用户名: 密码: 验证码:
蛋白折叠液相色谱法复性与同时纯化重组人Flt3配体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,蛋白折叠液相色谱(Protein folding liquid chromatography, PFLC)法越来越多地被应用于包涵体蛋白复性与同时纯化中,PFLC的特点是能在色谱过程将目标蛋白与其它组分分开的同时,还能在色谱柱上进行变性蛋白折叠。本论文①对在大肠杆菌(E.coli)中表达的重组人酪氨酸激酶配体(Recombined human Flt3 ligand, rhFL)进行了摇瓶中菌种培养条件的优化,获得了高表达的rhFL包涵体蛋白;②经超声破碎、离心并多次洗涤沉淀获得纯化的包涵体,并将其溶解于8 mol/L脲中得到变性蛋白的抽提液;③利用高效疏水相互作用色谱(HPHIC)法,包括一个分析型HPHIC柱、半制备型HPHIC饼和新型单柱二维液相色谱(A novel two-dimensional liquid chromatography using a single column,2DLC-1C)柱进行rhFL包涵体复性与同时纯化的保留特征和复性规律的研究,为大规模制备rhFL蛋白和将其用于临床研究奠定基础。
     本论文共有四个部分:
     1.文献综述:对近年来不同机理的PFLC法在蛋白质折叠与同时纯化中的进展和应用,以及FL的结构、生物学功能及临床应用的重要性进行了综述。
     2.摇瓶中rhFL菌种培养条件的优化:研究了摇瓶中培养基、培养条件(温度、诱导时间、pH、接种量)对rhFL表达的影响。实验结果表明,在培养温度为35℃、选用初始pH值为6.6的SOB培养基、甘油做为碳源、诱导4 h、接种量为4%的条件下,rhFL蛋白的表达量可占菌体总蛋白的47.4%。
     3. HPHIC法对E.coli表达的rhFL包涵体复性与同时纯化:分别选用不同规格的色谱柱(分析型色谱柱、半制备型色谱饼),通过色谱流动相(小分子添加剂、流速)和进样量对rhFL复性与纯化过程中质量回收率的影响,筛选出rhFL包涵体蛋白在HPHIC柱上复性与纯化的最佳条件和保留规律,初步用荧光光谱法考察了rhFL在色谱柱上复性前后荧光强度变化,并用HPHIC饼对rhFL进行规模化制备。结果分别在固定相配基为苯基的分析型色谱柱、半制备色谱饼上复性与同时纯化rhFL包涵体的质量回收率可达45.9%、67.0%,纯度分别为93.5%、92.1%。对G-CSF依赖株NFS-60的细胞增殖作用的活性结果表明,当与G-CSF协同作用时,平均比活为7.42×108IU/mg。
     4.新型单柱二维色谱柱对rhFL包涵体复性与同时纯化:新型2DLC-1C柱是在一根色谱柱上兼具有了HIC和IEC两种保留模式,已被用于活性蛋白的快速分离。本工作选用了2DLC-1C柱的HIC模式与和以苯基为配基的HPHIC柱,比较两种色谱柱对rhFL复性与同时纯化过程中流动相的洗脱的盐浓度变化对目标蛋白质量回收率的影响。实验结果显示,在以苯基为配基的色谱柱上,当流动相(NH4)2SO4盐浓度为3.0 mol/L时,rhFL的质量回收率可达到48.7%。而新型的2DLC一1C柱,当流动相为2.0 mol/L(NH4)2SO4时,即可获得的质量回收率为48.5%。从而证实新型填料的2DLC-1C柱在较低盐浓度下可达到较高的质量回收率。此结果也提示这种新型的双保留模式色谱柱,有可能降低规模化制备rhFL蛋白的成本。
Protein folding liquid chromatography (PFLC) is increasingly being applied to the refolding and simultaneous purification of inclusion body proteins in recent years. The characteristics of PFLC are that it can not only separate the target protein from other constituents, but also make denatured protein folding in the column. In this dissertation,①the shaking flask culture conditions of recombinant human Flt3 ligand (rhFL) expressed in E.coli were studied, and high-level expressed rhFL inclusion bodies were obtained.②The cells were disrupted by ultrasonication, purified inclusion bodies were colleceted after centrifugation and repeated washing and were dissolved in 8 mol/L urea, obtaining the denatured protein extracts.③Retention feature and renaturation rules of rhFL in the process of refolding and simultaneous purification were investigated by using high performance hydrophobic interaction chromatography (HPHIC) method, in which an analytical HPHIC column, a semi-preparative HPHIC cake and a novel two-dimensional liquid chromatography by a single column were separately employed, this provided a foundation for large scale preparation of rhFL protein and its clinical research applications.
