用户名: 密码: 验证码:
由廉价单糖合成稀有庚糖和糖苷衍生物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以来源丰富的单糖为原料,合成和修饰具有生物活性的糖类化合物是糖化学研究的重要领域之一。本论文着眼于现代合成化学对原子经济和环境友好的发展要求,针对现有某些糖类药物或其先导化合物难以满足生物化学、药理学和临床研究的需要,主要对稀有庚酮糖和糖苷化合物进行了化学合成和方法学研究。
     天然稀有庚酮糖的合成上研究了三种方法:(1)对2,3;5,6-二-O-异丙叉-D-甘露呋喃糖的C-2上引入羟甲基侧链,再脱异丙叉保护后得到2-C-羟甲基-D-甘露糖,钼酸催化下,C-2上的羟甲基迁移到C-1上、醛糖转变为酮糖,实现了钼酸催化碳链重排合成D-葡萄庚酮糖,总产率37%;(2)以2,3,4,5,6-五-O-苄基-D-甘露糖为原料,通过Wittig反应增长碳链得苄基保护的甘露庚糖烯,进而在KMnO4/HOAc体系中对烯键的选择性氧化得到羟基半缩酮结构中间体,最后脱保护、酸性水解得到D-甘露庚酮糖,四步产率39%,纯度>99%;(3)使用CH2I2/n-BuLi体系对糖酸内酯的酯羰基进行碘甲基化加成,并通过碱性水解等步骤,制得葡萄庚酮糖、甘露庚酮糖和半乳庚酮糖的苄基化衍生物,加成、水解两步产率35%。以上三种方法丰富和发展了稀有庚酮糖的合成方法,具有条件温和,试剂易得的优点,有着重要的理论意义和一定的应用前景。
     在本课题组对四-O-苄基-Valiolone成功合成的基础上,初步研究了Valielone、Validone的苄基化衍生物的化学合成(产率分别为95%和20%),还制备了Valiolone(四步产率36%)、Valielone(产率90%)的甘露糖构型的类似物,为此类糖苷酶抑制剂类药物的先导化合物提供实验基础。
     具有生物活性的糖苷合成上包括两方面研究:(1)以四-O-乙酰基-α-溴代葡萄糖、半乳糖为糖基给体,对中药丹皮酚及其在生物体内的代谢中间体2,4-二-羟基苯乙酮进行了糖苷化修饰,立体专一性的合成了p-构型的糖苷化产物,糖苷化产率30-73%;(2)以游离单糖为原料,通过炔丙苷化(产率50-90%)、碘代(产率75-92%)等两步反应,制备了7种具有抗菌活性的新型1’-碘代炔丙基糖苷。选取4种合成的碘代炔丙基糖苷化合物对引起农作物疾病的几种常见真菌进行了抑菌活性测试,发现均有一定的抗菌效果,为此类低毒、环保型农药的研究提供了思路。
Synthesis and modification of carbohydrates with biological activity from monosaccharides which are abundant in source is one of important fields for the carbohydrate chemistry research. This paper, focusing on atom economic and environment-friendly development requirements of modern synthetic chemistry, was primarily concerned with the current synthesis and the methodological research of rare heptulose and glycosides in view of existing situation that some carbohydreate drugs or their precursors could not serve the needs of biochemical, pharmacological and clinical researches.
     First of all, three methods were studied in the synthesis of nature rare heptulose.
     (1) Synthesis of D-glucoheptulose was realized by molybdic acid as catalyst, with the yield of 37% in 4 steps that successively were hydroxymethylation on C-2 of 2,3;5,6-di-O-isopropylidene-D-mannfuranose, acquiring 2-C-hydroxymethyl-D-mannose after deprotection of isopropyaltion, and then preparation of the target product through hydroxymethyl transferred from C-2 to C-1 and simultaneity aldose changed to ketose by molybdic acid-catalyzed carbon-skeleton rearrangement.
     (2) D-mannoheptulose was synthesized with the yield 39% in 4 steps (purity>99%) that were obtaining mannoheptu-glycal through elongation of carbon chain of 2,3,4,5,6-pent-O-benzyl-D-mannose via Wittig reaction, getting the intermediate of a-hydroxy semi-ketal structure by selective oxidation to olefinic bond using KMnO4/HOAc system as the key step, and preparing the target molecular via deprotection of benzyls, hydrolysis under acid condition.
     (3) Preparation of benzylation derivatives of D-glucoheptulose, D-mannoheptulose, D-galactoheptulose was carried out with the yield 35% in 2 steps that were iodomethylated addition to ester carbonyl of sugar acid lactone using CH2I2/n-BuLi system, and hydrolysis under base condition.
     Three methods introduced above, having the advantages of mild condition and the reagents with easy availability, enrich and develop methodological research of synthesis of rare heptulose, which has major theoretic value and application prospect.
     Secondly, preliminary synthesis and methodological research of benzylation derivatives of Valielone (the yield 95%), Validone (the yield 20%) and analogues of Valiolone (the yiled of 4 steps was 36%), Valielone (the yield 90%) with D-mannose configuration were processed on the basis of successful synthesis of tert-O-benzyl-Valiolone done by our research team, which provided experimental basis for the precursors of these glycosidase inhibitor drugs.
     Finally, there were two aspects of the synthesis of glycosides with biological activity.
     (1) Stereospecific glycosylated modifications of paeonol-a kind of traditional Chinese medicine, and 2,4-dihydroxyphenyl ethanone that was metabolized intermediate of paeonol in organism, were actualized from tert-O-acetyl-a-glucopyranosyl/galactopyranosyl bromide as glycosyl donors with the yield of the glycosylated step 30-73%, and all the products were P-glycosides completely.
     (2) A novel series of 1'-iodopropargyl glycosides were synthesized through only two steps including glycosylated reaction with propargyl alcohol (the yield 50-90%), iodo-substitution (the yield 75-92%) from seven common monosaccharides without protection. Four kinds of synthetic 1'-iodopropargyl glycosides, which were chosen to carry out antibacterial test, had inhibitory activity to some normal kinds of fungi arousing diseases of crops, which offered a new opinion for the research of environmental protective pesticide with low toxicity.
引文
[1]于德泉,吴毓林.天然产物化学进展[M].北京:化学工业出版社,2005.
    [2]方志杰.糖类药物合成与制备[M].北京:化学工业出版社,2010.
    [3]Bertozzi C, Kiessling L. Chemical Glycobiology[J]. Science,2001,291(5512):2357-2364.
    [4]Sears P, Wong C. Toward Automated Synthesis of Oligosaccharides and Glycoproteins[J]. Science,2001,291(5512):2344-2350.
    [5]Seeberger P, Werz D. Synthesis and Medical Applications of Oligosaccharides[J]. Nature, 2007,446(7139):1046-1051.
    [6]Thibodeaux C, Melancon C, Liu H. Unusual Sugar Biosynthesis and Natural Product Glycodiversification[J]. Nature,2007,446(7139):1008-1016.
