用户名: 密码: 验证码:
高温、高光强胁迫对植物离体叶绿体光合色素的降解及沙丘芦苇纯化内含物对其减缓作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以甘肃省河西走廊临泽县境内荒漠地区两种生态型芦苇(Phragmites CommunisTrim),双子叶植物菠菜(Spinacia oleracea)为材料,研究了在不同温度水平(25℃、35℃、45℃),不同光照水平(暗、光)和不同处理时间水平(0h、1h、2h、3h)条件下,三个物种离体叶绿体叶绿素相对含量的降解变化,以及外源加入来源于沙丘芦苇的纯化PAAC对逆境下离体叶绿体叶绿素降解的减缓作用和可能作用机理。主要获得以下结果:
     (1)高温、高光强条件下,离体叶绿体叶绿素降解作用明显,特别是温度和光强两因子之间的互作,加强了离体叶绿体叶绿素的降解率。而来源于沙丘芦苇的纯化PAAC的加入,可明显减缓水芦和菠菜叶绿素相对含量的降低,尤其可减缓光照条件下,叶绿素相对含量的降低,推测PAAC作为沙芦叶片中具独特分子结构特征的相容性溶质,对离体叶绿体有一定的保护作用。
     (2)为了进一步确定各胁迫因子对光合色素的影响程度及作用机理,我们采用了薄层层析技术对处理后得到的产物进行了分析,在薄层板上可分离5个斑点,测定各色素斑点的R_f值,根据各斑点的颜色及R_f值,与文献报道值比较,可确定各斑点依次为β-胡萝卜素,叶绿素a,叶绿素b和叶黄素,其中斑点2特征与文献报道不一致,其R_f值介于β-胡萝卜素和叶绿素a的R_f值之间,推测其为光合色素降解产物。
     (3)结合质谱的方法,我们进一步研究了光合色素降解的产物,发现其分子量约为564,与叶黄素的分子量568接近,推测该化合物可能是叶黄素的初级或早期中间代谢产物,而不是次级或最终的降解产物,或者是由于叶绿素a脱去叶绿醇基并且发生了基团的取代而引起的。
Isolated intact chloroplast from two ecotypes reed(Phragmites Communis Trim)and Spinach plant at Hexi Corridor which is in Linze county Gansu Province were used to study the change of isolated intact chloroplast degradation under various temperature(25℃,35℃, 45℃),light intensity(dark,light)and treat time(0h,1h,2h,3h),the results were summarized as follows:
     (1)The chlorophyll of isolated intact chloroplast was obviously degradated in condition of strong light intensity and high temperature.The exogenous PAAC can obvious alleviate the reduction of chlorophyll of isolated intact chloroplast relative content of swamp reed and Spinach in condition of strong light intensity.It is speculated that PAAC as a compatible solute with a specific structure in the laminae of dune reed,it can protect isolate intact chloroplast in a certain extent.
     (2)In order to identify the effection and mechanism about different stress factors effecting to chlorophyll,we take the technique of thin layer chromatography to analyse the production after treat.There is five spots in the TLC plate,determineing the value of R_f of every spots.Based on the colour and the value R_f of every spots,compareing with the report of document,it isβ-carotene,Chla,Chlb and xanthophyll in turn.The characteristic of spot 2 is not identical with the report of document,the value of R_f is betweenβ-carotene and Chla.
     (3)Combining with the method of ESI/MS,we did further research on,founding that relative molecular mass of the production is 564,the relative molecular mass is approach to xanthophylls.It is speculated that the compounds may be primary or intermediary metabolites, it is not the secondary or yield degradation products.Or oweing to Chla take off phytol base and take place base replacement at the same time.
