebrate herbivory [J]. Oikos, 1983,40: 357-368.
    
    [44] Herms D., Mattson W. The dilemma of plants: to grow and defend [J]. Quarterly Review of Biology, 1992,67:283-335.
    [45] Kraus T. E. C, Dahlgren R. A., Zasoski R. J. Tannins in nutrient dynamics of forest ecosystems - a review [J]. Plant and Soil, 2003,256(1): 41-66.
    [46] Chaves N., Escuder J. C. Variation of flavonoid synthesis induced by ecological factors. In Principles and practices in plant ecology:Allelochemical interactions [M]. Boca Raton: CRC Press 1999.
    [47] Rozema J., Van de Staaij J., Bjorn L. O., Caldwell M. UV-B as an environmental factor in plant life: stress and regulation [J]. Trends in Ecology and Evolution, 1997, 12: 22-28.
    [48] Goni M. A., Hedges J. I. Potential applications of cutin derived CuO reaction products for discriminating vascular plant sources in natural environments [J]. Geochimica et Cosmochimica Acta, 1990, 54: 3073-3081.
    [49] Ellis C. J., Foo L. Y., Porter L. J. Enantiomerism: a characteristic of the proanthocyanidin chemistry of the monocotyledonae [J]. Phytochemistry, 1983, 22: 483-487.
    [50] Salminen J. P., Ossipov V., Haukioja E., Pihlaja K. Seasonal variation in the content of hydrolysable tannins in leaves of Betula pubescens[J].Phytochemistry,2001,57:15-22.
    [51]Okuda T.,Yoshida T.,Hatano T.Hydrolyzable tannins and related polyphenols[J].Fortschritte der Chemie Organischer Naturstoffe,1995,66:1-117.
    [52]阎秀峰,王洋,李一蒙.植物次生代谢及其与环境的关系[J].生态学报,2007,27(6):2554-2562.
    [53]Appel H.M.Phenolics in ecological interaction:The importance of oxidation[J].Journal of Chemical Ecology,1993,19:1521-1551.
    [54]Cates R.G.,Rhoades D.F.Patterns in the production of antiherbivore chemical defenses in plant communities[J].Biochemical Systematics and Ecology,1977,5:185-193.
    [55]Hagerman A.E.,Riedl K.M.,Jones G.A.,Sovik K.N.,Ritchard N.T.,Hartzfeld P.W.,Riechel T.L.High molecular weight plant polyphenolics(tannins) as biological antioxidants[J].Journal of Agricultural and Food Chemistry,1998,46:1887-1892.
    [56]Haslam E..Scalbert E.A.Polyphenol Complexation in Polyphenolic Phenomena[M].Paris:INRA Editions.1993.
    [57]Benoit R.E.,Starkey R.L.Enzyme inactivation as a factor in the inhibition of decomposition or organic matter by tannins[J].Soil Science,1968,t05:203-208.
    [58]Benoit R.E.,Starkey R.L.,Basaraba J.Effect of purified plant tannin on decomposition of some organic compounds and plant materials[J].Soil Science,1968,105:153-158.
    [59]Basaraba J.,Starkey R.Effect of plant tannins on decomposition of organic substances[J].Soil Science,1966,101:17-23.
    [60]Howard P.J.A.,Howard D.M.Ammonification of complexes prepared from gelatin and aqueous extracts of leaves and freshly-fallen litter of trees on different soil types[J].Soil Biology and Biochemistry,1993,25:1249-1256.
    [61]Hagerman A.E.,Butler L.G.Choosing appropriate methods and standards for assaying tannins[J].Journal of Chemical Ecology,1989,15:1795-1810.
    [62]Osborne N.J.T.,McNeill D.M.Characterisation of Leucaena condensed tannins by size and protein precipitation capacity[J].Journal of the Science of Food and Agriculture,2001,81(11):1113-1119.
    [63]Yoneda S.,Nakatsubo F.Effects of the hydroxylation patterns and degrees of polymerization of condensed tannins on their metal-chelating capacity[J].Journal of Wood Chemistry and Technology,1998,18(2):193-205.
