用户名: 密码: 验证码:
基于参数扰动超混沌的井下定位通信防碰撞方案
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前井下煤矿还普遍存在人员定位管理困难的问题,难以及时掌握井下人员动态分布情况,导致事故发生时,安全救护的效率低。因此,建立以灾害预防、事故救助、电子信息化管理为主要目标的信息化和智能化建设势在必行。
     本论文首先介绍了井下定位系统的应用背景,并对目前已有的定位系统进行介绍,分析其工作原理以及系统所必须要完成的功能。
     通过分析已有的各种井下定位通信方案的优缺点,确定使用在目前技术条件下综合效益最高(成本低,可靠性高)的RFID定位方案,并介绍了与RFID定位方案相关的芯片资料和通信总线特点。
     然后完成了基于“LPC2368处理器+nRF24L01+CAN总线”的基站硬件电路设计,并选取了该电路中的两个主要模块——CAN总线接口和nRF24L01接口电路的硬件和驱动程序设计进行详细说明;完成了基于'MSP430F2013处理器+nRF24101"的标签电路设计,探讨了MSP430处理器的低功耗技术应用方法,设计了MSP430F2013和nRF24L01之间的低功耗读写驱动程序。
     讨论了井下定位过程中容易出现的通信碰撞问题,分析了产生碰撞的原因,并在目前已有各种防碰撞方案的基础上,提出一种适合RFID方式井下定位的通信防碰撞方案——基于混沌的通信防碰撞方法。
     除了完成定位系统的电路设计和相应的软件设计以外,还介绍了混沌系统的基本概念,四个经典混沌系统的特点,以及混沌反控制技术的方法和研究目的。通过对一个近似时滞超混沌系统的分析,计算超混沌系统产生的吸引子的Lyapunov指数、关联维数、Kolmogorov墒、频谱和Poincare截面等混沌特征量,将之与Lorenz吸引子进行比较,从数值实验方面证明了近似时滞超混沌吸引子的复杂动力学特性。
     最后利用混沌的固有特性——类随机性和初值敏感性,设计了一个参数扰动超混沌系统,通过该系统可以得到完全真随机的信号,解决了井下定位系统的通信碰撞问题。
Nowadays, the difficulty for managing underground people is popularly exists in coal mine because the distribution of underground workers is hard to find out. And then, it is always resulting in the inefficient rescue when accident happens. Therefore, it is imperative to establish information and intelligent construction of disaster prevention, accident assistance, and electronic information management.
     This paper first introduces the background of the application of underground positioning system, and also introduces the already existing positioning systems and analyses their working principles and the necessary functions.
     By analyzing the advantages and disadvantages of the various existing communication schemes for underground positioning systems, we determine to use the RFID positioning scheme which has the benefits of highest overall performance (low-cost, high reliability) under the current technology conditions, and introduce the chip documentation and communication bus features related with the RFID positioning scheme.
     Then the base station hardware circuit is designed which is based on "LPC2368 processor+ nRF24L01+CAN-bus", and two main modules of the circuit-CAN bus interface and nRF24L01 interface circuit are selected for illustrating the details of the hardware. The tag circuit is also designed based on "MSP430F2013 processor+nRF24L01", and the application methods of the MSP430 processor's low-power technology are discussed and the low-power read-write drivers between MSP430F2013 and nRF24L01 are designed.
     The communication collision problems in the underground positioning system are discussed and the reasons of collision are analyzed. Based on the various existing anti-collision schemes currently used, a new communication anti-collision scheme which is suitable for RFID underground positioning is proposed:chaos-based communication anti-collision method.
     In addition to the realization of the circuit and software design for positioning systems, it also introduces the basic concepts of chaotic systems, the characteristics of the four classical chaotic systems, as well as methods and research purposes of chaotic anti-control technology. By analysis of a similar time-delay hyperchaotic system, the attractors' dynamics characteristics, such as the Lyapunov exponents, correlation dimension, Kolmogorov entropy, frequency spectrum and Poincare section. By comparing it with the Lorenz attractor, from the numerical experiments it proves the complex dynamics of the hyperchaotic attractor.
