用户名: 密码: 验证码:
基于PEO成分的环境刺激响应性聚合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境刺激响应性聚合物是一类能够对外界环境的细微物理或化学变化做出响应,产生相应的物理结构和化学性质变化甚至突变的高分子。近些年来,由于其在生物医药、基因工程、传感器、催化剂载体、分散剂等诸多领域潜在的应用价值受到了广泛的关注。在初期的研究中,多以单一刺激响应性的聚合物为研究对象。但是在实际应用中,外界环境的变化是多样化的,因此多重刺激响应性的聚合物受到越来越多的关注。含聚醚(PEO)成分的刺激响应性聚合物备受瞩目,因为PEO具有高度的亲水性,又能溶于大部分有机溶剂,并具有良好的生物相容性。商业产品Pluronic和Tetronic是目前应用最为广泛的PEO-PPO-PEO嵌段共聚物,但是由于在形成稳定凝胶时需要的聚合物浓度很高,限制了它们在生物医药等方面的应用。接枝型PEO共聚物的性能比线性的PEO嵌段共聚物优异,前者具有更快的响应速度且形成的胶束比较稳定。
     通过传统自由基聚合方法,以AIBN(偶氮二异丁氰)为引发剂,引发4-乙烯基吡啶(4-VP)和甲基丙烯酰胺封端的PEO大单体(PEO-MA)共聚,得到含有吡啶侧基和PEO侧链的多重响应性共聚物(P4VP-g-PEO)。用变温紫外监测共聚物溶液的浊度(CP)随温度的变化,测定了共聚物在不同pH下的CP,发现共聚物的CP随pH升高或共聚物中PEO的含量减小而降低,因此可以控制外部环境条件或共聚物组成以调节其CP。在不同pH条件下,P4VP-g-PEO均可以在4 oC以内完成相转变。同时,共聚物的CP随溶液中NaCl浓度的增加先减小后增大,而相转变速度则呈现出相反的转变趋势。采用变温核磁技术研究了P4VP-g-PEO在水溶液中的相转变行为,发现在低温低pH时P4VP-g-PEO能够完全溶解于水;增大体系的pH,聚合物中P4VP部分由亲水性变成疏水性,形成以P4VP为内核L100为外壳的胶束。高温下,胶束的L100亲水外壳发生塌陷,胶束间相互缠结形成大尺寸的颗粒,从溶液中析出。透射电镜(TEM)观察到共聚物在pH 5.0、低温下,形成直径约为35-45 nm的胶束,共聚物的支化度越高胶束的尺寸越大;高温时,聚合物形成300-500 nm的大尺寸颗粒,支化度高的共聚物形成的颗粒外形不是很规整,而支化度低的共聚物则形成类似“胶束”结构的颗粒。
     利用环氧基团与胺基的亲核加成/开环反应,制备出一类新型的多重刺激响应性聚醚胺类聚合物。利用这种新的合成方法,选择不同结构的共聚单体,合成出多嵌段聚醚胺(PEA)、接枝聚醚胺(gPEA)和两亲性聚醚胺(agPEA)。三种聚醚胺对温度、pH和离子强度的变化都很灵敏,在pH 6.0-8.0范围内都可以在3 oC以内完成相转变,含亲水侧链的接枝结构的gPEA具有最快的响应速度。三种聚醚胺的CP均随着共聚物中亲水组分的增加而升高,随体系中pH或离子强度的增加而降低。聚醚胺的相转变速度受体系pH、聚合物结构和组分影响较大,低pH、亲水组分含量较少时,聚醚胺的相转变速度较慢,反之聚醚胺的相转变速度较快;含亲水侧链的聚醚胺相转变速度较快。聚醚胺的浓度对其CP的影响不大,但是对其相转变速度有影响,随聚合物浓度的增加相转变速度加快,当聚合物浓度达到一定浓度后,相转变速度趋于恒定。选用芘做探针,测定了三种聚醚胺的临界胶束浓度(CMC),三种聚醚胺的CMC值均低于31.2×10-6 mol/L,两亲性聚醚胺agPEA的CMC值最小。采用动态光散射(DLS)研究了三种聚醚胺的自组装颗粒大小及其粒径分布。在室温、pH 7.4时,除PEA101形成了140 nm左右的球形胶束且粒径有两种分布,其他聚醚胺都能形成小于40 nm的单分散的胶束。聚醚胺胶束的粒径在6.6 < pH < 7.4范围内发生转变,在低pH条件下,胶束尺寸较大,在高pH时胶束粒径较小。在高于聚醚胺CP的温度下,共聚物则自组装成几个微米的颗粒。采用1H NMR技术研究了三种聚醚胺在不同温度、pH条件下的溶液行为和分子间作用情况发现:低pH时,叔氨基被质子化,聚醚胺各个部分的亲水性都很高;高pH时,叔氨基脱质子化,聚醚胺的亲水性由各个部分的亲水平衡控制;升高温度,PEA和gPEA中PPO的亲水性降低,形成胶束;温度升至相转变点附近时,PEO部分的亲水性也大幅降低。agPEA211对尼罗红和甲基橙都有很好的装载能力,使油溶性的尼罗红可以分散在水中,也可以使极性的甲基橙分散在非极性溶剂甲苯中。两种染料的分散溶液可长时间保存,始终保持良好的稳定性。
     选用2-甲氨基芘标记聚醚胺,合成出带有芘侧基的pePEA。研究pePEA532在不同pH条件下的荧光光谱发现pePEA532在378、397和419nm处的特征峰随着pH的增加而降低,而478nm处的特征峰随pH的升高略有增强。IE/IM随pH变化曲线表明pePEA532的pH转变在6.0-8.0之间。pePEA共聚物IE / IM随温度的升高有一最大值,根据这个最大值可以确定共聚物的相转变温度。pePEA在低温时,形成纳米胶束,高于其CP时,胶束之间发生缔合,形成可达微米级的大颗粒。pePEA在D2O中的1H NMR谱图揭示出,聚合物分子中PO单元随着温度的升高,疏水性增强,紧缩在自组装颗粒内部,。用pePEA211对MWNT进行非共价改性,使MWNT能在水中稳定的分散。TEM图片揭示出MWNT表面包裹着一层聚合物,聚合物层的厚度约1nm。TGA分析表明复合物中聚合物的含量为20.4 wt%,而且复合后,MWNT依然保持良好的热稳定性。
Stimuli-responsive polymers are able to undergo relatively large and abrupt, physical or chemical changes in response to small external changes in the environmental conditions. They are of fundamental importance in many scientific areas and have been proposed for use in a variety of applications such as in drug delivery, biotechnology, sensors, catalyst supports, and dispersants. In the early studies, single stimuli-responsive polymers had attracted considerable attention due to the theory of theirs aqueous solution behavior. However, there are many different stimulis in the practical applications, and the interest in the multi stimuli-responsive polymers has grown greatly. The stimuli-responsive polymers containing poly(ethylene oxide) (PEO) segments have been focused on due to its hydrophilicity, solubility in organic solvents and biocompatibility. Up to now, most polymers containing PEO were synthesized by using PEO macroinitiators or vinyl end-capped PEO macromolecules. These reactive processes are usually multistep, and catalysts or initiators are necessary to these reactions. So it is very important to develop new synthesis ways of stimuli-responsive polymer. In this thesis a novel way was been developed. A new multi-responsive polymer, poly(ether ter-amine) (PEA) were synthesized by nucleophilic addition/ring-opening reaction. These polymers exhibit sharp response to temperature、pH and ionic strength. Some potential applications were also investigated.