    [7]Scanlan C, Offer J, Zitzmann N, Dwek R. Exploiting the Defensive Sugars of HIV-1 for Drug and Vaccine Design[J]. Nature,2007,446(7139):1038-1045
    [8]金征宇,顾正彪,童群义,杨瑞金.碳水化合物化学——原理与应用[M].北京:化学工业出版社,2008.
    [9]LaForge F B. D-Mannoketoheptose, A New Sugar from the Avocado[J]. J. Biol. Chem. 1917,28(3):511-522.
    [10]Nordal A, Benson A A.. Isolation of Mannoheptulose and Identification of Its Phosphate in Avocado Leaves[J]. J. Am. Chem. Soc.,1954,76(20):5054-5055.
    [11]Maclay W D, Hann R M, Hudson C S. Some Studies on L-Glucoheptulose[J]. J. Am. Chem. Soc.1942,64(7):1606-1609.
    [12]Schmidt U, Stiller R, Brade H and Thiem J. Formation of an Unusual Secondary Sedoheptulose Phosphate by Hexokinase-Mediated Phosphorylation[J]. Synlett, 1998:125-126.
    [13]Kosma, P. Occurrence, Synthesis and Biosynthesis of Bacterial Heptoses[J]. Curr. Org. Chem.2008,12(5):1021-1039.
    [14]Board M, Colquhoun A, Newsholme E A. High Km Glucose-Phosphorylating (Glucokinase) Activities in a Range of Tumor Cell Lines and Inhibition of Rates of Tumor Growth by the Specific Enzyme Inhibitor Mannoheptulose [J]. Cancer Research, 1995,55(15):3278-3285.
    [15]Xu L Z, Weber I T, Harrison R W, Gidh-Jain M, Pilkis S J. Sugar Specificity of Human b-Cell Glucokinase:Correlation of Molecular Models with Kinetic Measurements [J]. Biochemistry,1995,34(18):6083-6092.
    [16]Zamyatina A, Gronow S, Puchberger M, et al. Efficient Chemical Synthesis of Both Anomers ADP L-Glycero-and D-Glycero-D-Manno-Heptopyranose[J]. Carbohydr. Res. 2003,338(23):2571-2589.
    [17]Reichel F, Ashton P R and Boons G J. Synthetic Cabohydrate-Based Vaccines:Synthesis of an L-Glycero-D-Manno-Heptose Antigen-T-Epitope-Lipopeptide Conjugate[J]. Chem. Commun.1997,997(21):2087-2088.
    [18]Jaipuri F A, Collet B Y M, and Pohl N L. Synthsis and Quantitative Evaluation of Glycero-D-manno-heptose Binding to Concanavalin A by Fluorous-Tag Assistance [J]. Angew. Chem. Int. Ed.2008,47(9):1707-1710.
    [19]Bernlind C, Bennett S, Oscarson S. Synthesis of a D, D-and L, D-Heptose-Containing Hexasaccharide Corresponding to a Structure from Haemophilus ducreyi Lipopolysaccharides[J]. Tetrahedron:Asymmetry,2000, 11(2):481-492.
    [20]Sowden J C and Strobach D R. The Condensation of 2-Nitroethanol with the D-Aldopentoses[J]. J. Am. Soc. Chem.1958,80(10):2532-2533.
    [21]Sowden J C and Schaffer R. The Condensation of Nitromethanol with D-Mannose: Synthesis of D-manno-D-galaheptose and D-manno-D-talo-heptose[J]. J. Am. Soc. Chem.1951,73(10):4662-4664.
    [22]Schaffer R, Isbell H S. Synthesis of Higher Ketoses by Aldol Reactions. I. Three D-Heptuloses[J]. J. Org. Chem.1962,27(9):3268-3270.
    [23]Kampf A, Dimant E. Hydroxymethylation of 2,3:5,6-di-O-isopropylidene-D-mannono-1,4-lactone. Synthesis of D-manno-heptulose[J]. Carbohydr. Res.1974,32(2):380-382.
    [24]Bessieres B, Morin C. Iodomethyl Group as a Hydroxymethyl Synthetic Equivalent: Application to the Syntheses of D-manno-hept-2-ulose and L-Fructose Derivatives [J]. J. Org. Chem.2003,68(10):4100-4103.
    [25]Bessieres B, Morin C. Iodomethylation of Lactones; Application to the Synthesis of 1-deoxy-1-iodo-2-uloses[J]. Synlett.2000,11:1691-1693.
    [26]Martin O R, Saavedra O M, Xie F, et al. α-and β-Homogalactonojirimycins (α-and β-Homogalactostatins):Synthesis and Further Biological Evaluation[J]. Bioorganic & Medicinal Chemistry,2001,9(7):1269-1278.
    [27]Clark E L, Hayes M L, Barker R. Paramolybdate Anion-Exchange Resin, an Improved Catalyst for the C-l-C-2 Rearrangement and 2-Epimerization of Aldoses[J]. Carbohydr. Res.1986,153(2):263-270.
    [28]Zhao S, Petrus L, Serianni A S.1-Deoxy-D-xylulose:Synthesis Based on Molybdate-Catalyzed Rearrangement of a Branched-Chain Aldotetrose[J]. Org. Lett. 2001,3(24):3819-3822.
    [29]Dziewiszek K and Zamohski A. New Syntheses of D-and L-geycero-D-manno-Heptoses[J]. Carbohydr. Res.1986,150(1):163-171.
    [30]Paulesen H, Schuller M, Nashed M A, et al. Synthesis of L-gercero-manno-Heptose[J]. Tetrahedron Lett.1985,26(31):3689-3692.
    [31]Grzeszczyk B, Holst O, Zamojski A. The Synthesis of Five L-glycero-D-manno-heptose Manophosphates[J]. Carbohydr. Res.1996,290(1):1-15.
    [32]Grzeszczyk B, Holst O, Loennies S M, Zamojski A. Five Monophosphatess of Methyl L-glycero-a-D-manno-heptopyranoside:Synthesis, Hydrolysis and Migrations [J]. Carbohydr. Res.1998,307(1):66-67.
    [33]Kim M, Grzeszczyk B, Zamojski A. Homologation of Protected Hexoses with Grignard C1 Reagents[J]. Tetrahedron,2000,56(47):9319-9337.
    [34]Palmelund A, Madsen R. Chain Elongation of Aldoses by Indium-Mediated Coupling with 3-Bromopropenyl Esters[J]. J. Org. Chem.2005,70(20):8248-8251.
    [35]Balla E, Zamyatina A, Hofinger A, et al. Synthesis of a Deoxy Analogue of ADP L-glycero-D-manno-heptose[J]. Carbohydr. Res.2007,342(17):2537-2545.
    [36]Brimacombe J S, Kabir K M S. The Synthesis of Some Seven-Carbon Sugars via the Osmylation of Olefinic Sugars[J]. Carbohydr. Res.1986,150(1):35-51.