     The dissertation consists of four sections:
     1. Literature review:The recent advance and applications of PFLC methods with different mechanisms in the protein refolding and simultaneous purification were reviewed, and the FL structure, biological functions, its importance in clinical applications were also reviewe.
     2. Optimization of conditions for expressing rhFL in the shaking flask:-Influence of culture media in the shaking flask, culture conditions (temperature, inducing time, pH, inoculation amount) on the expression of rhFL were investigated. The experimental results showed that when the culture temperature was 35℃, initial pH of SOB culture medium was 6.6, glycerol was selected as a carbon source, inducing time was 4 h, inoculation amount was 4%, the expression amount of rhFL protein could be up to 47.4% of the total bacterial protein.
     3. Refolding and simultaneous purification of rhFL from inclusion bodies expressed in E.coli by HPHIC:Chromatographic columns with different dimensions (analytical chromatographic column, semi-preparative chromatographic cake) were separately used, effects of chromatographic mobile phase (small molecular additives, flow rate) and loading volume on the mass recovery of rhFL during the refolding and purification were investigated, the optimum conditions and retention rules of the renaturation and purification of rhFL on HPHIC column were obtained, fluorescence intensity variations of rhFL inclusion bodies before and after the refolding in the chromatographic column were preliminarily investigated by fluorescence spectrometry, and rhFL was prepared in the large scale by using HPHIC cake. The results showed that the mass recovery of rhFL could reach to 45.9% and 67.0% respectively after refolded and purified by using the analytical chromatographic column and the semi-preparative chromatographic cake, both being packed with stationary phase with phenyl ligands, the purity were 93.5% and 92.1% respectively. The activity results of cell proliferation on G-CSF dependent cell line NFS-60 showed that the average specific bioactivity of rhFL was 7.42×108 IU/mg when synergized with G-CSF.
     4. Refolding and simultaneous purification of rhFL inclusion bodies by a novel two-dimensional liquid chromatography:2DLC-1C comumn, which was a novel single column with both HIC and IEC retention models, has been employed for fast separation of active proteins. In this work, a 2DLC-1C column was used in HIC mode to investigate effect of salt concentration in the mobile phase on the renaturation and simultaneous purification of rhFL, and the results were compared with a chromatographic column with phenyl ligands. On the chromatographic column with phenyl ligands, when the (NH4)2SO4 concentration in the mobile phase was 3.0 mol/L, the mass recovery of rhFL was 48.7%, while the mass recovery was 48.5% on the 2DLC-1C column when the (NH4)2SO4 concentration in the mobile phase was 2.0 mol/L, which shows that a relatively high mass recovery can be obtained on the 2DLC-1C column at lower salt concentration. This makes it possible to reduce cost in preparation of rhFL.
引文
[1]Jana S, Deb J K. Strategies for efficient production of heterologous proteins in Escherichia coli[J]. Appl Microbiol Biotechnol,2005,67(3):289-298
    [2]Yin J C, Li G X, Ren X F, et al. Select what you need:A comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes[J]. J Biotechnol,2007,127:335-347
    [3]Vermasvuori R, Koskinen J, Salonen K, et al. Production of recombinant HIV-1 nef protein using different expression host systems:A techno-economical comparison[J]. Biotechnol Prog,2009,25(1):95-102
    [4]Nuc P, Nuc K. Recombinant protein production in Escherichia coli[J]. Postepy Biochem, 2006,52(4):448-456
    [5]Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli[J]. Nat Biotechnol,2004,22(11):1399-1408