    [64]Schnitzer M.,Barr M.,Hartensein R.Kinetics and characteristics of humic acids produced from simple phenols[J].Soil Biology and Biochemistry,1984,16(44):371-376.
    [65]Zech W.,Senesi N.,Guggenberger G.Factors controlling humification and mineralization of soil organic matter in the tropics[J].Geoderma,1997,79:117-161.
    [66]Driebe E.M.,Whitham T.G.Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition[J].Oecologia,2000,123(1):99-107.
    [67]向平.植物单宁MALDI-TOP质谱分析[D].厦门:厦门大学博士论文,2007.
    [68]Lin P.,Fu Q.Environmental Ecology and Economic Utilization of Mangroves in China [M].Beijing and Berlin Heidelberg:China Higher Education Press and Springer Verlag,2000.
    [69]Hsu F.L.,Nonaka G.I.,Nishioka I.Tannins and related compounds,ⅩⅩⅪ.Isolation and characterization of proanthocyanidins in Kandelia candel[J].Chemical and Pharmaceutical Bulletin,1985,33:3142-3152.
    [70]林益明,向平,林鹏.红树林单宁的研究进展[J].海洋科学,2005,29(3):59-63.
    [71]Coulson C.B.,Davies R.I.,Lewis D.A.Polyphenols in plant humus and soil.ⅠPolyphenols of leaves litter and supercial humus from mull and mot sites[J].Journal of Soil Science,1960a,11:20-29.
    [72]Schimel J.P.,Cates R.G.,Ruess R.The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga[J].Biogeochemistry,1998,42:221-234.
    [73]范航清,陈光华,何斌源.山口红树林滨海湿地与管理[M].北京:海洋出版社,2005.
    [74]Graham H.D.Stabilization of the Prussian blue color in the determination of polyphenols [J].Journal of Agricultural and Food Chemistry,1992,40:801-805..
    [75]Terrill T.H.,Rowan A.M.,Douglas G.B.,Barry T.N.Determination of extractable and bound condensed tannin concentrations in forage plants,protein concentrate meals and cereal grains[J].Journal of the Science of Food and Agriculture,1992,58(3):321-329.
    [76]Hagerman A.E.Radial diffusion method for determining tannin in plant extracts[J]. Journal of Chemical Ecology,1987,13(3):437-449.
    [77]Hagerman A.E.Tannin Chemistry,http://www.users.muohio.edu/hagermae/[Z].2002.
    [78J 中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983.
    [79]华南热带作物研究院.用比色法测定橡胶样品氮含量[J].1974,5:12-13.
    [80]林鹏.红树植物[M].北京:海洋出版社,1984.
    [81]Walbridge M.R.Phosphorus availability in acid organic soils of the lower north Carolina coastal plain[J].Ecology,1991,72(6):2083-2100.
    [82]张石城.植物的抗寒生理[M].北京:农业出版社,1990.
    [83]Parker G.Throughfall and Stemflow in the Forest Nutrient Cycle[J].Advances in Ecological Research,1983,13:58-135.
    [84]Lindberg S.,Loven G.,Richter D.Atmospheric deposition and canopy interations of majorions in a forest[J].Science,1986.231:141-145.
    [85]Pugnaire F.I.,Chapin Ⅲ F.S.Controls over nutrient resorption from leaves of evergreen Mediterranean species[J].Ecology,1993,74(1):124-129.
    [86]尹毅,林鹏.红海榄红树林的氮磷积累和生物循环[J].生态学报,1993,13(3):221-227.
    [87]王文卿,王瑁.中国红树林[M].北京:科学出版社,2007.
    [88]Aerts R.,Chapin Ⅲ F.S.The mineral nutrition of wild plants revisted:A re-evaluation of processes and patterns[J].Advances in Ecological Research,2000,30:1-67.
    [89]Vitousek P.M.,Douglas R.T.Foliar nutrients during long-term siol development in hawaiian montane rain forest[J].Ecology,1995,76(3):712-720.
    [90]Huang J.J.,Wang X.H.,Yah E.R.Leaf nutrient concentration,nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China[J].Forest Ecology and Management,2007,239:150-158.
    [91]Thompson K,,Parkinson J.,Band S.,Spencer R.A comparative study of leaf nutrient concentrations in a regional herbaceous ?[J].New Phytologist,1997,136:679-689.