    [37]Crich D, Banerjee A. Stereocontrolled Synthesis of the D-and L-glycero-β-D-manno-Heptopyranosides and Their 6-Deoxy Analogues. Synthesis of Methyl α-L-Rhamno-pyranosyl-(1→3)-D-glycero-β-D-manno-heptopyranosyl-(1→3)-6-deoxy-g lycero-β-D-manno-heptopyranosyl-(1→4)-a-L-rhamno-pyranoside, a Tetrasaccharide Subunit of the Lipopolysaccharide from Plesimonas shigelloides[J]. J. Am. Soc. Chem. 2006,128(24):8078-8086.
    [38]Lowe R W, Szarek W A, Jones J K N. Conversion of 2-Hexuloses into 3-Heptuloses: Synthesis of D-manno-3-heptulose[J]. Carbohydr. Res.1973,28(2):281-293.
    [39]Bols M, Grubbe H, Jespersen T M, Szarek W. Hydroxymethylation of Aldonolactones and a Chemical Synthesis of 3-deoxy-3-fluoro-D-fructose[J]. Carbohydr. Res.1994, 253(3):195-206.
    [40]Bessieres B, Morin C. Iodomethylation of Lactones; Application to Synthesis of 1-Deoxy-1-iodo-2-uloses[J]. Synlett.2000,11:1691-1693.
    [41]Bessieres B, Morin C. Iodomethyl Group as a Hydroxymethyl Synthetic Equivalaent: Application to the Syntheses of D-manno-Hept-2-ulose and L-Fructose Derivatives[J]. J. Org. Chem.2003,68(10):4100-4103.
    [42]Gyurcsik B, Nagy L. Carbohydrates as Ligands:Coordination Equilibria and Structure of the Metal Complexes[J]. Coordination Chem. Rev.,2000,203(1):81-149.
    [43]Zhao S, Petrus L, Serianni A S.1-Deoxy-D-xylulose:Synthesis Based on Molybdate-Catalyzed Rearrangement of a Branched-Chain Aldotetrose[J]. Org. Lett.2001, 3(11):3819-3822.
    [44]Hricoviniova Z. Highly Stereospecific Mo(Ⅵ)-Mediated Synthesis of D-glycero-L-galacto-Octulose[J]. Tetrahedron:Asymmetry.2002,13(14):1567-1571.
    [45]Hricoviniova Z, Petrus L. Synthesis of Sedoheptulose from 2-C-(hydroxymethyl)-D-Allose by Molybdic Acid-Catalysed Carbon-Skeleton Rearrangement[J]. Carbohydr. Res.1999,320(1):31-36.
    [46]Hricoviniova Z. Isomerization as a Route to Rare Ketoses:the Beneficial Effect of Microwave Irradiation on Mo(Ⅵ)-Catalyzed Stereospecific Rearrangement[J]. Tetrahedron:Asymmetry.2008,19(2):204-208.
    [47]Jorgensen M, Iversen E H, Madsen R A Convenient Route to Higher Sugars by Two-Carbon Chain Elongation Using Wittig/Dihydroxylation Reactions [J]. J. Org. Chem. 2001,66(13):4625-4629.
    [48]Jorgensen M, Iversen E H, Madsen R. Efficient Synthesis of Enantiopure Conduritols by Ring-Closing Metathesis[J]. J. Org. Chem.2001,66(13):4630-46334.
    [49]Brimacombe J S, Kabir A M S. The Reaction of 2,3:5,6-di-O-isopropylidene-5-O-methanesuphonyl-L-glycero-D-manno-heptofuranose with Sodium Methoxide:an Aldehyde-Group Participation[J]. Carbohydr. Res.1987,169(15):234-40.
    [50]Hudlicky T, Entwistle D A, Pitzer K. K., et al. Modern Methods of Monosaccharide Synthesis from Non-Carbohydrate Sources[J]. Chem. Rev.1996,96(3):1195-1220.
    [51]Berecibar A, Grandjean C, Siriwardena A. Synthesis and Biological Activity of Natural Aminocyclopentitol Glycosidase Inhibitors:Mannostatins, Trehazolin, Allosamidins, and Their Analogues[J]. Chem. Rev.1999,99(3):779-844.
    [52]Chen X, Fan Y, Zheng Y, Shen Y Properties and Production of Valienamine and Its Related Analogues[J]. Chem. Rev.2003,103(5):1955-1978.
    [53]Arjona O, Gmez A M, Lpez J C, Plumet J. Synthesis and Conformational and Biological Aspects of Carbasugars[J]. Chem. Rev.2007,107 (5):1919-2036.
    [54]Morita M, Motoki K, Akimoto K, et al. Structure-Activity Relationship of α-Galactosylceramides against B16-Bearing Mice[J]. J. Med. Chem.1995, 38(6):2176-2187.
    [55]Rissoan M C, Soumelis V, Kadowaki N, et al. Reciprocal Control of T Helper Cell and Dendritic Cell Differentiation[J]. Science,1999,283:1183-1186.
    [56]Tashiro T, Nakagawa R, Hirokawa T, et al. RCAI-56, a Carbocyclic Analogue of KRN7000:Its Synthesis and Potent Activity for Natural Killer (NK) T Cells to Preferentially Produce Interferon-γ[J]. Tetrahedron Lett.2007,48(19):3343-3347.
    [57]Ferrero M, Gotor V. Biocatalytic Selective Modifications of Conventional Nucleosides, Carbocyclic Nucleosides, and C-Nucleosides[J]. Chem. Rev.2000,100(12):4319-4348.
    [58]Crimmins M T. New Developments in the Enantioselectives Synthesis of Cyclopentyl Carbocyclic Nucleosides[J]. Tetrahedron 1998,54(32):9229-9272.
    [59]Seiichiro O, Miki K, Yoshiyuki S. Development and Medical Application of Unsaturated Carbaglycosylamine Glycosidase Inhibitors[J]. Mini-Reviews in Medicinal Chemistry, 2007,7(2):679-691.
    [60]Numata A, Iritani M, Yamada T, et al.. Novel Antitumour Metabolites Produced by a Fungal Strain from a Sea Hare[J]. Tetrahedron Lett.1997,38(47):8215-8218.
    [61]Yeung Y Y, Hong S, Corey E J. A Short Enantioselective Pathway for the Synthesis of the Anti-Influenza Neuramidase Inhibitor Oseltamivir from 1,3-Butadiene and Acrylic Acid[J]. J. Am. Chem. Soc.2006,128(19):6310-6311.
    [62]Fukuta Y, Mita T, Fukuda N, et al. De Novo Synthesis of Tamiflu via a Catalytic Asymmetrc Ring-Opening of meso-Aziridines with TMSN3[J]. J. Am. Chem. Soc.2006, 128(19):6312-6313.
    [63]Usami Y, Takaoka I, Ichikawa H, et al. First Total Synthesis of Antitumor Natural Product(+)-and (-)-Pericosine A:Determination of Absolute Stereo Structure[J]. J. Org. Chem.2007,72(16):6127-6134.
    [64]McCasland G E, Furuta S, Durham L J. Alicyclic Carbohydrates. XXIX. The Synthesis of a Pseudo-Hexose (2,3,4,5-Tetrahydroxycyclohexanemethanol)[J]. J. Org. Chem.1966, 31(5):1516-1521.