     Multi-stimuli responsive copolymers were prepared by free-radical copolymerization of methacrylamide end-capped PEO macromonomer (PEO-MA) and 4-vinylpyridine (4-VP). The copolymer displayed sharp response to temperature and pH. The more PEO was induced into the macromolecule, the higher lower critical solution temperature (CP) of copolymer was observed. And the CP decreased with increasing pH dure to the deprotonation of the pyridine ring. In addition, the CP of P4VP-g-PEO9 presented a unique phase transition behavior with varying salt concentration, showing a minimum with 1 M NaCl solution at pH 6.0,but itsΔT showed a maximum. 1H NMR spectra data showed that the hydrophobic segment of P4VP formed the core and the hydrophilic PEO side chain composed the corona. The TEM images showed that P4VP-g-PEO formed micelles with a diameter of 35-45 nm at pH 5.0 and room temperature. At high temperature, the copolymer formed mesoglobules with a diameter of 300-500 nm.
     Three series of PEA, multi-block poly(ether ter-amine) (PEA), grafted poly(ether ter-amine) (gPEA) and amphiphilic poly(ether ter-amine) (agPEA) were successfully synthesized by nucleophilic addition / ring-opening reaction. These poly(ether ter-amine)s exhibit very sharp response to temperature, pH and ionic strength with tunable cloud point (CP). They displayed rapid phase transition withΔT < 3 oC,and gPEA and agPEA have smallerΔTs than PEA. Their CPs increased with increasing the PEO content or decreasing pH, and they presented largeΔTs under low pH and PEO content. The critical micelles concentration (CMC) of these poly(ether ter-amine) was determined by using prene as a fluorescent probe. The CMCs were less than 31.2×10-6 mol/L, and increased with increasing PEO content. The results obtained from TEM and DLS revealed that poly(ether ter-amine)s were dispersed as uniform sized nano-micelles in aqueous at room temperature, which can further aggregate into mesoglobules of complex structure at high temperature (> CP). 1H NMR spectra data showed that the tertiary amino groups undergo different changes at different conditions. At lower pH, the tertiary amino groups were protonized and caused the split of the peaks of its neighboring protons. At higher pH, the tertiary amino groups were deprotonized and do similar inductive effect to its neighboring protons, so these protons peaks associated together and showed a single peak. Increasing temperature, two peaks replaced the single peak, which indicated that the tertiary amino groups exited in two different environments of hydrophilic and hydrophobic phase. In the presence of these obtained agPEAs, hydrophobic dye Nile red can be dispersed into aqueous solution and polar dye methyl orange can be dispersed into non-polar toluene. The agPEAs are expected to be potential in application such as encapsulation and controlled release of drugs, due to their simple synthesis, amphiphility and multi-stimuli response.
     We further investigated a pyrene-labeled poly(ether ter-amine) (pePEA), which was synthesized by nucleophilic addition / ring-opening reaction of 2-methylamine pyrene and Jeffamine L100 with poly(ethylene glycol) diglycidyl ether. It CP decreased with increasing pH. pePEA formed uniform sized nano-micelles in aqueous at room temperature, which can further aggregated into mesoglobules at high temperature (>CP). The fluoscence intensity of pePEA532 decreased with increasing pH. The ratio of excimer emission intensity to monomer emission intensity (IE/IM) increased at pH 6.0~8.0. IE/IM of pePEA showed a maximum with increasing temperature which can be used to confirm the phase transition temperature. TEM images at pH 7.0 showed that pePEA formed nano-micelles at low temperature and mesoglobules at high temperature. At pH 6.0, pePEA532 formed 200-750 nm micelles, and these micelles were linked by copolymer fiber. 1H NMR spectra data showed that the hydrophobicity of PO units of the macromolecule increased with increasing temperature. These PO units gathered together and formed core of self-assemblies which were wraped by the hydrophilic corona of L100. MWNT was noncovalent functionalized by pePEA211 and the functionalized MWNT can be dispersed well in water. TEM image revealed that pePEA had wrapped the MWNT. TGA data indicated that the complex contained 20.4 wt% pePEA.
引文
[1] Gil, E.S., Hudson, S.M. Stimuli-reponsive polymers and their bioconjugates. [J] Prog Polym Sci. 2004, 29:1173-1222.
    [2] Tanaka, T. Collapse of gels and the critical endpoint. [J] Phys Rev Lett. 1978, 40(2): 820-823.
    [3] Matsuo, E.S., Tanaka, T. Patterns in shrinking gels. [J] Nature. 1992, 358(6386): 482-485.
    [4] Robinson, D.N., Peppas, N.A. Molecular design and cellular response of novel intelligent mucoadhesive carriers for oral delivery of proteins. [J] Macromolecules. 2002, 35:3668-3674.
    [5] Gupta, P., Vermani, K., Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. [J] Drug Discov Today. 2002, 7:569-579.
    [6] Qiu, Y., Park, K. Enviroment-sensitive hydrogels for drug delivery. [J] Adv Drug Deliv Rev. 2001, 53:321-339.
    [7] Sershen, S., West, J. Implantable, polymeric systems for modulated drug deliver. [J] Adv Drug Deliv Rev. 2002, 54:1225-1235.
    [8] Yokoyama, M. Gene delivery using temperature-responsive polymeric carriers. [J] Drug Discov Today. 2002, 7:426-432.
    [9] Chikoti, A., Dreher, M.R., Meyer, D.E., Rancher, D. Targeted drug delivery by thermally responsive polymers. [J] Adv Drug Deliv Rev. 2002, 54:613-630.
    [10] Bromberg, L.E., Ron E.S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. [J] Adv Drug Deliv Rev. 1998, 31:197-221.
    [11] Weidner, J. Drug targeting using thermally responsive polymers and local hyperthermia. [J] Drug Discov Today. 2001, 6:1239-1248.