    [6]Geng X D, Wang C Z. Protein folding liquid chromatography and its recent developments[J]. J Chromatogr B,2007,849(1-2):69-80
    [7]Dong X Y, Shi G Q, Li W, et al. Modeling and simulation of fed-batch protein refolding process[J]. Biotechnol Prog,2004,20(4):1213-1219
    [8]Cui Z F. Protein separation using ultrafiltration-an example of multi-scale complex systems[J]. China Particuology,2005,3(6):343-348
    [9]Rinas U, Hoffmann F, Betiku E, et al. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli[J]. J Biotechnol,2007,127(2):244-257
    [10]Das U, Hariprasad G, Ethayathulla A S, et al. Inhibition of protein aggregation: Supramolecular assemblies of arginine hold the key[J]. PLoS ONE,2007,2(11): 1176-1185
    [11]Li F, Dong P J, Zhuang Q F. Novel column-based protein refolding strategy using dye-ligand affinity chromatography based on macroporous biomaterial[J]. J Chromatogr A, 2009,1216(20):4383-4387
    [12]Geng X D, Wang L L. Liquid chromatography of recombinant proteins and protein drugs[J]. J Chromatogr B,2008,866(1-2):133-153
    [13]耿信笃,白泉,王超展.蛋白折叠液相色谱法[M].北京:科学出版社,2006:1-8,169-170
    [14]耿信笃,常建华,李华儒,等.用制备型高效疏水色谱复性和预分离重组人干扰素-Gamma [J].高技术通讯,1991,1(1):1-8
    [15]Wang C Z, Geng X D,Wang D W, et al. Purification of recombinant bovine normal prion protein PrP(104-242) by HPHIC[J]. J Chromatogr B,2004,806(2):185-190
    [16]Wang L L, Wang C Z, Geng X D. Expression, renaturation and simultaneous purification of recombinant human stem cell factor in Escherichia coli[J]. Biotechnol Lett,2006, 28(13):993-997
    [17]吴丹,高栋,白泉,等.重组人干扰素-γ的制备与鉴定[J].色谱,2008,26(2):206-211
    [18]Wu D, Wang C Z, Geng X D. An Approach for Increasing the Mass Recovery of Proteins Derived from Inclusion Bodies in Biotechnology[J]. Biotechnol Prog,2007, 23(2):407-412
    [19]Liu Y, Srinivasan K, Pohl C, et al. Recent developments in electrolytic devices for ion chromatography[J]. J Biochem Bioph Methods,2004,60(3):205-232
    [20]王增,马会勤,张文,等.包涵体蛋白的分离和色谱法体外复性纯化研究进展[J].中国生物工程杂志,2009,29(7):102-107
    [21]Li M, Su Z G. Refolding human lysozyme produced as an inclusion body by urea concentration and pH gradient ion exchange chromatography[J]. Chromatographia,2002, 56(1-2):33-38
    [22]Li M, Su Z G. Refolding of superoxide dismutase by ion exchange chromatography [J]. Biotechnol Lett,2002,24(11):919-923
    [23]Creighton T E. Folding of proteins adsorbed reversibly to ion-exchange resins [J]. UCLA Symposia on Molecular and Cellular Biology,1986,39:249-257
    [24]Li M, Zhang G F, Su Z G. Dual gradient ion-exchange chromatography improved refolding yield of lysozyme [J]. J Chromatogr A,2002,959(1-2):113-120
    [25]Cho T H, Ahn S J, Lee E K. Refolding of protein inclusion bodies directly from E.coli homogenate using expanded bed adsorption chromatography [J]. Bioseparation,2002, 10(4-5):189-196
    [26]Machold C, Schlegl R, Buchinger W, et al. Continuous matrix assisted refolding of a-lactalbumin by ion exchange chromatography with recycling of aggregates combined with ultradiafiltration[J]. J Chromatogr A,2005,1080(1):29-42
    [27]Bai Q, Chen G, Liu J B, et al. Renaturation and Purification of rhGM-CSF with Ion-Exchange Chromatography [J]. Biotechnol Prog,2007,23(5):1138-1142
    [28]Wang C Z, Wang L L, Geng X D. Renaturation with simultaneous purification of rhG-CSF from Escherichia coli by ion exchange chromatography[J]. Biomed Chromatogr,2007,21(12):1291-1296
    [29]Zhang Q M, Wang C Z, Liu J F, et al. A novel protein refolding method integrating ion exchange chromatography with artificial molecular chaperone[J]. Chin Chem Lett,2008, 19(5):595-598
    [30]Yoshimoto M, Shimanouchi T, Umakoshi H, et al. Immobilized liposome chromatography for refolding and purification of protein[J]. J Chromatogr B,2000, 743(1-2):93-99
    [31]Yoshimoto M, Kuboi R. Oxidative Refolding of Denatured/Reduced Lysozyme Utilizing the Chaperone-like Function of Liposomes and Immobilized Liposome Chromatography [J]. Biotechnol Prog,1999,15(3):480-487
