用户名: 密码: 验证码:
BMP-9基因修饰的兔骨髓间充质干细胞异位成骨实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤和手术后的骨缺损常需要植骨,故骨修复是骨科的基本问题。将编码细胞因子的基因导入骨髓间充质质干细胞(BMSCs),再与合适的载体复合后植入骨缺损部位,可持续有效地表达细胞因子,诱导BMSCs向成骨细胞分化,促进骨愈合。有研究证实,BMP-9基因转染可促进人BMSCs增殖及成骨转化。本实验在此基础上,观察BMP-9基因修饰的兔BMSCs在PLGA支架中附着、生长情况,为进一步应用此组织工程骨修复骨缺损奠定基础。将细胞与可降解类生物材料等复合物移植于缺损部位替代修复骨缺损是一种新的尝试。本实验在基因修饰骨髓间充质干细胞的基础上,将细胞与可降解生物材料PLGA复合物在体外短暂培养后移植到兔臀部肌袋内,观察其异位成骨的能力,探讨一种实用性的骨缺损组织工程修复材料。
     目的:通过人骨形态发生蛋白-9(BMP-9)基因修饰兔骨髓间充质干细胞(BMSCs),接种PLGA(聚乳酸/羟基乙酸共聚物)支架体外构建组织工程骨;并将复合物移植到兔臀部肌袋内异位成骨,探索BMP-9基因治疗与组织工程技术相结合的可行性。
     方法:贴壁法培养兔骨髓MSCs,体外应用阳离子脂质体介导转染pEGFP-BMP-9基因:荧光显微镜观察及流式细胞学检测观察转染效率;MSCs碱性磷酸酶活性半定量测定及Von Kossa’s钙结节染色观察转染前后细胞功能变化;将转染及未转染基因的MSCs与PLGA支架共培养,体外构建组织工程骨,荧光显微镜及扫描电镜观察MSCs在PLGA支架上的黏附、生长状况。短暂体外培养后手术将MSCs-PLGA复合物分组移植到兔臀部肌袋内;于不同时间点(2W、4W、8W)行X线摄片和组织切片行HE染色观察骨基质的生成情况,及进行新骨成骨面积分析,并于(4W、8W)进行组织标本ALP测定。
     结果:流式细胞学测定阳离子脂质体介导的质粒转染率为34.15%;转染组MSCs的ALP活性较未转染组明显增高(p<0.05),Von Kossa’s钙结节染色比较转染细胞形成的钙结节明显大于未转染组;荧光显微镜及扫描电镜观察见MSCs在PLGA支架上的黏附、生长良好。异位成骨4W X线摄片见实验组有骨组织成像显示,8W后显影增大,对照组4W时未见显影,8W时可见模糊显影出现;4W、8W组织切片HE染色见:空白对照PLGA孔隙内无新骨形成,对照细胞组内有部分新生骨形成,而BMP-9实验组形成的新生骨组织面积更大(P<0.05)。4W、8W组织ALP检测显示实验组表达活性明显较实验对照组强(P<0.05)。
     结论:BMP-9基因转染BMSCs,可促进细胞向成骨细胞增殖分化。转染后细胞在PLGA支架上生长良好,BMP-9基因修饰的组织工程骨构建成功。应用BMP-9基因修饰的MSCs作为骨组织工程的种子细胞,可望取得更强的成骨能力。
Objective hBMP-9 gene therapy combined with tissue-engineering techniques was explored to improve osteogenesis in an ectopic bone formation model in rabbits.
     Method Autologous rabbit MSCs were cultured and transfected with pEGFP-BMP-9 gene by lipofectamine, fluorescent microscope、Flow cytometer (FCM)、ALP activity quantitative assay and Von Kossa’s calcium nodus staninig were detected; PLGA was prepared and MSCs infected by BMP-9 gene with cationic liposome were seeded onto it. Scanning electronic microscopy as used to observe cell matrix interaction. The cells infected and non-infected were combined with PLGA to construct tissue-engineered bones respectively. They were further implanted into rabbits subcutaneously. Four and eight weeks after surgery, the implants were evaluated with X-rays photographs and histological staining.
     Result The transfection efficiency of MSCs infected by BMP-9 gene with cationic liposome detected by FCM was34.15%, the ALP activity of infected MSCs was higher than that of non-infected MSCs (p<0.05), the calcium nodus of MSCs formation of BMP-9 gene infected group were manifest larger than the non-infected group; PLGA prepared was a grid-like porous structure, with definite ductility and strength, and could be trimmed into different models. MSCs seeded onto PLGA showed high level of proliferation, and mass synthesis of cell matrix was observed with scanning electronic microscopy. In the ectopic bone formation model, four weeks after surgery, in the X-rays photographsthe can see bone tissue image formation of the experimental group, and the image became augmentation in eight weeks; the new bone area formed in the non-infected MSCs group was lower than the BMP-9 gene infected group (p<0.05). The ALP activity in the experiment side was obviously higher than that in the control side(p<0.05).