    [12] Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H. Hydrogels in pharmaceutical formulations. [J] Eur J Pharm Biopharm. 2000, 50:27-43.
    [13] Jeong, B., Gutowska, A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. [J] Trends Biotechnol. 2002, 20:305-311.
    [14] Galaev, L.Y., Mattiasson, B.‘Smart’polymers and what they could do in biotechnology and medicine. [J] Trends Biotechnol. 2000, 17:335-340.
    [15] Sharma, S., Kaur, P., Jain, A., Rajeswari, M.R., Gupta, M.N. A smart bioconjugate of chymotrypsin. [J] Biomacromolecules. 2003, 4:330-336.
    [16] Liu, Z., Calvert, P. Multilayer hydrogels as muscle-like actuators. [J] Adv Mater. 2000, 12:288-291.
    [17] Hoffman, A.S. Hydrogels for biomedical applications. [J] Adv Drug Deliv Rev. 2002, 43:3-12.
    [18] Kikuchi A, Okano T. Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. [J] Prog Polym Sci. 2002, 27, 1165-1193.
    [19] Kobayashi, J., Kikuchi, A., Sakai, K., Okano, T. Aqueous chromatography utilizing hydrophobicity-modified anionic temperature-responsive hydrogel for stationary phases. [J] J Chromatogr A. 2002, 958:109-19.
    [20] Anastase-Ravion, S., Ding, Z., Pelle, A., Hoffman, A.S., Letourneur, D. New antibody purification procedure using a thermally responsive poly(N-isopropylacrylamide)-dextran derivative conjugate. [J] J Chromatogr B. 2001, 761:247-254.
    [21] Kanazawa, R., Yoshida, T., Gotoh, T., Sakohara, S. Preparation of Molecular Imprinted Thermosensitive Gel Adsorbents and Adsorption/Desorption Properties of Heavy Metal Ions by Temperature Swing. [J] J Chem Eng Jpn. 2004, 37:59-66.
    [22] Miyata, T., Uragami, T., Nakamae, K. Biomolecule-sensitive hydrogels. [J] Adv Drug Delivery Rev. 2002, 54:79-98.
    [23] Fujishige, S., Ando K.K.I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). [J] J Phys Chem. 1989, 93:3311-3313.
    [24] Dautzenberg, H., Gao, Y., Hahn, M. formation, structure, and temperature behavior of polyelectrolyte complexes between ionically modified thermosensitive polymer. [J] Langmuir. 2000, 16:9070-9081.
    [25] Xia, Y., Yin, X.C., Burke, N.A.D., Sto1ver, H.D.H. Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. [J] Macromolecules 2005, 38:5937-5943.
    [26] Schild, H.G. Poly(N-isopropylacrylamide): experiment, theory and application. [J] Prog Polym Sci. 1992, 17:163-249.
    [27] Chen, G., Hoffman, A.S. Graft copolymers that exhibit temperature-induced phase transition over a wide range of pH. [J] Nature. 1995, 373:49-52.
    [28] Lutz, J.F. Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. [J] J Polym Sci Part A: Polym Chem 2008, 46:3459-3470.
    [29] Lutz, J.F., Akdemir, ?., Hoth, A. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: Is the age of poly(NIPAM) over? [J] J Am Chem Soc 2006, 128:13046-13047.
    [30] Lutz, J. F., Hoth, A. Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-Methoxyethoxy) ethyl methacrylate and oligo(ethylene glycol) methacrylate. [J] Macromolecules. 2006, 39:893-896.
    [31] Hussain. H., Mya K.Y., He C. Self-assembly of brush-like poly[poly(ethylene glycol) methyl ether methacrylate] synthesized via aqueous atom transfer radical polymerization. [J] Langmuir. 2008, 24:13279-86.
    [32] Bekturov, E.A., Frolva, V.A., Bimendia, L.A. Swelling behaviour of a non-ionic poly(N-vinyl-2-pyrrolidone) gel in a linear poly(acrylic acid) solution. [J] Macromol Chem Phys. 1999, 200:431-435.
    [33] Liu, G.Q., Guan, C.L., Zou, W.j., Zhu, H., Peng, J., Zhang, L.Q. Bi, X.Q. Swelling behaviors and mechanical properties of polymer gel/poly(N-vinyl-2-pyrrolidone). [J] J Polym Res. 2007, 14(6):461-465.
    [34] Mertoglu, M., Garnier, S., Laschewsky, A., Skrabania, K., Storsberg, J. Stimuli Responsive Amphiphilic Block Copolymers for Aqueous Media Synthesized via Reversible Addition Fragmentation Chain Transfer Polymerization (RAFT). [J] Polymer. 2005, 46:7726-7740.
    [35] Virtanen, J., Tenhu, H. Thermal properties of poly(N-isopropylacrylamide)-g- poly(ethylene oxide) in aqueous solutions: Influence of the number and cistribution of the grafts. [J] Macromolecules. 2000, 33:5970-5975.
    [36] Wu, C., Zhou, S.Q. Volume Phase Transition of Swollen Gels: Discontinuous or Continuous? [J] Macromolecules. 1997, 30:574-576.
    [37] Wu, C. A comparison between the‘coil-to-globule’transition of linear chains and the“volume phase transition”of spherical microgels. [J] Polymer. 1998, 39:4609-4619.
    [38] Kokufuta, E., Wang, B.L., Yoshida, R. Volume Phase Transition of Polyelectrolyte Gels with Different Charge Distributions. [J] Macromolecules. 1998, 31:6874-6884.
    [39] Woodward, N.C., Chowdhry, B.Z., Snowden, M.J., Leharne, S.A., Griffiths, P.C., Winnington, A.L. Calorimetric Investigation of the Influence of Cross-Linker Concentration on the Volume Phase Transition of Poly(N-isopropylacrylamide) Colloidal Microgels. [J] Langmuir. 2003, 19:3202-3211.
    [40] Dingenouts, N., Norhaiusen, Ch., Ballauff, M. Observation of the Volume Transition in Thermosensitive Core?Shell Latex Particles by Small-Angle X-ray Scattering. [J] Macromolecules. 1998, 31:8912-8917.
    [41] Diez-Pena, E., Quijada-Garrido, I. On the water swelling behaviour of poly(N-isopropylacrylamide)[P(N-iPAAm)], poly(methacrylic acid) [P(MAA)], their random copolymers and sequential interpenetrating polymer networks (IPNs). [J] Polymer. 2002, 43:4341-4348.
    [42] Shibayama, M., Tanaka, T. Volume phase transition and related phenomena of polymer gels. [J] Adv Polym Sci. 1993, 109:1-62.
    [43] Kim, S., Healy, K.E. Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. [J] Biomacromolecules. 2003, 4:1214-1223.