    [92]Comelissen J.H.C.,Werger M.J.A.,Castro-Diez P.,Rheenen J.W.A.,Rowland A.P.Foliar nutrients in relation to growth,allocation and leaf traits in seedlings of a wide range of woody plant species and types[J].Oecologia,1997,111:460-469.
    [93]Kobe R.K.,Lepczyk C.A.,lyer M.Resorption efficiency decreases with increasing green leaf nutrients in a global data set[J].Ecology,2005,86(10):2780-2792.
    [94]Batten G.,Wardlaw l.Senescence and grain development in wheat plants grown with contrasting phosphorus regimes[J].Australian Journal of Plant Physiology,1987,14:253-265.
    [95]Lucassen E.,Bobbink R.,Smolders A.,van der Ven P.,Lamers L.,Roelofs J.Interactive effects of low pH and high ammonium levels responsible for the decline of Cirsium dissectum(L.) Hill[J].Plant Ecology,2002,165:45-52.
    [96]William H.S.,Evan H.D.,Billings W.D.Nutrient-use efficiency of woody plants on contrasting soils in the Western Great Basin,Nevada[J].Ecology,1989,70(1):105-113.
    [97]Lockaby B.G.,Conner W.H.N:P balance in wetland forests:productivity across a biogeochemical continuum[J].Botanical Review,1999,65(2):171-185.
    [98]Cebrián J.,Williams M.,McClelland J.,Valiela I.The dependence of heterotrophic consumption and C accumulation on autotrophic nutrient content in ecosystems[J].Ecology Letters,1998,1:165-170.
    [99]Cole C.,Heil R.Phosphorus effects on terrestrial nitrogen cycling[J].Ecological Bulletin Stockholm,1981,33:363-374.
    [100]Eisele K.,Schimel D.,Kapustka L.,Parton W.Effects of available P and N:P ratios on non-symbiotic dinitrogen fixation in tallgras prairie soils.[J].Oecologia,1989,79:491-474.
    [101]Vitousek P.,Hobbie S.Heterotrophic nitrogen fixation in decomposing litter:patterns and regulation[J].Ecology,2000,81:2366-2376.
    [102]吴彪.福建九龙江口几种红树植物繁殖体胎生发育的单宁动态及其抗盐适应[D].厦门:厦门大学硕士学位论文,2006.
    [103]Wang X.F.,Thomas D.W.,Briggs C.J.,Oomah B.D.,Campbell C.G.,Sheila W.Total phenolics and condensed tannins in field pea(Pisum sativum L.) and grass pea(Lathyrus sativus L.)[J].Euphytica,1998,101:97-102.
    [104]Constantinides M.,Fownes J.H.Nitrogen mineralization from leaves and litter of tropical plants:Relationship to nitrogen,lignin and soluble polyphenol concentrations[J].Soil Biology and Biochemistry,1994,26:49-55.
    [105] Mafongoya P. L, Giller K. E., Palm C. A. Decomposition and nitrogen release patterns of three prunings and litter [J]. Agroforestry Systems, 1998, 38: 77-97.
    [106] Teklay T. Seasonal dynamics in the concentrations of macronutrients and organic constituents in green and senesced leaves of three agroforestry species in southern Ethiopia [J]. Plant and Soil, 2004, 267(1-2): 297-307.
    [107] Covelo F., Gallardo A. Temporal variation in total phenolics concentration of Quercus robur in forested and harvested stands in northwestern Spain [J]. Canadian Journal of Botany 2001,79: 1262-1269.
    [108] Koricheva J. The carbon-nutrient balance hypothesis is dead; long live the carbon-nutrient balance hypothesis? [J]. Oikos, 2002, 98:537-539.
    [109] Alonso-Amelot M. E., Oliveros-Bastidas A., Calcagno-Pisarelli M. P. Phenolics and condensed tannins of high altitude Pteridium arachnoideum in relation to sunlight exposure, elevation, and rain regime [J]. Biochemical Systematics and Ecology, 2007, 35(1): 1-10.