    [32]Yoshimoto M, Kuboi R, Yang Q. Immobilized liposome chromatography for studies of protein-membrane interactions and refolding of denatured bovine carbonic anhydrase[J]. J Chromatogr B,1998,712(1-2):59-71
    [33]Dong X Y,Yang H, Sun Y. Lysozyme refolding with immobilized GroEL column chromatography[J]. J Chromatogr A,2000,878(2):197-204
    [34]Li J J, Venkataramana M, Sanyal S, et al. Immobilized β -cyclodextrin polymer coupled to agarose gel properly refolding recombinant Staphylococcus aureus elongation factor-G in combination with detergent micelle[J]. Protein Expr Purif,2006,45(1):72-79
    [35]Shi Z X, He F, Wang L L, et al. Expression, refolding, and purification of a truncated human Delta-likel, a ligand of Notch receptors[J]. Protein Expr Purif,2008,59(2): 242-248
    [36]Wang C Z, Wang L L, Geng X D. Optimization of refolding with simultaneous purification of recombinant human granulocyte colony-stimulating factor from Escherichia coli by immobilized metal ion affinity chromatography[J]. Biochemical Engineering Journal,2009,43(2):197-202
    [37]Wang D M, Shi L M. High-level expression, purification, and in vitro refolding of soluble tumor necrosis factor-related apoptosis inducing ligand (TRAIL)[J]. Appl Biochem Biotechnol,2009,157(1):1-9
    [38]Batas B, Chaudhuri J B. Protein refolding at high concentration using size-exclusion
    chromatography [J]. Biotechnology and bioengineering,1996,50(1):16-23
    [39]王骊丽,耿信笃.脲梯度体积排阻色谱复性并同时纯化rhSCF[J].第四军医大学学报,2005,26(15):1349-1351
    [40]Wang C Z, Wang L L, Geng X D. Renaturation of Recombinant Human Granulocyte Colony-Stimulating Factor Produced from Escherichia coli Using Size Exclusion Chromatography[J]. J Liquid Chromatogr & Related Tech,2006,29(2):203-217
    [41]Xu Z R, Yang Y M, Gui Q F, et al. Expression, purification, and characterization of recombinant lumbrokinase PI239 in Escherichia coli[J]. Protein Expr Purif,2010,69(2): 198-203
    [42]Fan X D, Xu D S, Lu B, et al. Improving the refolding of NT A protein by urea gradient and arginine gradient size-exclusion chromatography[J]. J Biochem Biophys Methods, 2008,70(6):1130-1138
    [43]Geng X D, Ke C Y, Chen G. On-line separation of native proteins by two-dimensional liquid chromatography using a single column[J]. J Chromatogr A,2009,1216(16): 3553-3562
    [44]Murugan E, Kong R, Sun H H, et al. Expression, purification and characterization of the acyl carrier protein phosphodiesterase from Pseudomonas Aeruginosa[J]. Protein Expr Purif,2010,71:132-138
    [45]Wang H, Liu X X, He Y S, et al. Expression and purification of an anti-clenbuterol single chain Fv antibody in Escherichia coli[J]. Protein Expr Purif,2010,72:26-31
    [46]Hwang S M, Kang H J, Bae S W, et al. Refolding of lysozyme in hydrophobic interaction chromatography:Effects of hydrophobicity of adsorbent and salt concentration in mobile phase[J]. Biotechnology and Bioprocess Engineering,2010, 15(2):213-219
    [47]Akbari N, Khajeh K, Rezaie S, et al. High-level expression of lipase in Escherichia coli and recovery of active recombinant enzyme through in vitro refolding[J]. Protein Expr Purif,2010,70(1):75-80
    [48]Ke C Y, Li J J, Liu Z L, Geng X D. A new approach for characterizing the intermediate feature of a-chymotrypsin refolding by hydrophobic interaction chromatography[J]. Int J Mol Sci,2009,10(2):616-628
    [49]Nageswara R P, Gullipalli D, Abani K B. Bacterially expressed recombinant WD40 domain of human Apaf-1 [J]. Protein Expr Purif,2009,67:53-60
    [50]Stefan A, Ugolini L, Martelli E, et al. Expression and purification of the recombinant mustard trypsin inhibitor 2 (MTI2) in Escherichia coli[J]. Journal of Bioscience and Bioengineering,2009,108(4):282-285
    [51]Hunter A K, Wang X, Suda E J, et al. Separation of Product Associating E. coli Host Cell Proteins OppA and DppA from Recombinant Apolipoprotein A-Imilano in an Industrial HIC Unit Operation[J]. Biotechnol Prog,2009,25(2):446-453