    [44] Feil, H., Bae, Y.H., Feijien, J., Kim, S.W. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. [J] Macromolecules. 1993, 26:2496-2500.
    [45] Feil, H., Bae, Y.H., Feijen, J., Kim, S.W. Mutual influence of pH and temperature on the swelling of ionizable and thermosensitive hydrogels. [J] Macromolecules. 1992, 25:5526-5527.
    [46] Nakayama, M., Okano T. Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. [J] Biomacromolecules. 2005, 6:2320-2327.
    [47] Bae, Y.H., Okano, T., Kim, S.W.“On-off”thermocontrol of solute transport. I. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water. [J] Pharm Res. 1991, 8:531-537.
    [48] Yoshida, R., Sakai, K., Okano, T., Sakurai, Y. Modulating the phase transition temperature and thermosensitivity in N-isopropylacrylamide copolymer gels. [J] J Biomater Sci Polym Ed. 1994, 6:585-598.
    [49] Hoffman, A.S., Stayton, P.S., Bulmus, V., Chen, G.H., Chen, J.P., Cheung, C., Chikoti, A., Ding, Z.L., Dong, L.C., Fong, R., Lackey, C.A., Long, C.J., Miura, M., Morris, J.E., Murthy, N., Nabeshima, Y., Park, T.G., Press, O.W., Shimoboji, T., Shoemaker, S., Yang, H.J., Monji, N., Nowinshi, R.C., Cole, C.A, Priest, J.H., Harris, J.M., Nakamae, K., Nishino, T., Miyata, T. Really smart bioconjugates of smart polymers and receptor proteins. [J] J Biomed Mater Res 2000, 52:577-586.
    [50] Neradovic, D., Hinrichs, W.L.J., Kettenes-van de Bosch J.J., Hennik, W.E. Poly(N-isopropylacrylamide) with hydrolysable lactic acid ester side groups.A new type of thermo-sensitive polymer. [J] Macromol Rapid Commun. 1999, 20:577-581.
    [51] Kohori, F., Sakai, K., Aoyagi, T., Yokoyama, M., Sakurai, Y., Okano, T. Preparation and characterization of thermally responsive block copolymer micelles comprisingpoly(N-isopropylacrylamide-b-DL-lactide). [J] J Control Release. 1998, 55:87-98.
    [52] Shilli C.M. Zhang, M.F., Rizzardo, E., Thang, S.H. Chong, Y.K., Edwards, K. Karlsson, G., Müller, H.E. A new Double-responsive block copolymer synthesized via RAFT polymerization: Poly(N-isopropylacrylamide)-block- poly(acrylic acid). [J] Macromolecules. 2004, 37:7861-7866.
    [53] Brazel, C.S., Peppas, N.A. Synthesis and characterization of thermo- and chemomechanically responsive poly(N-isopropylacrylamide-co- methacrylic acid) [J] Macromolecules. 1995, 28:8016-8020.
    [54] Yin, X.C., Hoffman, A.S., Stayton, P.S. Poly(N-isopropylacrylamide-co- propylacrylic acid) copolymers that respond sharply to temperature and pH. [J] Biomacromolecules. 2006, 7:1381-1385.
    [55] Zhou, S., Chu, B. Synthesis and volume transition of poly(methacrylic acid-co- N-isopropylacrylamide) microgel particles in water. [J] J Phys Chem B. 1998, 102:1364-1371.
    [56] Zhang, J., Chu, L.Y., Li, Y.K., Lee, Y.M. Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. [J] Polymer. 2007, 48:1718-1728.
    [57] Katime, I., Quintana, J.R., Valderruten, N.E., Cesteros, L.C. Synthesis and properties of pH- and temperature-sensitive poly[(N-isopropylacrylamide)-co- (2-methylenebutane-1,4-dioic acid)] hydrogels. [J] Macromol Chem Phys. 2006, 207:2121-2127.
    [58] Kulkarmi, S., Schilli, C., Brin, B., Müller, A.H.E., Hoffman, A.S., Stayton, P.S. Controlling the aggregation of conjugates of steptavidin with smart block copolymers prepared via the RAFT copolymerization technique. [J] Biomacromolecules. 2006, 7:2736-2741.
    [59] Sumaru, K., Kameda, M., Kanamori, T., Shinbo, T. Characteristic phase transition of aqueous solution of poly(N-isopropylacrylamide) functionalized with spirobenzopyran. [J] Macromolecules. 2004, 337:4949-4955.
    [60] Kuramoto, N. Shishido, Y. Property of thermo-sensitive and redox-active poly(N-cyclopropylacrylamide-co-vinylferrocene) and poly(N-isopropylacryl- amide -co-vinylferrocene). [J] Polymer. 1998, 39:669-675.
    [61] Salgado-Rodríguez, R., Licea-Claveríe, A., Arndr, K.F. Random copolymers of N-isopropylacrylamide and methacrylic acid monomers with hydrophobic spacers: pH-tunable temperature sensitive materials. [J] Eur Polym J. 2004, 40:1931-1946.
    [62] Spafford, M., Polozova, A., Winnik, F.M. Synthesis and characterization of a hydrophobically modified copolymer of N-isopropylacrylamide and glycinyl acrylamine. [J] Macromolecules. 1998,31:7099-7102.
    [63] Ying, L., Kang, E.T., Neoh, K.G. Synthesis and characterization of poly(N-isopropylacrylamide)-graft-poly(vinylidene fluoride) copolymers and temperature-sensitive membranes. [J] Langmuir. 2002, 18:6416-6423.
    [64] Gan, L.H, Gan, Y.Y, Deen, G.R. Poly(N-acryloyl-N′-propylpiperazine): a new stimuli-responsive polymer. [J] Macromolecules. 2000, 33:7893-7897.
    [65] Aoki, T., Ebara, M., Sakai, K., Okano, T. Novel bifunctional polymer with reactivity and temperature sensitivity. [J] J Biomater Sci, Polym Ed. 2000, 1:101-110.
    [66] Aoki, T., Muramatsu, M., Torii, T., Sanui, K., Ogata, N. Thermo-sensitive phase transition of an optically active polymer in aqueous milieu. [J] Macromolecules 2001, 34, 3118-3119.
    [67] Gan, L.H., Roshan, Deen.G., Loh, X.J., Gan, Y.Y. New stimuli-responsive copolymers of N-acryloyl-N’-alkyl piperazine and methyl methacrylate and their hydrogels. [J] Polymer 2001, 42:65-69.
    [68] Ebara, M., Aoyagi, T., Sakai, K., Sakai, K., Okano, T. Introducing reactive carboxyl side chains retains phase transition temperature sensitivity in N-isopropylacrylamide copolymer gels. [J] Macromolecules. 2000, 33:8312-8316.