    [65]Miller T W, Arison B H, Albers S G. Isolation of a Cyclitol Antibiotic:2,3,4,5-Tetrahydroxycyclohexanemethanol[J]. Biotechnol. Bioeng.1973,15(5):1075.
    [66]Shing T K M, Cheng H M. Short Syntheses of Gabosine I and Gabosine G form 8-D-Gluconolactone[J]. J. Org. Chem.2007,72(17):6610-6613.
    [67]Lubineau A, Billault I. New Access to Unsaturated Keto Carba Sugars (Gabosines) Using an Intramolecular Nozaki-Kishi Reaction as the Key Step[J]. J. Org. Chem.1998, 63(16):5668-5671.
    [68]Ko K S, Zea C J, Pohl N L. Surprising Bacterial Nucleotidyltransferase Selectivity in the Conversion of Carbaglucose-l-phosphate[J]. J. Am. Chem. Soc.2004,126(41): 13188-13189.
    [69]Jiang S, Singh G, Batsanov A S. Synthesis of a Difluorinated Carbasugar from D-Ribose via Intramolecular Nitrone Cycloaddition Reaction[J]. Tetrahedron:Asymmetry,2000, 11(19):3873-3877.
    [70]Sardinha J, Rauter A P, Sollogoub M. First Synthesis of 5-Fluoro-(+)-MK7607, Its 1-Epimer and 6-Deoxy Derivative[J]. Tetrahedron Lett.2008,49(38):5548-5550.
    [71]Ghosh S, Bhaumik T, Sarkar N, et al. A Convenient Approach for Access to Both Carbapentofuranoses and Carbahexopyranoses. Stereocontrolled Synthesis of Enantiopure Carba-D-ribofuranoses, Carba-D-arabinofuranoses and Carba-L-gulopyranose[J]. J. Org. Chem.2006,71(26):9687-9694.
    [72]Hansen F G, Bundgaard E, Madsen R. A Short Synthesis of (+)-Cyclophellitol[J]. J. Org. Chem.2005,70(24):10139-10142.
    [73]Boyer F D, Hanna I, Nolan S P. From Carbohydrates to Polyoxygenated Cyclooctenes via Ring-Closing Metathesis [J]. J. Org. Chem.2001,66(11):4094-4096.
    [74]Gomez A M, Company M D, Uriel C, et al.6-endo Versus 5-exo Radical Cyclization: Streamlined Syntheses of Carbahexopyranoses and Derivatives by 6-endo-trigradical Cyclization[J]. Tetrahedron Lett.2007,48(9):1645-1649.
    [75]Gomez A M, Danelon G O, Valverde S, et al. Regio-and Stereocontrolled 6-Endo-Trig Radical Cyclization of Vinyl Radicals:A Novel Entry to Carbasugars from Carbohydrates[J]. J. Org. Chem.1998,63(26):9626-9627.
    [76]Toyokuni T, Jin W Z, Rinehart K L Jr. Biosynthetic Studies on Validamycins:a C2+C2 +C3 Pathway to an Aliphatic C7N Unit[J]. J. Am. Chem. Soc.1987,109(11):3481-3482.
    [77]Singh D, Kwon H-J, Rajkarnikar A, Suh J-W. Glucoamlase Gene, vldl, Is Linked to Validamycin Biosynthesis in Streptomyces hygroscopicus var. limoneus, and vldADEFG Confers Validamycin Production in Streptomyces lividans, Revealing the Role of Vide in Glucose Attachment[J]. Gene,2007,395(1):151-159.
    [78]Floss H G, Lee S, Tornus I. Valiolone, A Method of Preparing It and Its Use to Prepare Acarbose and Voglibose[P]. US6150568,2000-11-21.
    [79]Dong H, Mahmud T, Tornus I, et al. Biosynthesis of Validamycins:Indentification of Intermediates in the Biosynthesis of Validamycin A by Streptomyces hygroscopicus var. limoneus[J]. J. Am. Chem. Soc.2001,123(12):2733-2742.
    [80]Mahmud T, Tornus I, Egelkrout E, et al. Biosynthetic Studies on the a-Glucosidase Inhibitor Acarbose in Actinoplanes sp.:2-epi-5-epi-Valiolone Is the Direct Precursos of the Valienamine Moiety[J]. J. Am. Chem. Soc.1999,121(30):6973-6983.
    [81]Mahmud T. Progress in Aminocyclitol Biosynthesis [J]. Current Opinion in Chemical Biology,2009,13(2):161-170.
    [82]Arakawa K, Bowers S G, Michels B, et al. Biosynthetic Studies on the a-Glucosidase Inhibitor Acabose:the Chemical Synthesis of Isotopically Labeled 2-epi-5-epi-Valiolone Analogs[J]. Carbohydr. Res.2003.338(20):2075-2082.
    [83]Mahmud T, Xu J, Choi Y U. Synthesis of 5-epi-[6-2H]Valilone and Stereospecifically Monodeuterated 5-epi-Valiolones:Exploring the Steric Course of 5-epi-Valiolone Dehydratase in Validamycin A Biosynthesis[J]. J. Org. Chem.2001,66(15):5066-5073.
    [84]Fukase H, Horii S. Synthesis of a Branched-Chain Inosose Derivative, a Versatile Synthon of N-Substituted Valiolamine Derivatives from D-Glucose[J]. J. Org. Chem. 1992,57(13):3642-3650.
    [85]Fukase H, Horii S. Synthesis of Valiolamine and Its N-Substituted Derivatives AO-128, Validoxylamine G, and Validamycin G via Branched-Chain Inosose Derivatives[J]. J. Org. Chem.1992,57(13):3651-3658
    [86]Ohtake H, Li X-L, Shirob M, Ikegami S. A Highly Efficient and Shortcut Synthesis of Cyclitol Derivatives via Spiro Sugar Ortho Esters[J]. Tetrahedron,2000,56(37): 7109-7122
    [87]Ohtake H, Ikegami S. Facile Ring Transformation from Gluconolactone to Cyclitol Derivative via Suiro Sugar Ortho Ester[J]. Org. Lett.2000,2(4):457-460.
    [88]Kren V, Martinkova L. Glycosides in Medicine:"The Role of Glycosidic Residue in Biological Activity"[J]. Curr. Med. Chem.2001,8(11):1303-1328.
    [89]Koenigs W, Konrr E. Ueber Einige Derivate des Traubenzuckers und der Galactose[J]. Ber.,1901,34:957-961.
    [90]Jacobsson M, Malmberg J, Ellervik U. Aromatic O-Glycosylation[J]. Carbohydr. Res. 2006,341(10):1266-1281.
    [91]Meloncelli P J, Martin A D, Lowary T L. Glycosyl Iodides. History and Recent Advances[J]. Carbohydr. Res.2009,344(9):1110-1122.