    [52]Wang H J, Dai J X, Li B H, et al. Expression, purification, and characterization of an immunotoxin containing a humanized anti-CD25 single-chain fragment variable antibody fused to a modified truncated Pseudomonas exotoxin A[J]. Protein Expr Purif, 2008,58:140-147
    [53]Wang C Z, Liu J H, Wang L L, Geng X D. Solubilization and refolding with simultaneous purification of recombinant human stem cell factor [J]. Appl Biochem Biotechnol,2008,144:181-189
    [54]Sharma K, Cherish B P V, Sasidhar P, et al. Recombinant human epidermal growth factor inclusion body solubilization and refolding at large scale using expanded-bed adsorption chromatography from Escherichia coli[J]. Protein Expr Purif,2008,60(1): 7-14
    [55]Ciaccio N A, Moreno M L, Bauer R L, Laurence J S. High-yield expression in E. coli and refolding of the bZIP domain of activating transcription factor 5[J]. Protein Expr Purif,2008,62:235-243
    [56]Cherish B P V, Srinivas V K, Krishna M V, et al. Renaturation, purification and characterization of streptokinase expressed as inclusion body in recombinant E.coli[J].J Chromatogr B,2008,861:218-226
    [57]Geng X D, Bai Q, Zhang Y J, et al. Refolding and purification of interferon-gamma in industry by hydrophobic interaction chromatography [J]. J Biotechnol,2004,113: 137-149
    [58]Geng X D, Bai Q. Mechanism of simultaneously refolding and purification of proteins by hydrophobic interaction chromatographic unit and applications[J]. Sci Chin, Ser B:
    Chem,2002,45:655-669
    [59]Schlegl R, Iberer G, Machold C, et al. Continuous matrix-assisted refolding of proteins[J]. J Chromatogr A,2003,1009(1-2):119-132
    [60]Gueorguieva L, Vallejo L F, Rinas U, et al. Discontinuous and continuous separation of the monomeric and dimeric forms of human bone morphogenetic protein-2 from renaturation batches[J]. J Chromatogr A,2006,1135(2):142-150
    [61]Verheesen P, ten Haaft M R, Lindner N, et al. Beneficial properties of single-domain antibody fragments for application in immunoaffinity purification and immuno-perfusion chromatography[J]. Biochim Biophys Acta,2003,1624(1-3):21-28
    [62]Wang W, Nema S, Teagarden D. Protein aggregation-Pathways and influencing factors[J].Int J Pharm,2010, Feb 24 [Epub ahead of print]
    [63]Chen J, Liu Y, Li X, et al. Cooperative effects of urea and L-arginine on protein refolding[J]. Protein Expr Purif,2009,66(1):82-90
    [64]Tsumoto K, Arakawa T, Chen L. Step-Wise Refolding of Recombinant Proteins[J]. Curr Pharm Biotechnol,2010, Feb 16 [Epub ahead of print]
    [65]Gong BL, Wang L L, Wang C Z, et al. Preparation of hydrophobic interaction chromatographic packings based on monodisperse poly (glycidylmethacrylate-co-ethylenedimethacrylate) beads and their application[J]. J Chromatogr A,2004,1022: 33-39
    [66]Jensen P K, Harrata A K, Lee C S. Monitoring Protein Refolding Induced by Disulfide Formation Using Capillary Isoelectric Focusing-Electrospray Ionization Mass Spectrometry[J]. Anal Chem,1998,70(10):2044-2049
    [67]Patra A K, Udgaonkar J B. Characterization of the folding and unfolding reactions of single-chain monellin:evidence for multiple intermediates and competing pathways[J].Biochemistry,2007,46(42):11727-11743
    [68]Nabuchi Y, Murao N, Asoh Y, et al. Probing the unfolding and refolding processes of carbonic anhydrase 2 using electrospray ionization mass spectrometry combined with pH jump[J]. Anal Chem,2007,79(21):8342-8349
    [69]Neuweiler H, Sharpe T D, Johnson C M, et al. Downhill versus barrier-limited folding of BBL 2:mechanistic insights from kinetics of folding monitored by independent
    tryptophan probes[J]. J Mol Biol,2009,387(4):975-985
    [70]Schulenburg C, Low C, Weininger U, et al. The folding pathway of onconase is directed by a conserved intermediate[J].Biochemistry,2009,48(35):8449-8457