    [69] Hu, H., Fan, X.D., Cao, Z.L. Thermo- and pH-sensitive dendrimer derivatives with a shell of poly(N,N-dimethylaminoehtyl methacrylate) and study of their controlled drug release behavior. [J] Polymer. 2005, 46:9514-9522.
    [70] Chung, J.E., Yokoyama, M., Aoyagi, T., Sakurai, Y., Okano, T. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermo-responsive core-shell micellar drug carriers. [J] J Control Releas. 1998, 53:119-130.
    [71] Neradovic, D., van Nostrum, C.F., Hennink, W.E., Thermo-responsive polymeric micelles with controlled instability based on hydrolytically sensitive N-isopropylacrylamide copolymers.[J] Macromolecules. 2001, 34:7589-7591.
    [72] Kohori, F.,Yokoyama, M., Sakai, K., Okano, T. Process design for efficient and controlled drug in corporation into polymeric micelle carrier systems. [J] J Control Release. 2002, 78:155-163.
    [73] Topp, M.D.C., Dijkstra, P.J., Talsma, H., Feijen J. Thermosensitive micelle-forming block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide). [J] Macromolecules. 1997, 30:8518-8520.
    [74] Duracher, D., Elaissari, A., Mallet, F., Pichot, C. Adsorption of modified HIV-1 capsid p24 protein onto thermosensitive and cationic core-shell poly(styrene)- poly(N-isopropylacrylmide) particles.[J] Langmuir, 2000, 16:9002-9008.
    [75] Virtanen, J., Holappa, S., Lemmetyinen, H., Tenhu, H. Aggregation in aqueous poly(N-isopropylacrylamide)-block-poly(ethylene oxide) solutions studied by fluorescence spectroscopy and light scattering. [J] Macromolecules. 2002, 35:4763-4769.
    [76] Kohori, F., Sakai, K., Aoyagi, T., Yokoyama, M., Sakurai, Y., Okano, T. Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-DL-lactide). [J] J Control Release. 1998, 55:87-98.
    [77] Chung, J.E., Yokoyama, M., Okano, T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. [J] J Control Release. 2000, 65:93-103.
    [78] Okabe, S., Sugihara, S., Aoshima, S., Shibayama, M. Heat-induced self-assembling of thermosensitive block copolymer. 1. Small-angle neutron scattering study. [J] Macromollecules. 2002, 35:8139-8146.
    [79] Alexandridis, P., Hatton, T.A. Poly(ethylene)-poly(propylene oxide)- poly(ethylene oxide) block copolymer surfactants in aqueous solutions and interfaces: thermodynamics, structure, dynanmics and modeling. [J] Coll Surf A . 1995, 96:1-46.
    [80] Schmolka, I.R., Articial, skin.I. Preparation and properties of pluronic F-127 gels for treatment of burns. [J] J. Biomed Mater Res. 1972, 6:571-582.
    [81] Chiappetta, D.A., Sosnik, A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. [J] Eur J Pharm Biopharm. 2007, 66:303-317.
    [82] Krezanoski, J.Z. Clear, water-miscible, liquid pharmaceutical vehicles and compositions which gel at body temperature for drug delivery to mucous membranes. U.S. Patent. 4,188,373, 1980.
    [83] Cao, Y., Rodriguez, A., Vacanti, M., Ibarra, C., Arevalo, C., Vacanti, C.A. Comparative study of the use of poly(glycolicacid), Calcium alginate and pluronics in the engineering of autologous porcine cartilage. [J] J Biomater Sci Polym. Ed. 1998, 9:475-487.
    [84] Sosnik, A., Sefton, M.V. Semi-synthetic collagen/ poloxamine matrices for Tissue Engineering applications. [J] Biomaterials. 2005, 26:7425-7435.
    [85] Wang, Y.D., Gan, Q., Shi, C.Y., Zheng, X.L., Yang, S.H., Li, Z.M., Dai, Y.Y. Separation of phenol from aqueous solutions by polymeric reversed micelle extraction. [J] Chem Eng J. 2002, 88:95-101.
    [86] Liaw, J., Chang, S., Hsiao, F. In vivo gene delivery into ocular tissues by eye drops of poly(ethyleneoxide)-poly(propylenoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) polymericmicelles. [J] Gene Ther. 2001, 8:999-1004.
    [87] Gladysheva, L.P., Polekhina, O.V., Karmakova, T.A., Nemtsova, E.R., Yakubovskaya, R.I., Shen, W., Kennedy, A.R., Larionova, N.I. Potential of block copolymer- and immuno-conjugates for tumor-targeted delivery of Bowman-BirK soybean proteinase inhibitor. [J] J Control Release. 2001, 74:303-308.
    [88] Mortensen, K., Perdersen, S. Structeral study on micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. [J] Macromolecules. 1993, 26:805-812.
    [89] Zhang, Z., Khan, A. Phase behavior of poly(ethylene oxide)- poly(propylene oxide)- poly(ethylene oxide) triblock copolymers in water. [J] Macromolecules. 1995, 28:3807-3812.
    [90] Alexandris. P., Holzwarth J.F., Hatton, T.A. Micellization of poly(ethylene oxide)- poly(propylene oxide)- poly(ethylene oxide) triblock copolymer in aqueous solution. [J] Macromolecules. 1994, 27:2414-2425.
    [91] Katakam, M., Ravis, W.R., Banga, A.K. Controlled release of human growth hormone in rats following parenteral administration of poloxamergels. [J] J Control Release. 1997, 49:21-26.
    [92] Barichello, J.M., Morishita, M., Takayama, K., Nagai, T. Absorption of insulin from Pluronic F-127 gels following subcutaneous administration in rats. [J] Int J Pharm. 1999, 184:189-198.
    [93] Saim, A.B., Cao, Y., Weng, Y., Chang, C.N., Vacanti, M.A., Vacanti, C.A., Eavey, R.D. Engineering autogeous cartilage in the shape of a helix using an injectable hydrogel scaffold. [J] Laryngoscope. 2000, 10:1694-1697.
    [94] Scherlund, M., Brodin, A., Malmsten, M. Micellization and gelation in block copolymer systems containing local anesthetics. [J] Int J Pharm. 2000, 211:37-49.
    [95] Bromberg, L. Polyether-modified poly(acrylicacid): synhesis and applications. [J] Ind Eng Chem Res. 1998, 37:4267-4274.
    [96] Bromberg, L. Novel family of thermo gelling materials via C-C bonding between poly(acrylicacid) and poly(ethylene oxide)-b-poly(propyleneoxide)-b -poly(ethyleneoxide). [J] J Phys Chem B. 1998, 102:1956-1963.