    [92]Lubin-Germain N, Baltaze J-P, Coste A, et al. Direct C-Glycosylation by Indium-Mediated Alkynylation on Sugar Anomeric Position[J]. Org. Lett.2008, 10(5):725-728.
    [93]Sato S, Hiroe K, Kumazawa T, et al. Total Synthesis of Two Isoflavone C-Glycosides: Genistein and Orobol 8-C-β-D-Glucopyranosides[J]. Carbohydr. Res.2006, 341(9):1091-1095.
    [94]Gong H, Gagne M R. Diastereoselective Ni-Catalyzed Negishi Cross-Coupling Approach to Saturated, Fluuy Oxygenated C-Alkyl and C-Aryl Glycosides[J]. J. Am. Chem. Soc. 2008,130(36):12177-12183.
    [95]Inaba Y, Yano S, Mikata Y. Facile Synthesis of 2-(β-C-Glucopyranosyl)-β-Amino Acid: A New Class of Glycopeptide Building Block[J]. Tetrehedron Lett.2007,48(6):993-997.
    [96]Schwarz B, Hofmann T. Isolation, Structure Determination, and Sensory Activity of Mouth-Drying and Astringent Nitrogen-Containing Phytochemicals Isolated from Red Currants (Ribes rubrum)[J]. J. Agric. Food. Chem.2007,55(4):1405-1410.
    [97]Gao Q, Lian G, Lin F. The First Total Synthesis of 7-O-β-D-Glucopyranosyl-4'-O-a-L-Rhamnopyranosyl Apigenin via a Hexanoyl Ester-Based Protection Strategy[J]. Carbohydr. Res.2009,344(4):511-515.
    [98]Chen J, Huang W, Lian G, Lin Feng. The Efficient Total Synthesis of Bis-Glycosyl Apigenin from Naringenin:A Greener Way[J]. Carbohydr. Res.2009, 344(16):2245-2249.
    [99]Schmidt R R, Vankar Y D.2-Nitroglycals as Powerful Glycosyl Donors:Application in the Synthesis of Biologically Important Molecules[J]. Acc. Chem. Res.2008, 41(8):1059-1073.
    [100]Procopio A, Dalpozzo R, Nino A D, et al. A Facile Er(OTf)3-Catalyzed Synthesis of 2,3-unsaturated O-and S-glycosides[J]. Carbohydr. Res.2007,342(14):2125-2131.
    [101]Wandzik I, Bieg T.4-O-Acetyl-3-O-tert-Butyldimethylsilyl-L-Rhamnal:A Building Block in the Stereoselective Synthesis of 2-Deoxy-a-L-Rhamnopyranosides[J]. Carbohydr. Res.2006,341(16):2702-2707.
    [102]Schmidt R R, Michael J. Facile Synthesis of α-and β-O-Glycosyl Imidates; Preparation of Glycosides and Disaccharides[J]. Angew. Chem. Int. Ed. Engl.1980,19(3):731-732.
    [103]Das S K, Reddy K A, Mukkanti K. Total Synthesis of Phenylpropanoid Glycosides, Grayanoside A and Syringalide B, Through a Common Intermediate [J]. Carbohydr. Res. 2007,342(15):2309-2315.
    [104]Pearson A G, Kiefel M J, Ferro V, et al. Towards the Synthesis of Aryl Glucuronides as Potential Heparanase Probes. An Interesting Outcome in the Glycosidation of Glucuronic Acid with 4-Hydroxycinnamic Acid[J]. Carbohydr. Res.2005, 340(13):2077-2085.
    [105]Zhou F-Y, She J, Wang Y G. Synthesis of a Benzyl-Protected Analog of Arenarioside a Trisaccharide Phenylpropanoid Glycoside[J]. Carbohydr. Res.2006,341(15):2469-2477.
    [106]West A C, Schuerch C. The Reverse Anomeric Effect and the Synthesis of a-Glycosides[J]. J. Am. Chem. Soc.1973,95(7):1333-1334.
    [107]Zhang Z, Magnusson G. Synthesis of Double-Chain Bis-Sulfone Neoglycolipids of the 2"-,3"-,4"-,6"-Deoxyglobotrioses[J]. Carbohydr. Res.1994,262(1):79-101.
    [108]Hou D, Lowary T L.2,3-Anhydrosugars in Glycoside Bond Synthesis. Application to 2,6-Dideoxypyranosides[J]. J. Org. Chem.2009,74(6):2278-2289.
    [109]Karkkainen T S, Kartha K P R, MacMillan D, et al. Iodine-Mediated Glycosylation En Route to Mucin-Related Glyco-Aminoacids and Glycopeptides[J]. Carbohydr. Res.2008, 343(10):1830-1834.
    [110]Hotha S, Kashyap S. Propargly Glycosides as Stable Glycosyl Donors:Anomeric Activation and Glycoside Syntheses[J]. J. Am. Chem. Soc.2006,128(30):9620-9621.
    [111]Mamidyala S K, Finn M G. Glycosylation Using Unprotected Alkynyl Donors[J]. J. Org. Chem.2009,74(21):8417-8420.
    [112]Bessmertnykh A, Henin F, Serra-Muns A, et al. Synthesis of C8 Alkyl Glycosides via Palladium-Catalyzed Telomerization of Butadiene with O-Benzylated Aldoses[J]. Carbohydr. Res.2006,341(1):153-159.
    [113]Banoub J, Boullanger P, Lafont D. Synthesis of Oligosaccharides of 2-Amino-2-Deoxy Sugars[J]. Chem. Rev.1992,92(6):1167-1195.
    [114]Fisher B, Nudelman A, Ruse M. A Novel Method for Steroselective Glucuronidation[J]. J. Org. Chem.1984,49(25):4988-4993.
    [1]Gyurcsik B, Nagy L. Carbohydrate as Ligands:Coordination Equilibria and Structure of the Metal Complexes[J]. Coor. Chem. Rev.2000,203(1):81-149.
    [2]Klufers P, Kunte T. A Transition Metal Complex of D-Glucose[J]. Angew. Chem. Int. Ed. 2001,40(22):4210-4212.
    [3]Dieguez M, Pamies O, Claver C. Ligands Derived from Carbohydrates for Asymmetric Catalysis[J]. Chem. Rev.2004,104(6):3189-3215.
    [4]Angyal S J. Sugar-Cation Complexes. In Carbohydrates in Solution; Advances in Chemistry Series Vol.117[M]. Washington, DC:American Chemical Society,1973, 106-120.
    [5]Baucke E, Behrends R, Fuchs K, et al. Kinetics of Ca2+Complexation with Some Carbohydrates in Aqueous Solutions[J]. J. Chem. Phys.2004,120(17):8118-8124.
    [6]Hayes M L, Pennings N J, Serianni A S, et al. Epimerization of Aldoses by Molybdate Involving a Novel Rearrangement of the Carbon Skeleton[J]. J. Am. Chem. Soc.1982, 104(24):6764-6769.
    [7]Hricoviniova Z. Isomerization as a Route to Rare Ketoses:the Beneficial Effect of Microwave Irradiation on Mo(Ⅵ)-Catalyzed Stereospecific Rearrangement[J]. Tetrahedron:Asymmetry.2008,19(2):204-208.