    [71]Tomer O, Eldad B I, Menachem P, et al. Early Closure of a Long Loop in the Refolding of Adenylate Kinase:A Possible Key Role of Non-Local Interactions in the Initial Foldin-g Steps[J]. J Mol Biol,2009,385:1230-1242
    [72]Rosnet O, Marchetto S, Delapeyriere O, et al. Murine FLt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family[J]. Oncogene,1991,6(9): 1641-1650
    [73]Rosnet O, Schiff C, Pebusque M J, et al. Human FLT3/FLK2 gene:cDNA cloning and expression in hematopoietic cells[J]. Blood,1993,82(4):1110-1119
    [74]Lyman S D, James L, Vanden Bos T, et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor:a proliferative factor for primitive hematopoietic cells[J]. Cell,1993,75(6):1157-1167
    [75]Lyman S D, James L, Johnson L, et al. Cloning of the human homologue of the murine flt3 ligand:a growth factor for early hematopoietic progenitorcells[J]. Blood,1994, 83(10):2795-2801
    [76]Terrill M C, Culpepper J, Campbell D, et al. Biochemical and genetic characterization of multiple splice variants of the Flt3 ligand[J]. Blood,1996,88(9):3371-3382
    [77]Fichelson S. The FLT3/FLK2 ligand:structure, functions and prospects[J]. Eur Cytokine Network,1998,9(1):7-22
    [78]Hannum C, Culpepper J, Campbell D, et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of hematopoietic stem cells and is encoded by variant RNAs[J]. Nature,1994,368(6472):643-648
    [79]Gilliland D G, Griffin J D. The roles of FLT3 in hematopoiesis and leukemia[J]. Blood, 2002,100(5):1532-1542
    [80]Jacobsen S E, Okkenhaug C, Myklebust J, et al. The FLT3 ligand polently and direcely stimulates the growth and expansion of prinitive murine bone marrow progenitor cells in vitro:synergistic interactions with interleukin (IL)-11, IL-12 and other hematopoietic growth factors[J]. J Exp Med,1995,181(4):1357-1363
    [81]Bharadwaj A S, Agrawal D K. Flt3 ligand generates morphologically distinct semimature dendritic cells in ovalbumin-sensitized mice[J]. Experimental and Molecular Pathology, 2007,83(1):17-24
    [82]Shaw S G, Maung A A, Steptoe R J, et al. Expansion of functional NK cells in multiple tissue compartments of mice treated with Flt3-ligand:implications for anti-cancer and anti-viral therapy [J]. J Immunol,1998,161(6):2817-2824
    [83]Antonysamy M A, Thomson A W. FLT3 LIGAND(FL) AND ITS INFLUENCE ON IMMUNE REACTIVITY[J]. Cytokine,2000,12(2):87-100
    [84]Parajuli P, Pisarev V, Sublet J, Steffel A, Varney M, et al. Immunization with wild-type p53 gene sequences coadministered with Flt3 ligand induces, an antigen-specific type 1 T-cell response [J]. Cancer Res,2001,61(22):8227-8234.
    [85]Du N, Feng K, Luo C J, et al. Radioprotective effect of FLT3 ligand expression regulated by Egr-1 regulated element on radiation injury of SCID mice[J]. Experimental Hematology,2003,31(3):191-196
    [86]祝怀平,孙自敏,汪健,等.FL基因的克隆及在大肠杆菌中表达[J].中国生化药物杂志,2001,22(3):109-111
    [87]黄河,段秀梅,谭岩,等.人Flt3配体基因的克隆及在Hela细胞中的表达[J].中国肿瘤临床,2006,33(16):923-926
    [88]吴成利,师建国,颜真,等.人FLT3配体的克隆、表达与纯化[J].第四军医大学学报,2002,23(10):872-876
    [89]张友鸿,周希亚,陈松森,等.人FL在大肠杆菌中的表达及表达产物的纯化和生物学活性测定[J].基础医学与临床,2002,22(2):125-129
    [90]郁建锋,李大为,马弘冰,等.重组人FLt3配体在大肠杆菌中的高效表达和生物学活性的鉴定[J].现代免疫学,2005,25(2):108-112
    [91]刘小林,段秀梅,方艳秋,等.Flt3配体基因原核表达载体的构建、表达、纯化及生物学活性鉴定[J].吉林大学学报(医学版),2007,33(2):381-384
    [1]王骊丽,耿信笃.源于大肠杆菌蛋白的表达、液相色谱复性与纯化新进展[J].中国科
    学B辑:化学,2009,39(8):711-727
    [2]Zhang C, Fan D, Shang L A, et al. Optimization of Fermentation Process for Human-like Collagen Production of Recombinant Escherichia coli Using Response Surface Methodology[J]. Chinese Journal of Chemical Engineering,2010,18(1):137-142
    [3]Li Z P, Zhang X, Tan T W. Lactose-induced production of human soluble B lymphocyte stimulator(hsBLyS) in E.coli with different culture strategies[J]. Biotechnol Lett,2006,28: 477-483
    [4]杨海麟,王长城,张玲,等.产胆固醇氧化酶重组大肠杆菌的发酵培养基和诱导条件的优化[J].食品与生物技术学报,2009,28(5):670-674
    [5]顾维新.重组大肠杆菌的发酵与外源基因的表达[J].海峡药学,2007,V19(2):85-87.