    [97] Bromberg, L. Properties of aqueous solutions and gels of poly(ethyleneoxide)- b-poly(propyleneoxide)-b-poly(ethylene oxide)-g-poly(acrylicacid). [J] J Phys Chem B. 1998, 102:10736-10744.
    [98] Cohn, D., Sosnik1, A., Levy, A. Improved reverse thermo-respnsive polymeric systems. [J] Biomaterials. 2003, 24:3707–3714.
    [99] Cohn, D., Lando, G., Sosnik, A., Garty, S., Levy, A. PEO-PPO-PEO based poly(ether ester urethane)s as degradable thermo-responsive multiblock copolymers. [J] Biomaterials, 2006, 27:1718-1727.
    [100] Sosnik, A., Cohn, D. Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers. [J] Biomaterials, 2005, 26:349–357.
    [101] Cohn, D., Sosnik, A. Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers. [J] Biomaterials, 2005, 26:349-357.
    [102] Philippova, O.E., Hourdet, D., Audebert, R., Khokhlov, A.R. pH-responsive gels of hydrophobically modified poly(acrylic acid). Macromolecules. [J] 1997, 30:8278-8285.
    [103] Pinkrah, V.T., Snowden, M.J., Mitchell, J.C., Seidel, J., Chowdhry, B.Z., Fern, G.R. Physicochemical properties of poly(N-isopropylacrylamide-co- 4-vinylpyridine) cationic polyelectrolyte colloidal microgels. [J] Langmuir. 2003, 19: 585-590.
    [104] Torres-Lugo, M., Peppas, N.A. Molecular design and in vitro studies of novel pH-sensitive hydrogels for theoral delivery of calcitonin. [J] Macromolecules. 1999, 32:6646-6651.
    [105] Tonge, S.R., Tighe, B.J. Responsive hydrophobically associating polymers: a review of structure and properties. [J] Adv Drug Deliv Rev. 2001, 53:109-122.
    [106] Murthy, N., Robichaud, J.R., Tirrell, D.A., Stayton, P.S., Hoffman, A.S. The design and synthesis of polymers for eukaryotic membrane disruption. [J] J Control Release 1999, 61:137-143.
    [107] Okubo, M., Ahmad, H., Suzuki, T. Synthesis of temperature-sensitive micron-sized monodispersed composite polymer particles and its application as a carrier for biomolecules. [J] Colloid Polym Sci. 1998, 276:470-475.
    [108] Lee, A.S., Butun, V., Vamvakaki, M., Armes, S.P., Pople, J.A., Gast, A.P. Structure of pH-dependent block copolymer micelles: charge and ionic strength dependence. [J] Macromolecules. 2002, 35:8540-8551.
    [109] Gohy, J., Lohmeijer, B.G.G., Varshney, S.K., Decamps, B., Leroy, E., Boileau, S., Schubert, U.S. Stimuli-responsive aqueous micelles from an ABC metallo-supramolecular triblock copolymer. [J] Macromolecules. 2002, 35:9748-9755.
    [110] Sutton, R.C., Thai, L., Hewitt, J.M., Voycheckand, C.L., Tan, J.S. Microdomain characterization of styrene-imidazole copolymers. [J] Macromolecules. 1988, 21:2432-2439.
    [111] Eccleston, M.E., Kuiper, M., Gilchrist, F.M., Slater, N.K.H. pH-responsive pseudo-peptides for cell membrane disruption. [J] J Control Release 2000, 69:297-307.
    [112] Siegel, R.A. Hydrophobic weak polyelectrolyte gels: studies of swelling equilibria and kinetics.[J] Adv Polym Sci. 1993, 109:233-267.
    [113] Cheung, C.Y., Murthy, N., Stayton, P.S., Hoffman, A.S. A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer. [J] Bioconjug Chem. 2001, 12:906-910.
    [114] Asayama, S., Maruyama, A., Cho, C., Akaike, T. Design of comb-type polyamine copolymers for a novel pH-sensitive DNA carrier. [J] Bioconjug Chem. 1997, 8:833-838.
    [115]刘佳,程斌.环氧乙烷环氧丙烷共聚醚的研究进展. [J]高分子通报. 2008, (10):13-20. 2
    [116] Alexandridis, P., Athanassiou, V., Fukuda, S., Hatton, T.A. Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. [J] Langmuir. 1994, 10: 2604-2612.
    [117] Alexandridis, P., Nivaggioli, T., Hatton, T.A. Temperature effects on structural properties of pluronic P104 and F108 PEO-PPO-PEO block copolymer solutions. [J] Langmuir. 1995, 11: 1468-1476.
    [118] Alexandridis, P., Athanassiou, V., Hatton, T.A. Pluronic P105 PEO-PPO-PEO block copolymer in aqueous urea solutions: micelle formation, structure, and microenvironment. [J] Langmuir. 1995, 11: 2442-2450.
    [119] Nivaggioli, T., Tsao, B., Alexandridis, P., Hatton, T.A. Microviscosity in Pluronic and Teronic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer micelles. [J] Langmuir. 1995, 11: 119-126.
    [120] Zhou, Z., Chu, B. Light scattering study on the association behavior of triblock polymers of ethylene oxide and propylene oxide in aqueous solution. [J] J Colloid Interface Sci. 1988, 126: 171-180.
    [121] Carale, T.R. Pham, Q.T., Blankschtein, D. Salt effects on intramicellar interactions and micellization of nonionic surfactants in aqueous solutions. [J] Langmuir. 1994, 10:109-121.
    [122] Zhang, L., Somasundaran, P., Maltesh, C. Electrolyte effects on the surface tension and micellization of n-dodecylβ-D-maltoside solutions. [J] Langmuir. 1996, 12:2371-2373.
    [123] Bahadur, P. Effect of potassium fluride on the micellar behavior of Pluronic F-68 in aqueous solution. [J] Langmuir. 1992, 8:1903-1907.
    [124] Armstrong, K.J., Chowdhry, B.Z., Snowden, M.J., Leharne, S.A. Effect of sodium chloride upon micellization and phase separation transitions in aqueous solutions of triblock copolymers: a high-sensitivity differential scanning calorimetry study. [J] Langmuir. 1998, 14:2004-2010.
    [125] Shaheen, A., Kaur, N., Mahajan, R.K. Influence of various series of additives on the clouding behavior of aqueous solutions of tribblock copolymers. [J] Colloid Polym Sci. 2008, 286:319-325.
    [126] da Silva, R.C., Lon, W. Effect of additives on the cloud points of aqueous solutions of ethylene oxide-propylene oxide-ethylene oxide block copolymers. [J] J Colloid Interf Sci. 1998, 202:385-390.