    [8]Hricoviniova Z. Highly Stereospecific Mo(VI)-Mediated Synthesis of D-glycero-L-Galacto-Octulose[J]. Tetrahedron:Asymmetry,2002,13:1567-1571.
    [9]Zhao S, Petrus L, Serianni A S.1-Deoxy-D-xylulose:Synthesis Based on Molybdate-Catalyzed Rearrangment of a Branched-Chain Aldotetrose[J]. Org. Lett.2001, 3(24):3819-3822.
    [10]Wu Q, Pan Q, Zhao S, et al. A Disaccharide Rearrangment Catalyzed by Molybdate Anion in Aqueous Solution[J]. J. Org. Chem.2007,72(8):3081-3084.
    [11]Sephton H H, Richtmyer N K. Isolation of D-erythro-L-gluco-Nonulose from the Avocado[J]. J. Org. Chem.1963,28(9):2388-2390.
    [12]Maclay W D, Hann R M, Hudson C S. Some Studys on L-Glucoheptulose[J]. J. Am. Chem. Soc.1942,64(7):1606-1609.
    [13]Reiner M, Stolz F, Schmidt R R. Efficient Synthesis of 3-Deoxy-D-arabino-2-heptulosonate(DAH) and-D-gluco-2-heptulosonate by a Two-Carbon Chain Elongation of D-Arabinose[J]. Eur. J. Org. Chem.2002,1:57-60.
    [14]Kartha K P R. Iodine, A Novel Catalyst in Carbohydrate Reactions I. Isopropylidination of Carbohydrates[J]. Tetrahedron Lett.1986,27(29):3415-3416.
    [1]Brimacombe J S. Synthesis of rare sugars[J]. Angewandtle Chemie, International Edition in English,1969,8(6):401-409.
    [2]Giffhorn F, Kopper S, Huwg A, et al. Rare Sugars and Sugar-Based Synthons by Chemo-Enzymatic Synthesis[J]. Enzyme and Microbial Technology,2000,27(4):734-742.
    [3]Nordal A, Benson A A. Isolation of Mannoheptulose and Identification of Its Phosphate in Avocado Leaves[J]. J. Am. Chem. Soc.1954,76(20):5054-5055.
    [4]Stankovic L, Bilik V. Occurrence and Preparation of D-manno-heptulose[J]. Chemicke Listy,1986,80:520-527.
    [5]Board M, Colquhoun A, Newsholme E A. High Km Glucose-phosphorylating (Glucokinase) Activities in a Range of Tumor Cell Lines and Inhibition of Rates of Tumor Growth by the Specific Enzyme Inhibitor Mannoheptulose[J]. Cancer Research,1995, 55(10):3278-3285.
    [6]Xu L. Z., Weber I. T., Harrison R. W., Gidh-Jain M., Pilkis S. J.. Sugar Specificity of Human b-Cell Glucokinase:Correlation of Molecular Models with Kinetic Measurements[J]. Biochemistry,1995,34(18):6083-6092.
    [7]Sowden J C. A New Ketose Synthesis[J]. J. Am. Chem. Soc.1950,72(7):3325.
    [8]Schaffer R, Isbell H S. Synthesis of Higher Ketoses by Aldol Reactions. I. Three D-heptuloses[J]. J. Org. Chem.1962,27(9):3268-3270.
    [9]Kampf A., Dimant E.. Hydroxymethylation of 2,3:5,6-di-O-isopropylidene-D-mannono-1,4-lactone. Synthesis of D-manno-heptulose. Carbohydr. Res.1974,32(2):380-382.
    [10]Bessieres B., Morin C.. Iodomethyl Group as a Hydroxymethyl Synthetic Equivalent: Application to the Syntheses of D-manno-Hept-2-ulose and L-Fructose Derivatives [J]. J. Org. Chem.2003,68(10):4100-4103.
    [11]Bessieres B, Morin C. Iodomethylation of Lactones; Application to the Synthesis of 1-Deoxy-1-iodo-2-uloses[J]. Synlett,2000,11:1691-1693.
    [12]Martin O R, Saavedra O M, Xie F, et al. α-and β-Homogalactonojirimycins (α-and β-Homogalactostatins):Synthesis and Further Biological Evaluation[J]. Bioorganic & Medicinal Chemistry,2001,9:1269-1278.
    [13]Li X F, Zhang D H, Lee U, et al. Bromomyrothenone B and Botrytinone, Cyclopentenone Derivatives from a Marine Isolate of the Fungus Botrytis[J]. J. Nat. Prod.2007, 70(2):307-309.
    [14]Taatjes D J, Gaudiano G, Resing K, et al. Redox Pathway Leading to the Alkylation of DNA by the Anthracycline, Antitumor Drugs Adriamycin and Daunomycin[J]. J. Med. Chem.1997,40(8):1276-1286.
    [15]Johnson R A, Sharpless K B. Catalytic Asymmetric Synthesis,2nd ed., (Ed.:I. Ojima)[M]. Wiley-VCH, New York, Weinheim,2000.
    [16]Lohray B B, Bhushan V, Kumar R K. Origin of alpha-Hydroxy Ketones in the Osmium Tetroxide-Catalyzed Asymmetric Dihydroxylation of Alkenes[J]. J. Org. Chem.1994, 59(6):1375-1380.
    [17]Sharpless K B, Akashi K. Osimium Catalyzed Vicinal Hydroxylation of Olefins by Tert-Butyl Hydroperoxide under Alkaline Conditions[J]. J. Am. Chem. Soc.1976, 98(7):1986-1987.
    [18]Srinivasan N S, Lee D G. The Preparation of a-Hydroxy Ketones by Oxidation of Alkenes with Potassium Permanganate in Aqueous Acetone[J]. Synthesis,1979, 2:520-521.
    [19]Baskaran S, Das S J, Chandrasekaran S. Heterogeneous Permanganate Oxidation:An Improved Procedure for the Direct Conversion of Olefins to a-Diketones/a-Hydroxy Ketones[J]. J. Org. Chem.1989,54(21):5182-5184.
    [20]Takai T, Yamada T, Mukaiyama T. Aerobic Oxygenation of Olefinic Compounds into the Corresponding a-Hydroxy Ketones Using the Catalyst Systerm of OSO4 and Ni(Ⅱ) Complex[J]. Chem. Lett.1991,9:1499-1452.
    [21]Plietker B. The RuO4-Catalyzed Ketohydroxylation, Part Ⅱ:A Regio-, Chemo-and Stereoselectivity Study[J]. Eur. J. Org. Chem.2005,9:1919-1929.
    [22]Plietker B. Alkenes as Ketol Surrogates-A New Approach toward Enantiopure Acyloins[J]. Org. Lett.2004,6(2):289-291.
    [23]Plietker B. The RuO4-Catalyzed Ketohydroxylation. Part Ⅰ. Development, Scope and Limitation[J]. J. Org. Chem.2004,69(24):8287-8296.