     Conclusion BMP-9 gene modified MSCs could enhance ectopic new bone formation in rabbits. These results indicated that the MSCs transfer mediated by rhBMP-9 gene with cationic liposome combine with PLGA might be suitable for bone tissue engineering applications.
引文
[1] HelnekenFG,SkalkaR. Tisues Engneiering. A Brief Ovevriew [J].Journal of Biomechnaical Engineering.1991,113:111
    [2] Kang Q, Sun MH, Cheng H, et al. Characterization of the disyinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery[J]. Gene Ther. 2004; 11(17): 1312-1320.
    [3] Karp JM, Shoichet MS, Davies JE. Bone formation on two-dimensional poly (DL- lactide-co-glycolide)(PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro[J].J Biomed Mater Res A.2003; 64(2): 388-396.
    [4] Van VP, Falla N, Snoeck H. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin[J]. Blood. 1994; 84 :753 - 763.
    [5] Mendes SC, Tibbe JM, Veenhof M, et al. Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age[J].Tissue Eng.2002;8(6): 911- 920.
    [6] Naumann A, Dennis J , Staudenmaier R, et al. Mesenchymal stem cells--a new pathway for tissue engineering in reconstructive surgery[J]. Laryngorhinootologie. 2002; 81(7): 521-8.
    [7] Verfaillie CM. Admlt stem cells: assessing the case for pluripotency [J]. Trends Cell Biol. 2002; 12(11): 502-8.
    [8] Fridenstein AJ. Precursor cells of mechanocytes[J]. Int Rev Cytol. 1976, 47:327-355
    [9] C. R. Bjornson, R L Rietze, B A Reynolds, et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo[J]. Science 283. 1999; 534?537.
    [10] F Parhami, SM Jackson, Y Tintut Y, et al, Atherogenic Diet and Minimally Oxidized Low Density Lipoprotein Inhibit Osteogenic and Promote Adipogenic Differentiation of Marrow Stromal Cells[J]. 1999; 14(12):2067-78.
    [11] L M Hoffman, A D Weston and T M Underhill. Molecular Mechanisms Regulating Chondroblast Differentiation[J]. J Bone Joint Surg.2003; 85-ASuppl 2:124-32.
    [12] C. Rauch, A. C. Brunet, J. Delemle,E. Farge. C2C12 myoblast/osteoblast transdiff- erentiation steps enhanced by epigenetic inhibition of BMP2 endocytosis[J]. Am J Physiol Cell Physiol.2002 ; 283: 235-243.
    [13] Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro[J]. Exp Neurol. 2000; 164:247-256.
    [14] Bianco P, Riminucci M, Majolagbe A, et al. Mutations of the GNAS1 gene, stromal cell dysfunction, and osteomalacic changes in non-McCune-Albright fibrous dysplasia of bone[J]. J Bone Min Res. 2000; 15: 120-128.
    [15] Minguell JJ, Erices A. Conget P. Mesenchymal stem cells[J]. Exp Biol Med. 2001; 226(6): 507-20.
    [16] De Bari C, Dell'Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane[J]. Arthritis Rhetun. 2001; 44(8): 1928 -42.
    [17] MQ Wickham, GR Erickson, JM Gimble, et al. Multipotent human adult stem cells derived. from infrapatellar fat pad of the knee[J]. Clin. Orthop.2003;412.
    [18] PA Zuk, M Zhu, P Ashjian P, et al. Human Adipose Tissue Is a Source of Multipotent Stem Cells Mol Mol Mesenchymal stem cells. Biol Cell. 2002; (13 ): 4279 – 4295.
    [19] N. J. Zvaifler, L. Marinova-Mutafchieva, G. Adams, et al, Mesenchymal precursor cells in the blood of normal individuals[J]. Arthritis Res. 2000; 2: 477-488.
    [20] 何旭,郭新,崔丽,王心蕊,牛云,李玉林.人骨髓间充质干细胞的分离培养及其形态学特点[J].电子显微学报.2006;25(1):57- 61.
    [21] Bruder SP, Jaiswal N, Ricalton NS, et al. Mesenchymal stem cells in osteobi2ology and appiled bone regeneration[J]. Clin Orthop. 1998; 355: 247.