引文
[1]Arnon D I. Plant Physiology, 1949, 24: 1-15
    [2]A.O.Taylor, A.S.Craig. Plant under climatic stress II low temperature,high light effects on chloroplast ultrastructure[J]. Plant Physiol. 1971, 47: 719-725
    [3]Betania F, Qurino YSN et al. Molecular aspects of leaf senescence Trends[J]. Plant Science, 20 00, 5(7): 278-282
    [4]Brown SB, Houghton JD, Hendry GAF. Chlorophyll breakdown. In: Scheer H (ed). Chlorophylls. Boca Raton: CRC Press, 1991,465-489
    [5]Crafts Brandner SJ, Salvucci ME. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO_2[J]. Proc Natl Acad Sci USA, 2000, 97: 13430-13435
    [6]CIadio P, Peter H. Effects of high temperature on photosynthesis in beans: I, Oxygen evolution and chlorophyll fluorenscence [J]. Plant Physiol, 1996,112: 1245-1251
    [7]Creelman RA, Mul et JE. Biosynthesis and action of jasmonates in plants[J]. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48: 355-381
    [8]Drolet G. Radical scavenging properties of polyamines[J]. Phytochemistry. 1986, 25(2): 367-371
    [9]Downton WJS, Loveys BR, Grant WJR. Non-uniform Stomatal closure induced by water stress causis putative non-stomatal inhibition of temperature stress on photosynthesis[J]. New Phytol. 1988, 110: 3-40
    [10]GONG M. Involvement of calcium and calmodulin in the acquisition of heat-shock induced thermotolerence in maize [J]. Plant Physiol, 1997,150: 615-621
    [11]GONG M. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings.Aust[J]. Plant Physiol, 1997, 24: 371-379
    [12]Havaux M. Characterization of thermal damage to the photosynthetic electron transport system in potato Ieaves[J]. Plant Sci, 1993, 94:19-33
    [13]Havaux M. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures[J]. Plant Cell Environ. 1993,16: 461-467
    [14]Havaux M. Short-term responses of PS I to heat stress[J]. Photosyn.Res, 1996,47: 85-97
    [15]Havaux M. Temperature sensitivity of the photochemical function of photosynthesis in potato[J]. Plant Physiol. 1995, 146: 47-53
    [16]Havaux M. Temperature-dependent modulation of the photo-inhibition-sensitivity of PS II in Solanum tuberosum leaves[J]. Plant Cell Environ. 1994,35:757-766
    [17]Havaux M, Gruszecki WI. Heat and light induced chlorophyll a fluorescence changes in potato leaves containing high or low levels of the carotenoid zeaxanthin: Indication of a regulatory effect of zeaxanthin on thylakoid membrane fluidity[J]. Photochem. Photobiol. 1993, 58: 607-614
    [18]Kao CH. Physiological significance of stress-induced changes in polyamines in plants[J]. Botanical Bulletin of Academic Sinica. 1997, 8(3): 141-144
    [19]Lidon F C, Loureiro A S, Vieira DE. Photoinhibition in chilling stressed wheat and maiz[J]. P hotosynthetica, 2001, 39(2): 161-166
    [20]Long S P, East T M, Baker N R. Chilling damage to photosynthesis in young Zea mays I. Effects of light and temperature variation on photosynthetic CO_2 assimilation[J]. Exp. Bot, 1983, 34: 177-188
    [21]Mansfied TA, Hetherington AM, Atkinson CJ. Some current aspects of Stomatal physiology[J]. Annu. Rev. Plant Physiol Plant Mol. Biol, 1990, 41: 55
    [22]Matile P et al. chlorophyll breakdown in senescent leaves[J]. Plant Physiol., 1996, 112: 1403-1409.
    [23]Mehler AH, Studies on the reactions of illuminated chloroplasts I Mechanism of the reduction of oxygen and other Hill reagent[J]. Arch. Biophys, 1951, 33: 65-77
    [24]Mc Ewen C N,Simonsick Jr W J,Larsen B Set al.Am.Soc.Mass Spectrom[J],1995,6:906
    [25]Nover L.The heat stress response as part of the plant stress network:An overview with six table,CherryJH(ed).NATO-ASI series on biochemical and cellular mechanisms of stress tolerance in plants.Springer,Berlin-NewYork.1994,3-45
    [26]Powles S B.Photoinhibition of photosynthesis induced by visible light[J].Ann Rev Plant Physi cl,1984,35:15-44
    [27]Paleg LG,Steward GR,Bradbeer JW,Plant Physiol,1984,75:974
    [28]Robinson SP,Portis ARJr.Adenosine triphosphate hydrolysis by purified rubisco activase[J].Arch Biochem.Biophys,1989,268:93-99
    [29]Salvucci ME,Crafts-Brandner SJ.Inhibition of photosynthesis by heat stress:the activation state of Rubisco as a limiting factor in photosynthesis[J].Physiol Plant.2004,120:179-186
    [30]Salvucci ME,Crafts-Brandner SJ.Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments[J].Plant Physiol,2004b,134:1460-1470
    [31]Shena B,Jensen RG,Bohnert HJ.Increased resistance to oxidative stress in transgenicplants by targeting mannitol biosynthesis to chloroplasts[J].Plant Physiology,1997,113:1177-1183
    [32]Shenb B,Jensen RG,Bohnert HJ.Mannitol protects against oxidation byhydroxyl radicals[J].Plant Physiol,1997,115:527-532
    [33]Smirnoff N,Cumbes Qj.Hydroxyl radical scavenging activity of compatible solutes.Phytochem 1989,28:1057-1060
    [34]Takamiya K,Tsuchiya T,Ohta H.Degradation pathway of chlorophyll:What has gene cloning revealed?[J].Trends Plant Sci,2000,5(10):426-431
    [35]Tressl R,Friese L,Fendesack F,et al,Gas Chromatographic--Mass Spectrometric Investigation of Hop Aroma Constituents in Beer[J].Agric Food Chem,1978,26(6):1422-1426.