    [24]L6pez-Herrera F J, Sarabia-Garcia F. Condensation of D-Mannosaldehyde Derivatives with Ethyl Diazoacetate. An Easy and Stereoselective Chain Elongation Methodology for Carbohydrates:Application to New Syntheses for KDO and 2-Deoxy-13-KDO[J]. Tetrahedron.1997,53(9):3325-3346
    [25]Scattergood A, Pacsu E. Glycofuranosides and Thioglycofuranosides. Ⅶ. Crystalline Alkyl Furanosides and Dimethylacetal of D-Mannose[J]. J. Am. Chem. Soc.1940,62 (4):903-910.
    [26]Kampf A, Dimant E. Hydroxymethylation of 2,3:5,6-di-O-isopropylidene-D-mannono-1,4-lactone. A synthesis of D-manno-heptulose[J]. Carbohydr. Res.1974,32(2):380-382.
    [27]Dutton G. G. S, Tanaka Y. Methylation of Sugar Dithioacetals V. D-Mannose Diethyl Dithioacetal[J]. Can. J. Chem.1963,41:2500-2503.
    [28]Miljkovic M, Dropkin D. Removal of Sugar Dithioacetal Group with N-Bromosuccinimide[J]. Carbohydr. Res.1984,128(1):11-20.
    [29]梁智.糖醇与低聚糖[J].中国食品添加剂,2004(1):96-99.
    [30]韦少平,许朝芳等.蔗糖电解还原制备甘露醇、山梨醇研究[J].化学世界,2007,8:491-493.
    [31]曾和平.甘露醇在天然产物合成中的应用[J].化学试剂,1994,16(2):103-104.
    [32]Mulzer J, List B, Bats J W. Stereocontrolled Synthesis of A Nonracemic Vitamin B_(12) A-B-Semicorrin[J]. J. Am. Chem. Soc.1997,119(24):5512-5518.
    [33]闻韧.药物合成反应[M].北京:化学工业出版社,2003.
    [34]荣国斌.有机人名反应及机理[M].华东理工大学出版社,2003.
    [35]Dash S, Patel S, Mishra B K. Oxidation by Permanganate:Synthetic and Mechanistic Aspects[J]. Tetrahedron,2009,65(4):707-739.
    [36]Bonini C, Chiummiento L, Funicello M, et al. New Functionalised Hydroxymethyl Ketones from the Mild and Chemoselective KMnO4 Oxidation of Chiral Terminal Olefins[J]. Eur. J. Org. Chem.2006,1:80-83.
    [1]Krief A, Laval A-M. Courpling of Organic Halides with Carbonyl Compounds Promoted by SmI2 the Kagan Reagent[J]. Chem. Rev.1999,99(3):745-777.
    [2]Imamoto T, Takeyama T, Koto H, et al. The Reaction of Carbonyl Compounds with Diiodomethane in the Presence of Samarium:Novel Syntheses of Iodohydrins and Cyclopropanols[J]. Tetrahedron Lett.1986,27(28):3243-3246.
    [3]Tabuchi T, Inanaga J, Yamaguchi M. SmI2-Induced Iodomethylation of Carbonyl Compounds[J]. Tetrahedron Lett.1986,27(33):3891-3894.
    [4]Braun H A, Meusinger R, Schmidt B.2-Iodoethanols from Aldehydes, Diiodomethane and Isopropylmagnesium Chloride[J]. Tetrahedron Lett.2005,46(15):2551-2554.
    [5]Bessieres B, Morin C. Iodomethylation of Lactones; Application to the Synthesis of 1-Deoxy-1-iodo-2-uloses[J]. Synlett,2000,11:1691-1693.
    [6]Bessieres B, Morin C. Iodomethyl Group as a Hydroxymethyl Synthetic Equivalaent: Application to the Syntheses of D-manno-Hept-2-ulose and L-Fructose Derivatives [J]. J. Org. Chem.2003,68(10):4100-4103.
    [7]Malaisse W J, Malaisse-Lagae F. Bitter Taste of Monosaccharide Pentaacetate Esters[J]. Biochemistry & Molecular Biology International,1997,43(6):1367-1371.
    [8]Sener A, Kadiate M M, Olivares E, Malaisse W J. Comparison of the Effects of D-Mannoheptulose and Its Hexaacetate Ester on D-Glucuose Metabolism and Insulinotropic Action in Rat Pancreatic Islets [J]. Diabetologia,1998,41:1109-1113.
    [9]Nordal A, Benson A A. Isolation of mannoheptulose and identification of its phosphate in avocado leaves[J]. J. Am. Chem. Soc.1954,76(20):5054-5055.
    [10]皮奇里利,皮卡尔迪,姆西卡等.含D-甘露庚酮糖和/或甘露庚糖醇的组合物用于治疗和预防先天免疫疾病的用途[P].CN1968707A.2007-5-23.
    [11]Garegg P J, Samuelsson B. Oxidation of Primary and Secondary Alcohols in Partially Protected Sugars with the Chromium Trioxide-Pyridine Complex in the Presence of Acetic Anhydride[J]. Carbohydr. Res.1978,67(1):267-270.
    [12]Kampf A, Dimant E. Hydroxymethylation of 2,3:5,6-di-O-isopropylidene-D-mannono-1,4-lactone. A synthesis of D-manno-heptulose[J]. Carbohydr. Res.1974,32(2):380-382.
    [13]Hiroyoshi K., Hewitt G.. Synthesis with Partially Benzylated Sugars. Ⅷ. Substitution at C-5 in an Aldose. The Synthesis of 5-0-Methyl-D-glucofuranose Derivatives [J]. J. Org. Chem.1967,32(8):2531-2534.
    [14]闻韧.药物合成反应[M].北京:化学工业出版社,2003.
    [15]李松,方志杰,程杰.一种由糖酸酯出发制备稀有已酮糖和庚酮糖的方法.中国发明专利(申请号200910031931.47).2009-07-03.
    [1]Mahmud T, Flatt P, Wu X. Biosynthesis of Unusual Aminocyclitol-Containing Natural Products[J]. J. Nat. Prod.2007,70(8):1384-1391.
    [2]Xu H, Minagawa K, Bai L, et al. Catalytic Analysis of Validamycin Glucosyltransferase (ValG) and Enzymatic Production of 4"-epi-Validamycin A[J]. J. Nat. Prod.2008, 71(7):1233-1236.
    [3]Ohtake H, Ikegami S. Facile Ring Transformation from Gluconolactone to Cyclitol Derivative via Suiro Sugar Ortho Ester[J]. Org. Lett.2000,2(4):457-460.
    [4]Fukase H, Horii S. Synthesis of Valiolamine and Its N-Substituted Derivatives AO-128, Validoxylamine G, and Validamycin G via Branched-Chain Inosose Derivatives[J]. J. Org. Chem.1992,57(13):3651-3658
    [5]孙哲,孙东,王惠钢,陈平,郑小明.甲基取代的氯硅烷甲醇醇解合成烷氧基硅烷[J].化学研究与应用,2002,14(6):697-698.