    [6]Patnaik R, Zolandz R R, Green D A, et al. L-tyrosine production by recombinant Escherichia coli:fermentation optimization and recovery [J]. Biotechnol Bioeng,2008, 99(4):741-752
    [7]Sambrook J, Fritsch E F, ManiatisT著.金冬雁,黎孟枫等译.分子克隆实验指南(第二版)[M].北京:科学出版社,1999:908-911
    [8]李丹,韩睿,李轩,等.转TNF-a基因大肠杆菌培养条件的优化[J].生物技术,2008,18(2):60-64
    [9]Janice L, Carnie T, Peter L, et al. Development of a high cell density fed-batch bioprocess for the heterologous production of 6-deoxyerythronolide B in Escherichia coli[J]. J Biotechnol,2004,110(1):95-103
    [10]Zhang H B, Mao X Q, Wang Y J, et al. Optimization of culture conditions for high-level expression of dextransucrase in Escherichia coli[J]. Journal of Food, Agriculture & Environment,2009,7(3-4):75-78
    [11]张嗣良,李凡超编著.发酵过程中pH及溶解氧的测量与控制[M].上海:华东化工学院出版社,1992
    [12]申烨华,刘江峰,王骊丽等.摇瓶中重组大肠杆菌生产人γ-干扰素工艺优化[J].西北大学学报(自然科学版),2006,36(4):571-574
    [1]Geng X D, Wang C Z. Protein folding liquid chromatography and its recent developments[J]. J Chromatogr B,2007,849(1-2):69-80
    [2]Wu D, Wang C Z, Geng X D. An Approach for Increasing the Mass Recovery of Proteins Derived from Inclusion Bodies in Biotechnology [J]. Biotechnol Prog,2007,23(2): 407-412
    [3]刘彤.蛋白质复性及同时纯化理论、装置及应用[D].西安:西北大学,1999
    [4]耿信笃,冯文科,边六交,等.一种变性蛋白复性并同时纯化方法[P].中国专利:ZL92102727.3
    [5]Geng X D, Zhang Y J. Caky chromatographic column and the method for producing it and its applications[P]. US:7208085B2,2007
    [6]Liu T, Geng X D. The separation efficiency of biopolymers with short column in liquid chromatography [J]. Chin.Chem.Lett.,1999,10:219-222
    [7]张养军.制备型色谱饼的理论、性能及应用研究[D].西安:西北大学,2001
    [8]李翔,张养军,耿信笃.半制备型色谱柱与色谱饼性能的比较[J].色谱,2002,20(2):
    133-136
    [9]Geng X D, Chang X Q. High-performance hydrophobic interaction chromatography as a tool for protein refolding[J]. J Chromatogr,1992,599:185-194
    [10]Geng X D, Wang C Z. Protein folding liquid chromatography and its recent developments[J]. J Chromatogr B,2007,849:69-80
    [11]吴丹,高栋,白泉,等.重组人干扰素-γ的制备与鉴定[J].色谱,2008,26(2):206-211
    [12]闵一,陈刚,耿信笃.动力学因素对液相色谱分离整体蛋白的影响[J].色谱,2009,27(5):717-723
    [13]王骊丽,耿信笃,韩骅.可溶型人干细胞因子cDNA的克隆表达、复性与纯化[J].细胞与分子免疫学杂志,2004,20(4):402-405
    [14]Bai Q, Kong Y, Geng X D. Studies on renaturation with simultaneous purification of recombinant human proinsulin from E.coli with high performance hydrophobic interaction chromatography [J]. J Liquid Chromatogr & Related Tech,2003,26(5): 683-695
    [15]Wang C Z, Geng X D, Wang D W, et al. Purification of recombinant bovine normal prion protein PrP(104-242) by HPHIC[J]. J Chromatogr B,2004,806(2):185-190
    [16]李瑛,白泉,陈刚,等.疏水型色谱饼对人血清蛋白质组学样品的快速分离与制备[J].色谱,2008,26(3):331-334
    [17]姚文兵,吴丹,耿信笃.分析型色谱饼对人血清白蛋白的快速纯化[J].色谱,2004,22(2):121-123
    [18]Geng X D, Bai Q, Zhang Y J, et al. Refolding and purification of interferon-gamma in industry by hydrophobic interaction chromatography [J]. J Biotechnol,2004,113: 137-149
    [19]Wang C Z, Wang L L, Geng X D. High Recovery Refolding of rhG-CSF from Escherichia coli, Using Urea Gradient Size Exclusion Chromatography[J]. Biotechnol Progr,2008,24(1):209-213