     Finally, by using of the inherent characteristics of chaos-pseudo randomness and initial value sensitivity, we design a parameter perturbation hyperchaotic system, through which the system can get true random signal, solve the communication collision problem in underground positioning systems.
引文
[1]王璐,秦汝祥.基于RFID的井下人员跟踪定位系统研究[J].安全,2004,(1):18-19.
    [2]孙弋,徐瑞华.基于WiFi技术的井下多功能便携终端的设计与实现[J].工矿自动化,2007,(3):60-63.
    [3]孙立新,张记龙,王志斌,等.基于无线mesh网的井下安全监控系统设计与实现[J].煤矿安全,2009,(6):54-57.
    [4]湛浩旻,孙长嵩,吴珊,等.ZigBee技术在煤矿井下救援系统中的应用[J].计算机工程与应用,2006,(24):181-183.
    [5]廉国斌.射频识别系统中的防碰撞算法研究[J].计算机技术与发展,2009,19(1):3642.
    [6]王云峰,沈海斌,严晓浪.混沌随机数发生器的设计[J].半导体学报,2005,26(12):2433-2439.
    [7]Lorenz E. N., Deterministic nonperiodic flow[J]. J. Atmos. Sci.,1963,20:130-141.
    [8]Elwakil A. S., Kennedy M. P., Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices[J]. IEEE Trans. Circ. Syst.-Ⅰ2001,48:289-307.
    [9]Funakoshi M., Lagrangian chaos and mixing of fluids[J]. Japan J. Indus. Appl. Math.2001,18(2):613-626.
    [10]Kocarev L., Maggio G. M., Ogorzalek M. etc., Special issue:Advances on communication systems using chaos[J]. IEEE Trans. Circ. Syst.-Ⅰ,200148(12).
    [11]Posch H. A., Hoover W. G., Vesely F.J., Canonical dynamics of the Nose oscillator:stability, order, and chaos[J]. Phys. Rev. A 1986,33:4253-4265.
    [12]Shilnikov A., Nicolis G., Nicolis C. Bifurcation and predictability analysis of a low-order atmospheric circulation model[J]. Int. J. Bifur. Chaos,1995,5:1701-1711.
    [13]Rossler O. E., An equation for continuous chaos[J]. Phys. Lett. A,1976,57:397-398.
    [14]Chen G., Ueta T., Yet another chaotic attractors[J]. Int. J. Bifur. Chaos,1999,9:1465-1466.
    [15]Chua L. O., Komuro M., Matsumoto T., The double scroll family. Rigorous proof of chaos[J]. IEEE Trans. Circ. Syst.-Ⅰ,1986,33:1072-1096.
    [16]Chen G., Chaos:its control and generation for engineering applications[J]. Dynamical of continuous discrete and impulse systems B,2003,10:235-245.
    [17]Chen G., Lai D., Feedback control of Lyapunov exponents for discrete time dynamical systems[J]. Int. J. Bifur. Chaos,1996,6:1341-1349.
    [18]Chen G., Lai D., Making a dynamical system chaotic:feedback control of Lyapunov exponents for discrete time dynamical systems[J]. IEEE Trans. Circ. Syst.-Ⅰ,1997,44:250-253.
    [19]Ikeda K., Matasumoto., High dimensional chaotic behavior in systems with time delay feedback[J]. Physica D, 1987,29:223-235.
    [20]Wang X., Chen G, Yu X., Anticontrol of chaos in continuous-time systems via time-delay feedback[J]. Chaos, 2000,10:904-909.
    [21]关新平,范正平,陈彩妓,等.连续时间稳定线性系统的混沌反控制研究[J].物理学报,2002,51:2216-2220.
    [22]Omer M., A model based scheme for anti-control of some chaotic systems[J]. Int. J. Bifur. Chaos.,2003,13: 3449-3457.
    [23]任海鹏,刘丁.一类模型未知系统的辨识和混沌化控制[J].控制理论与应用,2003,20:737-740.