    [36]浦铜良,程佑发,张承烈.沙丘芦苇特有一小分子物质及其对叶绿体的逆境保护效应[J].科学通报,2000,45(12):1308-1312.
    [37]王萍,郭晓冬,赵鹏.低温弱光对辣椒叶片光合色素含量的影响[J].北方园艺,2007(7):15-17
    [38]卢太白,曾玲,李坤,战海栗.绿色蔬菜叶绿体DNA的提取和纯化[J].西北农业学报,2006,15(1):186-188
    [39]潘瑞炽.植物生理学[M].北京:高等教育出版社,2003,55-56
    [40]沈允钢,施教耐,许大全.动态光合作用[M].北京:科学出版社,1998,18-19
    [41]唐延林,黄敬峰,王人潮.水稻不同发育时期高光谱与叶绿素和类胡萝卜素的变化规律[J].中国水稻科学,2004,18(1):59-66
    [42]果秀敏,翟彤宇,牛延峰.薄层色谱法分离菠菜叶片色素的研究[J].河北农业大学学报,2000,23(2):200-401
    [43]杨景宏,陈拓,王勋陵.增强紫外线B辐射对小麦叶绿体膜组分和膜流动性的影响[J].植物生态学报,2000,24(1):102-105
    [44]刘祖褀,张石城.植物抗性生理学[M].北京:中国农业出版社,1993,2-3
    [45]利客千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002,12
    [46]杨梵原,钱小红,盛龙生.生物质谱技术与方法[M].北京:科学出版社,2003
    [47]陈笑艳,钟大放,姜浩等.电喷雾离子阱质谱法直接测定几种药物的葡萄糖苷酸型代谢物[J].药物学报.1998,33(11):849-854
    [48]刘维信,中玉梅,丁兆堂,彭卫东.抗热与抗病毒病番茄育种种质材料的筛选研究[J].山东农业大学学报(自然科学版),1999,30(2):171-178
    [49]曹仪植,宋占武.植物生理学[M].兰州:兰州大学出版社,第一版(1998)
    [50]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000
    [51]潘瑞炽.植物生理学[M].北京:高等教育出版社,2001
    [52]王娟,李德全.细胞相容性溶质对水分胁迫下玉米根系SOD活性的促进作用[J].西北植物学报,2002,22(6):1312-1317
    [53]李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,8(1):37-44
    [54]丁雷,王学臣.干旱胁迫下,ABA对气孔运动的作用机制[J].干旱地区农业研究,1993,11(2):50-55
    [55]李秧秧,上官周平,陈培元.快速干旱下钾对玉米叶片光合作用的影响[J].西北农业学报,1993,2(3):48-52
    [56]万东石,李红玉,张立新等.植物体内干旱信号的传递与基因表达[J].西北植物学报,2003,23(1):151-157
    [57]韦朝领,袁家明.植物抗逆境的分子生物学研究进展(综述)[J].安徽农业大学学报,2000,27(2):204-208
    [58]叶济宇,米华玲,王颖君,沈允钢.菠菜类囊体中的作用光关闭后荧光短时上升[J].科学通报,1997,42(17):1867-1870
    [59]许大全.光合作用效率[M].上海:上海科学技术出版社,2002
    [60]赵百锁,杨礼富,王磊等.细胞相容性溶质对水分胁迫下玉米根系SOD活性的促进作用[J].微生物学报,2007,47(5):937-941

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700