    [127] Nolan, S.L., Phillips, R.J., Cotts, P.M., Dungan, S.R. Light scattering study on the effect of polymer composition on the structural properties of PEO-PPO-PEO micelles. [J] J Colloid Interface Sci. 1997, 191: 291-302.
    [128] Alexandridis, P., Holzwarth, J.F. Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (poloxamer). [J] Langmuir. 1997, 13:6074-6082.
    [129] Mortensen, K., Brown, W. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solution. The influence of relative block size. [J] .Macromolecules. 1993, 26: 4128-4136.
    [130] Mortensen, K., Pedersen, J.S. Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. [J] .Macromolecules. 1993, 26: 805-812.
    [131] Mortensen, K., Talmon, Y. Cryo-TEM and SANS microstructural study of Pluronic polymer solutions. [J] Macromolecules.
    [132] Goldmints, I., von Gottberg, F.K., Smith, K.S, Hatton, T.A. Small-angle neutron scattering study of PEO-PPO-PEO micelle structure in the unimer-to-micelle transition region. [J] Langmuir. 1997, 13: 3659-3664.
    [133] Goldmints, I., Yu, G., Booth, C., Smith, K.A., Hatton, T.A. Stucture of (deuterated PEO)-(PEO)-(deuterated PEO) block copolymer micelles as determined by small angle neutron scattering. [J] Langmuir. 1999, 15: 1651-1656.
    [134] Yang, L., Alexandridis, P., Steytler, D.C., Kositzam M.J., Holzwarth, J.F. SANS investigation of the temperature dependent aggregation behavior of the block copolymer Pluronic L64 in aqueous solution. [J] Langmuir. 2000, 16: 8555-8561.
    [135] Hurter, P.N., Scheutjens, J.M.H.M., Hatton, T.A. Molecular modeling of micelle formation and solubilization in block copolymer micelles. 1. A self-cosistent mean-field lattice theory. [J] .Macromolecules. 1993, 26:5592-5601.
    [136] Hurter, P.N., Scheutjens, J.M.H.M., Hatton, T.A. Molecular modeling of micelle formation and solubilization in block copolymer micelles. 2. lattice theory for monomers with internal degrees of freedom. [J] Macromolecules. 1993, 26:5030-5040.
    [137] Linse, P. Micellization of poly(ethylene oxide)-poly(propylene oxide) block copolymer in aqueous solution: Effect of polymer impurities. [J] Macromolecules. 1994, 27:2685-2693.
    [138] Linse, P. Phase behavior of poly(ethylene oxide)-poly(propylene oxide) block copolymer in aqueous solution. [J] J Phys Chem. 1993, 97:13896-13902.
    [139] Cau, F., Lacelle, S. 1H NMR Relaxation Studies of the Micellization of a Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymer in Aqueous Solution. [J] Macromolecules. 1996, 29:170-176.
    [140] Wanka, G., Hoffmann, H., Ulbricht, W. Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. [J] Macromolecules. 1994, 27:4145-4159.
    [141] Ma, J.H., Guo, C., Tang, Y.L, Wang, J., Zheng, L.L., Liang, X.F., Chen, S., Liu, H.Z. Microenvironmental and conformational structure of triblock copolymers in aqueous solution by 1H and 13C NMR spectroscopy. [J] J Colloid Interface Sci. 2006, 299: 953-961.
    [142] Ma, J.H, Guo, C., Tang, Y.L, Liu, H.Z. 1H NMR spectroscopic investigations on the micellization and gelation of PEO-PPO-PEO block copolymers in aqueous solutions. [J] Langmuir. 2007, 23: 9596-9605.
    [143] Ma, J.H., Guo, C., Tang, Y.L, Xiang, J.F., Chen, S., Wang, J., Liu, H.Z. Micellization in aqueous solution of an ethylene oxide-propylene oxide triblock copolymer, investigated with 1H NMR spectroscopy, pulsed field gradient NMR and NMR relaxation. [J] J Colloid Interface Sci. 2007, 312:390-396.
    [144] Godward, J., Booth, C. Micellization and gelation of a triblock copolymer of oxyethylene and oxypropylene, E93P44E93, Studied by 1H nuclear magnetic relaxation. [J] J Chem Soc Faraday T. 1995, 91:1491-1496.
    [145] Guo, C., Wang, J., Liu, H.Z., Chen, J.Y. Hydration and comformation of temperature-dependent micellization of PEO-PPO-PEO block copolymers in aqueous solutions by FT-Raman. [J] Langmuir. 1999, 15:2703-2708.
    [146] Guo, C., Liu, H.Z., Chen, J.Y. FTIR spectroscopic study on effects of temperature and polymer composition on the structural properties of PEO-PPO-PEO block copolymer micelles. [J] Colloid Polym Sci. 1999,277:376—381
    [147] Guo, C., Liu, H.Z, Wang, J., Chen, J.Y. Conformation structure of triblock copolymers by FT-Raman and FTIR spectroscopy. [J] J Colloid Interface Sci. 1999, 209:368-373.
    [148] Su, Y.L., Liu, H.Z, Wang, J., Chen, J.Y. Study of salt effects on the micellization ofPEO-PPO-PEO block copolymer in aqueous solution by FTIR spectroscopy. [J] Langmuir. 2002, 18:865-871.
    [149] Su, Y.L, Wang, J., Liu, H.Z. FTIR spectroscopy investigation of effects of temperature and concentration on PEO-PPO-PEO block copolymer properties in aqueous solution. [J] Macromolecules. 2002, 35:6426-6431.
    [150] Su, Y.L., Wang, J., Liu, H.Z. FTIR spectroscopic study on effects of temperature and polymer composition on the structural properties of PEO-PPO-PEO block copolymer micelles. [J] Langmuir. 2002, 18:5370-5375.
    [151] Su, Y.L., Wang, J., Liu, H. Z. Formation of hydrophobic microenvironment in aqueous PEO-PPO-PEO block copolymer solutions investigated by Fourier Transform Infrared Spectroscopy. [J] J Phys Chem B. 2002, 106:11823-11828.
    [152] Su, Y.L., Wang, J., Liu, H.Z. Melt, hydration and micellization of the PEO-PPO-PEO block copolymer studies by FTIR spectroscopy. [J] J Colloid Interface Sci. 2002, 251:417-423.
    [153]言敏达.聚醚的功能化. [J]精细化工. 2000, 17(12):683-689.
    [154] Bromberg, L., Alakhov, V.Y., Hatton, T.A. Self-assembling pluronic(-modified polycations in gene delivery. [J] Curr Opin Colloid Interface Sci. 2006, 11:217-223.