    [22] Katagiri T, Yamaguchi A, Komaki M, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage[J].J Cell Biol.1994;127(6):1755–1766.
    [23] Diefenderfer DL,Osyczka AM,Reilly GC, et al. BMP responsive in human mesenchymal stem cells[J].Connect Tissue Res. 2003; 44(1):305-311.
    [24] Ploemacher RE et al. Bone morphogenetic protein 9 is a potent synergisticfactor for murine hemopoietic progenitor cell generation and colony formation in serum-free cmltures[J]. Leukemia.1999; 13: 428–437.
    [25] Lopez-Coviella I et al. Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9[J]. Science. 2000; 289: 313–316
    [26] Musgrave DS, Fu FH, Huard J. Gene therapy and tissue engineering in orthopaedic surgery[J]. J Am Acad Orthop surg. 2002, 10(1): 6-l5.
    [27] 张峰,任燕,陆长得.绿色荧光蛋白及其应用[J].生命科学.1999,11(2):61.
    [28] Hacein-Bey-Abina S. Gene therapy, where does it stand today[J]. J Med Liban. 2004; 52(1):32.
    [29] Cheng SL, et al. In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene[J]. Calcif Tissue Int.2001; 68: 87–94.
    [30] Krebsbach PH, Gu K, Franceschi RT, Rutherford RB. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo (in process citation) [J]. Hum Gene Ther. 2000; 11: 12011210.
    [31] Varady P et al. CT and radionuclide study of BMP-2 gene therapy-induced bone formation[J]. Acad Radiol. 2002; 9: 632–637.
    [32] Sandhu HS, Khan SN, Suh DY, Boden SD. Demineralized bone matrix, bone morphogenetic proteins, and animal models of spine fusion: an overview[J]. Eur Spine J. 2001;10 (Suppl. 2): S122–S131.
    [33] 余方圆,卢世璧,袁玫.组织工程关节软骨研究进展[J].中国矫形外科杂志. 2004,12(10):785-787
    [34] 李玉宝.生物医学材料[M],1 版,北京:化学工业出版社.2003,216.
    [35] 胡稷杰,裴国献,全大萍,等.新型聚乳酸-羟基乙酸(PLGA)支架的细胞相容性研究[J].中华创伤骨科杂志.2005,7(4):358- 362.
    [36] Deckers MML, van Bezooijen RI, van der Horst G, et al. Bone morphogenetic proteins stim ulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology.2002; 143(4): 1545.
    [37] Sun JS, LiuHC,ChangWH,etal. Influence ofhydroxyapatite particle size on bone cell activities: an in vitro study[ J]. J Biomed Mater Res. l998, 39(3): 390-398.
     [38] 李建军,傅永慧,孙鸿斌,等.骨形态发生蛋白 2 基因治疗与缓释载体修复骨缺损的比较研究[J].中国矫形外科杂志. 2005, 13(17): 1334-1336.
    [39] Musgrave DS, Fu FH,Huard J. Gene therapy and tissue engineering in orthopaedic surgery[J]. JAm Acad Orthop surg.2002, 10(1): 6-15.
    [1] Naumann A, Dennis J , Staudenmaier R, et al. Mesenchymal stem cells--a new pathway for tissue engineering in reconstructive surgery[J]. Laryngorhinootologie, 2002; 81(7): 521-8.
    [2] Minguell JJ, Erices A. Conget P. Mesenchymal stem cells[J]. Exp Biol Med, 2001; 226(6): 507-20.
    [3] De Bari C, Dell'Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane[J]. Arthritis Rhetun, 2001; 44(8): 1928 -42.
    [4] 何旭,郭新,崔丽,王心蕊,牛云,李玉林.人骨髓间充质干细胞的分离培养及其形态学特点[J].电子显微学报,2006;25(1):57- 61.
    [5] Pittenger MF,Mackay AM,Beck SC.et al.Multilineage potential adult human mesenchymal stel cells[J].Science, 1999; 284(5411): 143-7.
    [6] Baddoo M, Hill K, Wilkinson R, et a1. Characterization of mesenchymal stem cellsisolated from murine bone mallow by negative selection[J]. J Cell Biochem, 2003; 89(6): 1235-49.
    [7] Rodriguez JP, Rios S, Gonzalez M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper[J]. J Cell Biochem, 2002; 85(1):92-100.
    [8] Ignatius A, Blessing H, Liedert A, et al. Effects of mechanical strain on human osteoblastic precursor cells in type I collagen matrices[J]. Orthopade, 2004; 33(12): 1386-93.