    [20]贾佳,王骊丽,高栋,耿信笃.高效疏水相互作用色谱法复性与同时纯化重组人Flt3配体的包涵体蛋白[J].色谱,2010,28[印刷中]
    [21]Guan Y X, Fei Z Z, Luo M, et al. Chromatographic refolding of recombinant human interferon gamma by an immobilized sht GroEL191-345 column[J]. J Chromatogr A, 2006,1107:192-197
    [22]Langenhof M, Leong S S J, Pattenden L K, et al. Controlled oxidative protein refolding using an ion-exchange column[J]. J Chromatogr A,2005,1069:195-201
    [23]Harrowing S R, Chaudhuri J B. Effect of column dimensions and flow rates on size-exclusion refolding of β-lactamase[J]. J. Biochem. Biophys. Methods,2003,56(1-3): 177-188
    [24]Gu Z Y, Zhu X N, Ni S W, et al. Inhibition of aggregation by media selection, sample loading and elution in size exclusion chromatographic refolding of denatured bovine carbonic anhydrase B[J]. J. Biochem. Biophys. Methods,2003,56(1-3):165-175
    [25]Wang S S S, Chang C K, Liu H S. Step change of mobile phase flow rates to enhance protein folding in size exclusion chromatography[J]. Biochem Eng J,2006,29(1-2):2-11
    [26]王彦.液-固界面的吸附及溶菌酶在液相色谱中复性的应用研究[D].西安:西北大学,2002
    [1]Giddings J C. Concepts and comparisons in multidimensional separation[J]. Journal of High Resolution Chromatography and Chromatography Communications,1987,10(5): 319-23
    [2]柯从玉,耿信笃.活性蛋白液相色谱快速分离新方法[J].科学通报,2008,53(3):614-616
    [3]Geng X D, Ke C Y, Chen G. On-line separation of native proteins by two-dimensional liquid chromatography using a single column[J]. J Chromatogr A,2009,1216(16): 3553-3562
    [4]孙萱,杨云,耿信笃.弱阳离子交换色谱中疏水作用对蛋白保留的影响[J].分析科学学报,2010,26(1):6-10
    [5]Liu P, Yang H Y, Geng X D. Mixed retention mechanism of proteins in weak anion-exchange chromatography[J]. J Chromatogr A,2009,1216:7497-7504
    [6]Kato Y, Nakatani S, Nakamura K, et al. Hydrophobicitygradient columns for the separation of trypsin inhibitor by hydrophobicinteraction chromatography at low salt concentration[J]. J Chromatogr A,2003,986(1):83-88
    [7]Kato Y, Nakamura K, Kitamura T, et al. Hydrophobic interaction chromatography at low salt concentration for the capture of monoclonal antibodies [J]. J. Chromatogr. A,2004, 1036(1):45-50
    [8]Mahn A, Lienqueo M E, Asenjo J A. Effect of surface hydrophobicity distribution on retention of ribonucleases in hydrophobic interaction chromatography[J]. J. Chromatogr. A,2004,1043(1):47-55
    [9]Oscarsson S, Karsnas P. Salt-promoted adsorption of proteins onto amphiphilic agarose-based adsorbents II. Effects of salt and salt concentration[J].J.Chromatogr A., 1998,803(1-2):83-93
    [10]Lu M, Tjerneld F. Interaction between tryptophan residues and hydrophobically modified dextran. Effect on partitioning of peptides and proteins in aqueous two-phase systems[J]. J. Chromatogr. A,1997,766(1-2):99-108
    [11]Tsai S Y, Lin F Y, Chen W Y, et al. Isothermal titration microcalorimetric studies of the effect of salt concentrations in the interaction between proteins and hydrophobic adsorbents [J]. Colloids and Surfaces, A:Physicochem. Eng. Aspects,2002,197(1-3): 111-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700