    [24]Li Y., Tang W.K.S, Chen G., Generating hyperchaos via state feedback control [J]. Int. J. Bifur. Chaos,2005,15: 3367-3375.
    [25]Qi G., Wyk M.A., Wyk B. J., et al. On a new hyperchaotic system[J]. Phys. Lett. A,2008,372:124-136.
    [26]Li Y., Chen G., Tang W.K.S., Controlling a unified chaotic system to hyperchaotic[J]. IEEE Trans. Circ. Syst.-Ⅱ,2005,52:204-207.
    [27]Cannas B., Cincotti S., Hyperchaotic behaviour of two bi-directionally Chua's circuits[J]. Int. J. Circ. Th. Appl,2002,30:625-637.
    [28]Elwakil A.S., Ozoguz S., On the generation of higher order chaotic oscillators via passive coupling of two identical or nonidentical sinusoidal oscillators[J]. IEEE Trans. Circ. Syst.-Ⅰ,2006,53:1521-1532.
    [29]Suzuki T., Saito T., On fundamental bifurcations from a hysteresis hyperchaos generator [J]. IEEE Trans.Circ.Syst.-Ⅰ,1994,41:876-884.
    [30]Takahashi Y, Nakano H., Saito T, A simple hyperchaos generator based on impulsive switching [J]. IEEE Trans. Circ. Syst.-Ⅱ,2004,51:468472.
    [31]Hu G, Generating hyperchaotic attractors with three positive Lyapunov exponents via state feedback control [J]. Int. J. Bifur. Chaos,2009,19(2):651-660.
    [32]Hu G., Yu B., A Hyperchaotic System with a Four-Wing Attractor [J]. Int. J. Mod. Phys. C,2009,20:323-335.
    [33]胡国四.一类具有四翼吸引子的超混沌系统[J].物理学报,2009,58(6):3734-3741.
    [34]Pyragas K., Continuous control of chaos by self-controlling feedback[J]. Phys. Lett. A,1992,170:421-428.
    [35]Wang X., Chen G., Anticontrol of chaos in continuous-time systems via time-delay feedback [J]. Chaos,2000, 10(4):771-779.
    [36]Hu G, Jiang S., Generating hyperchaotic attractors via approximate time-delayed state feedback [J]. Int. J. Bifur. Chaos,2008,18:3485-3494.
    [37]Hu G, Hyperchaos of higher order and its circuit implementation[J]. Int J. Circ. Th. Appl.,2009, doi:10.1002/cta.613
    [38]盛利元,肖燕予,盛喆.将混沌序列变换成均匀伪随机序列的普适算法[J].物理学报,2008,57(7):4007-4013.
    [39]刘国良,高小鹏Freeswan IKE伪随机数算法效率分析及改进[J].计算机工程,2005,31(16):83-85.
    [40]王新成,孙宏.高速伪随机数发生器的设计与实现[J].计算机工程与应用,2004,40(11):20-23.
    [41]王许书,王新辉,夏宏Montgomery方法及其在伪随机数发生器中的应用[J].计算机工程与应用,2001,37(11):52-53.
    [42]周庆,胡月,廖晓峰.基于鼠标轨迹和混沌系统的真随机数产生器研究[J].物理学报,2008,57(9):5413-5418.
    [43]梁金千,张跃.在计算机上产生真随机数的探讨[J].计算机工程,2003,29(15):176-177.
    [44]黄枫,申洪.基于Inter RNG的真随机数生成器研究[J].第一军医大学学报,2004,24(9):1091-1095.
    [45]王莱,,刘松强.真随机数发生器的设计和实现[J].核电子学与探测技术,1998,18(6):452-455.
    [46]俞俊,沈海斌,严晓浪.基于混沌的高速真随机数发生器的设计与实现[J].半导体学报,2004,25(8):1013-1018.
    [47]Ergun S., Ozoguz S. Truly random number generators based on non-autonomous continuous-time chaos[J]. Int. J. Circ. Th. Appl.,2010,38(1):1-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700