    [110] Schlesinger W. H., Hasey M. M. Decomposition of Chaparral shrub foliage: Losses of organic and inorganic constituents from deciduous and evergreen leaves [J]. Ecology, 1981,62:762-774.
    [111] Hattenschwiler S., Vitousek P. M. The role of polyphenols in terrestrial ecosystem nutrient cycling [J]. Trends in Ecology & Evolution, 2000, 15(6): 238-243.
    [112] Waterman P. G., Mole S. Analysis of Plant Metabolites [M]. London: Blackwell Scientific Publications, 1994.
    [113] Felicity S. J., Barry T. N., Lascano C, Palm B. The extractable and bound condensed tannin content of leaves from tropical tree, shrub and forage legumes [J]. Journal of the Science of Food and Agriculture, 1996,71(1): 103-110.
    [114] Gallet C., Nilsson M. C., Zackrisson O. Phenolic metabolites of ecological significance in Empetrum hermaphroditum leaves and associated humus [J]. Plant and Soil, 1999, 210( I): 1-9.
    [115] Toutain F. Les humus forestiers structures et modes de functionnement. [J]. Revue Forestiere Francaise, 1981, 33: 449-477.
    
    [116] Gallet C., Lebreton P. Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem [J]. Soil Biology and Biochemistry, 1995, 27: 157-166.
    [117] Makkar H. P. S., Dawra R. K.., Singh B. Changes in tannin content, polymerisation and protein precipitation capacity in Oak(Quercus incana) leaves with maturity [J]. Journal of the Science of Food and Agriculture, 1988, 44: 301-307.
    [118] Appel H. M., Schultz J. C. Oak tannins reduce effectiveness of thuricide (Basillus thurngiensis) in the gypsy moth (Lepidoptera lymantriidae) [J]. Plant Resistance, 1994, (87): 1736-1742.
    [119] Gebauer R. L. E., Strain B. R., Reynolds J. F. The effect of elevated CO_2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblollypne (Pinustaeda) [J]. Oecologia, 1998, 113: 29-36.
    [120] Penuelas J., Estiarte M. Can elevated CO_2 affect secondary metabolism and ecosystem function? [J]. Tree, 1998, 13: 20-24.
    [121] Booker F. L., Maier C. A. Atmospheric carbon dioxideirrigation andfertilization effects on phenolic and nitrogencon-centrations in loblolly pine(Pinnstaeda)needles [J]. Tree Physiology, 2001, 21: 609-616.
    [122] Hamilton J. G., Zangerl A. R., DeLucia E. H., Berenbaum M. R. The carbon-nutrient balance hypothesis: its rise and fall [J]. Ecology Letters, 2001, 4(1): 86-95.
    [123] Haukioja E., Ossipov V., Koricheva J., Honkanen T., Larsson S., Lempa K. Biosynthetic origin of carbon-based secondary compounds: cause of variable responses of woody plants to fertilization [J]. Chemoecology, 1998, 8: 133-139.
    [124] Mudaua F. N., Soundy P., Toitb E. S. d., Olivier J. Variation in polyphenolic content of Athrixia phylicoides (L.) (bush tea)leaves with season and nitrogen application [J]. South African Journal of Botany, 2006, 72: 398-402.
    [125] Kainulanaine P., Holopainen J. K., Palom K. V., Holopainen T. Effects of nitrogen fertilization on secondary chemistry and ectomycorrhizal state of Scots pine seedlings and on growth of grey pine aphid. [J]. Journal of Chemical Ecology, 1996, 22: 617-636.
    [126] Mallik A. U. Conversion of temperate forests into heaths: role of ecosystem disturbance and ericaeous plants [J]. Environmental Management, 1995, 19(5): 675-684.
    [127] Preston C. M. Condensed tannins of salal (Gaultheria shallon pursh): a contributing factor to seedling 'growth check'on northern Vancouver Island? In Plant Polyphenols: Chemistry and Biology. [M]. New York: Kluwer Academic/Plenum Publishers, 1999.
    [128] Lee C., Howarth R. W., Howes B. I. Steros in decomposing Spartina alterniflora and the use of ergosterol in estimating the contribution of fungi to detrital nitrogen [J]. Limnology and Oceanography, 1980, 25: 290-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700