    [9] Wozney J, Seeherman H. Protein-based tissue engineering in bone and cartilage repair[J]. Curr Opin Biotechnol, 2004; 15(5): 392-8.
    [10] Varga AC, & Wrana JL, The disparate role of BMP in stem cell biology[J]. Oncogene, 2005; 24(37): 5713-21.
    [11] Gambaro K, Aberdam E, Virolle T, et al. BMP-4 induces a Smad-dependent apoptotic cell death of mouse embryonic stem cell-derived neural precursor Differ[J]. Cell Death Differ, 2006; 13(7):1075-87.
    [12] Ten Dijke P, Hill CS. New insights into TGF-beta Smad signaling[J]. Trends Biochem Sci, 2004; 29(5):265-73.
    [13] Liu F. Receptor-regulated Smads in TGF-beta signaling[J]. Front. Biosci, 2003; 8: s1280-303.
    [14] Massague J, Seoane J,Wotton D. Smad transcription factors[J]. Genes Dev, 2005; 19(23): 2783-810.
    [15] Peng Y, Kang Q, Luo Q, et al. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells[J]. J Biol Chem, 2004; 279(31): 32941 -9.
    [16] Luo Q , Kang Q, Si W, et al. Connective Tissue Growth Factor (CTGF) Is Regulated by Wnt and Bone Morphogenetic Proteins Signaling in Osteoblast Differentiation of Mesenchymal Stem Cells[J]. J Biol Chem, 2004; 279(53): 55958
    [17] Li JZ, Li H, Sasaki T, et al. Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat[J].Gene Ther, 2003; 10(20): 1735-43.
    [18] Friedman MS, Long MW, Hankenson KD. Osteogenic differentiation of humanmesenchymal stem cells is regulated by bone morphogenetic protein-6[J]. J Cell Biochem, 2006; 98(3): 538-54.
    [19] Singh K, Smucker JD, Boden SD. Use of Recombinant Human Bone Morphogenetic Protein-2 as an Adjunct in Posterolateral Lumbar Spine Fusion: A Prospective CT-Scan Analysis at One and Two Years[J]. J Spinal Disord Tech, 2006; 19(6): 416-23.
    [20] Tsuchida H,Hashimoto J,Crawford E, et a1.Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats[J]. J Orthop Res,2003; 21(1): 44-53.
    [21] Dumont RJ,Dayoub H,Li JZ, et a1.Ex vivo bone morphogenetic protein-9 gene therapy using human mesenchymal stem cells induces spinal fusion in rodents[J]. Neurosurgery,2002; 51(5): l239-44 discussion l244-5.
    [22] Ro TB, Holt RU, Brenne AT, et al. Bone morphogenetic protein-5, -6 and -7 inhibit growth and induce apoptosis in human myeloma cells[J]. Oncogene, 2004; 23(17):3024-32.
    [23] Hefferan TE, Subramaniam M, Khosla S, et al. Cytokine-specific induction of the TGF-beta inducible early gene (TIEG): regulation by specific members of the TGF-beta family[J]. J Cell Biochem, 2000; 78(3): 380-90.
    [24] Kandziora F, Schmidmaier G, Schollmeier G, et a1. IGF-I and TGF-betal application by a poly- (D, L-lactide) -coated cage promotes intervertebra1 bone matrix formation in the sheep cervica1 spine[J], Spine, 2002; 27(16): 1710-23
    [25] 王戎,曹颖光,王华均,吴慧华.TGF-β1 基因真核表达载体的构建及在 BMSCs中的表达[J].中国组织化学与细胞化学杂志, 2005; 14(2):217-21.
    [26] Shimoaka T, Ogasawara T, Yonamine A, et al. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10[J]. J Biol Chem, 2002; 277(9):7493-500.
    [27] Valta MP, Hentunen T, Qu Q, et al. Regulation of osteoblast differentiation: a novel function for fibroblast growth factor 8[J]. Endocrinology, 2006; 147(5): 2171-82.
    [28] Koch H, Jadlowiec JA, Campbell PG. Insulin-like growth factor-I induces early osteoblast gene expression in human mesenchymal stem cells[J]. Stem Cells Dev, 2005; 14(6): 621-31.
    [29] Wang Y, Lou S. Direct protective effect of interleukin-10 on articular chondrocytes in vitro[J]. Chin Med J(Engl), 2001; 114(7): 723-5.
    [30] Lee CC, Ye F, Tarantal AF. Comparison of growth and differentiation of fetal and adult rhesus monkey mesenchymal stem cells[J]. Stem Cells Dev, 2006; 15(2): 209-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700