    [6]Ohtake H., Li X.-L., Shirob M. Ikegami S. A Highly Efficient and Shortcut Synthesis of Cyclitol Derivatives via Spiro Sugar Ortho Esters[J]. Tetrahedron,2000,56:7109-7122.
    [7]焦岩.几种具有生物活性糖类衍生物的合成.南京理工大学博士毕业论文.2008.
    [8]Shing T K M, Cheng H M, Wong W F, et al. Enantiospecific Synthesis of Pseudoacarviosin as a Potential Antidiabetic Agent[J]. Org. Lett.2008,10(14):3145-3148.
    [9]Uaami Y, Numata A. Examination of the Reactivity of Hydroxy Groups in Multioxygenated Cyclohexanoids:Synthetic Study toward Cytotoxic Pericosine B[J]. Chem. Pharm. Bull.2004,52(9):1125-1129.
    [10]Druzhinin S V, Balenkova E, Nenajdenko V G. Recent Advances in the Chemistry of α,β-Unsaturated Trifluoromethylketones[J], Tetrahedron,2007,63(13):7753-7808.
    [11]Brieger G, Nestrick T J. Catalytic Transfer Hydrogenation[J]. Chem. Rev.1974,74(5): 567-580.
    [12]闻韧.药物合成反应[M].北京:化学工业出版社,2003.
    [1]中华人民共和国卫生部药典委员会.中华人民共和国药典:第一册[M].北京:人民卫生出版社,1979,132.
    [2]胡桂.丹皮酚磺酸钠制备的研究[J].中国医院药学杂志,2004,24(5):319.
    [3]邢有权,王耀娟.新法合成牡丹酚[J].山东医药工业,1989,8(2):9-10.
    [4]Bensari A, Zaveri N T. Titanium(IV) Chloride-Mediated Ortho-Acylation of Phenols and Naphthols[J]. Synthesis,2003,2:267-271.
    [5]Kobayashi S, Moriwaki M, Hachiya I.2-Acylation Reactions of Phenol and 1-Naphthol Derivatives Using Sc(OTf)3 as a Lewis Acid Catalyst[J]. Synlett,1995,11:1153-1154.
    [6]Kim H-K, Tak J-H, Ahn Y-J. Acaricidal Activity of Paeonia Suffruticosa Root Bark-Derived Compounds Against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari:Pyroglyphidae)[J]. J. Agric. Food. Chem.2004,52(26):7857-7861.
    [7]Yasuda T, Kon R, Nakazawa T, et al. Metabolism of Paeonol in Rats[J]. Journal of Nature Product,1999,62(8):1142-1144.
    [8]曹阳,祁俊生,王远亮,张文.2-甲氧基-4-羟基-5-乙酰基偶氮苯-4'-胂酸的合成及生物活性初探[J].天然产物研究与开发,2004,16(5):426-430.
    [9]毛晓刚.正交实验法优选丹皮酚-β环糊精包合物制备工艺[J].海峡药学,2005,17(5):38-39.
    [10]Li W, Koike K, Asada Y, et al. Biotransformation of Paeonol by Panax Ginseng Root and Cell Cultrues[J]. Journal of Molecular Catalysis B:Enzymatic,2005,35(1):117-121.
    [11]荣国斌.有机人名反应及机理[M].华东理工大学出版社,2003.
    [1]Yuan Z Z, Lee C-W, Lee S-H. Reversible Thermochromism in Hydrogen-Bonded Polymers Containing Polydiacetylenes[J]. Angew. Chem. Int. Ed.2004,43(32):4197-4200.
    [2]Zeni G, Panatieri R B, Lissner E. Synthesis of Polyacetylenic Acids Isolated from Heisteria acuminata[J]. Org. Lett.2001,3(6):819-821.
    [3]Kabalka, G. W.; Shoup, T. M.; Goodman, M. M. Synthesis and Evaluation of a New Series of 17α-[123I]iodovinyl Estradiols[J]. Nucl. Med. Biol.2000,27(2):279-287.
    [4]Yan J, Li J H, Cheng D P. Novel and Efficient Synthesis of 1-Iodoalkynes[J]. Synlett,2007, 15:2442-2444.
    [5]Nishiguchi I, Kanbe O, Itoh K, et al. Facile Iodination of Terminal Acetylenes by Anodic Oxidation in the Presence of NaI[J]. Synlett,2000,1:89-91.
    [6]Zhu L, Minto R E. Improved Syntheses of Methyl (14E)-and (14Z)-Dehydrocrepenynate: Key Intermediates in Plant and Fungal Polyacetylene Biosynthesis [J]. Tetrahedron Lett. 2001,42(23):3803-3805.
    [7]Stefani H A, Cella R, Dorr F A, et al. Ultrasound-Assisted Synthesis of Functionalized Arylacetylenes[J]. Tetrahedron Lett.2005,46(12):2001-2003.
    [8]Kabalka G W, Mereddy A R. Iodination of Organotrifluoroborates:Synthesis of Vinyl and Alkynyl Iodides[J]. Tetrahedron Lett.2004,45(7):1417-1419.
    [9]Furstner A, Wuchrer M. Concise Approach to the "Higher Sugar" Core of the Nucleoside Antibiotic Hikizimycin[J]. Chem. Eur. J.2006,12(1):76-89.
    [10]Antunes L M, Organ M G Metal-Catalyzed Coupling Reactions on an Olefin Template: the Total Synthesis of Bupleurynol[J]. Tetrahedron Lett.2003,44(36):6805-6808.
    [11]Jacobsson M, Malmberg J, Ellervik U. Aromatic O-glycosylation[J]. Carbohydr. Res. 2006,341(10):1266-1281.
    [12]Morisawa Y, Konishi K, Kataoka M. Iodopropargyl Derivatives, Their Use and Preparation[P]. US4259350.1981-3-31.
    [13]Roy B, Mukhopadhyay B. Sulfuric Acid Immobilized on Silica:an Excellent Catalyst for Fischer Type Glycosylation[J]. Tetrahedron Lett.2007,48(22):3783-3787.
    [14]Fernandez-Megia E, Correa J. A Click Approach to Unprotected Glycodendrimers[J]. Macromolecules.2006,39(6):2113-2120.
    [15]Muthana S, Yu H. Chemoenzymatic Synthesis of Size-defined Polysaccharides by Sialyltransferase-Catalyzed Block Transfer of Oligosaccharides[J]. J. Am. Chem. Soc. 2007,129(39):11918-11919.
    [16]Hasegawa T, Numata M. Carbohydrate-Appended Curdlans as a New Family of Glycoclusters with Binding Properties Both for a Polynucleotide and Lectins[J]. Org. Biomol. Chem.2007,5:2404-2412.
    [17]Dudikova J, Mastihubova M. Exploration of Transfructosylation Activity in Cell Walls from Cryptococcus laurentii for Production of Functionalized β-D-Fructofuranosides[J]. J. Mol. Catal. B:Enzym.2007,45(1):27-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700