    [155] Bromberg, L., Temchenko, M., Hatton, T.A. Dually responsive microgels from polyether-modified poly(acrylic acid): swelling and drug loading. [J] Langmuir. 2002, 18:4944-4952.
    [156] Ha, J.C., Kim, S.Y, Lee, Y.M. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)(Pluronic)/poly(ε-caprolactone) (PCL) amphiphilic block copolymeric nanospheres: 1. preparation and characterization. [J] J Controlled Release. 1999, 62:381-392.
    [157] Cheong, I.W., Nomura, M., Kim, J.H. Synthesis and aqueous solution behavior of water-soluble polyurehtame (IPDI-PPG-DMPA) resin. [J] Macromol Chem Phys. 2000, 201: 2221-2227.
    [158] Zhao, D., Feng, J., Huo, Q., Meloshi, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D. Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstorm pores. [J] Science. 1998, 279:548-552.
    [159] Ruthstein, S., Frydman, V., Goldfarb, D. Study of the intial formation stages of the mesoporous material SBA-15 using spin-labelled block copolymer templates. [J] J Phys Chem B. 2004, 108(26):9016-9022.
    [160] Deng, Y.H., Liu, C., Yu, T., Liu, F., Zhang, F.Q., Wan, Y., Zhang, L.J., Wang, C.C., Tu, B., Webley, P.A., Wang, H.T., Zhao, D.Y. Facile synthesis of hierarchically porous carbons from dual colloidalcrystal/block copolymer template approach. [J] Chem Mater. 2007 19:3271-3277.
    [161] Wu, C.H., Liu, T.B., Schneider, B. C., Graziano, V. Characterization of the PEO-PPO-PEO triblock copolymer and its application as a separation medium in capillary electrophoresis. [J] Macromolecules. 1997, 30(16):4574-4583.
    [162] Johansson, H.O., Persson, J., Tjerneld, F. Thermoseparating water/polymer system: a novel one-polymer aqueous two-phase system for protein purification. [J] Biotechnol Bioeng. 1999, 66: 247-257.
    [163] Skuse, D.R., Norris-Jones, R., Yalpani, M., Brooks, D.E. Hydroxypropyl cellulose/poly(ethylene glycol)-co-poly(propylene glycol) aqueous two-phase systems:system characterization and partition of cells and protens. [J] Enzyme Microb Technol. 1992, 14:785-790.
    [164] O’Connor, S.M, De Anglis, A.P., Gehrke, S.H., Retzinger, G.S. Adsorption of plasma proteins on to poly(ethylene oxide)/poly(propylene oxide) triblock copolymer films: a focus on fibrinogen. [J] Biotechnol Appl Biochem. 2000, 31: 185-196.
    [165] Paterson, I.F., Chowdhry, B.Z., Ieharne, S.A. Investigations of naphthalene solubilization in aqueous solutions of ethylene oxide-b-propylene oxide-b-ethylene oxide copolymers. [J] Langmuir. 1999, 15: 6187-6194.
    [166] Pang, S. N. J. Final Report on the Safety Assessment of Polyethylene Glycols. [J] J Am College Toxic. 1993,12(5):429-457.
    [167] Zalipsky, S. Chemistry of Polyethylene-Glycol Conjugates with Biologically Active Molecules. [J] Adv Drug Deliv Rev. 1995, 16(2-3):157-182.
    [168] Dreborg, S., Akerblom, E.B. Immunotherapy with Monomethoxypolyethylene Glycol Modified Allergens. [J] Critical Reviews in Therapeutic Drug Carrier Systems. 1990, 6(4):315-365.
    [169] Harris, J.M., Martin, N.E., Modi, M. Pegylation-A novel Process for modifying Pharmacokinetics. [J] Clinical Pharmacokinetics. 2001, 40(7):539-551.
    [170] Yang, Z.H., Galloway, J.A., Yu, H. Protein interactions with poly(ethylene glycol) self-assembled monolayers on glass substrates: diffusion and adsorption. [J] Langmuir. 1999, 15:8405-8411.
    [171] Halperin, A. Polymer brushes that resist adsorption of model proteins: design parameters. [J] Langmuir. 1999, 15:2525-2533.
    [172] Ostuni, E., Chapman, R.G., Holmlin, R.E., Takayama, S., Whitesides, G.M. A survey of structure-property relationships of surfaces that resist the adsoption of protein. [J] Langmuir. 2001, 17:5605-5620.
    [173] Harder, P., Grunze, M., Dahint, R., Whitesides, G.M., Laibinis, P.E. Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption.[J] J Phys Chem B. 1998, 102:426-436.
    [174] Kim, S.W., Feijen J. Surface modification of polymers for improved blood compatibility. [J] CRC Cri Rev Biocompatibility. 1985, 1:229-260.
    [175] Deimede, V., Kallitsis, J.K. Synthesis of alternating polystyrene/poly(ethylene oxide) branched polymacromonomers. [J] Chem Eur J. 2008, 8(2):467-473.
    [176] Zhu, W., Wang, B.B., Zhang, Y., Ding, J.D. Preparation of a thermosensitive and biodegradable microgel via polymerization of macromonomers based on diacrylated Pluronic/oligoester copolymers. [J] Eur Polym J. 2005, 41:2161-2170.
    [177] Du, J., Murakami, Y., Senyo, T., Adam, Ito, K., Yagci, Y. Synthesis of well-defined hybrid macromonomers of poly(ethylene oxide) and their reactivity in photoinitiated polymerization. [J] Macromol Chem Phys. 2004, 205:1471-1478.
    [178] Riva,R., Rieger, J., Jér?me, R., Lecomte, Ph. Heterograaft copolymers of poly(ε-caprolactone) prepared by combination of ATRA“grafting onto”and ATRP“grafting from”processes. [J] J Polym Sci Part A: Polym Chem. 2006, 44:6015-6024.
    [179] Zhang, W., Shiotsuki, M., Masuda, T. Synthesis and characteristics of poly(macromonomers) and graft copolymers composed of poly(phenylacetylene) main chain and poly(ethylene oxide) side chains. [J] Macromolecules. 2007,40:1421-1428.
    [180] Rieger, J., Bernaerts, K.V., Du Prez, F.E., Jér?me, R., Jér?me, C. Lactone end-capped poly(ethylene oxide) as a new building block for biomaterials. [J] Macromolecules. 2004, 37:9738-9745.
    [181] Yagci, Y., Ito, Koichi. Macromolecular architecture based on anionically prepared poly(ethylene oxide) macromonomers. [J] Macromol Symp. 2005, 226:87-96.
    [182] Yilmaz, F., Cianga, I., Ito, K., Senyo, T., Yagci, Y. Synthesis and characterization ofα,ω-heterofunctional poly(ethylene oxide) macromonomers. [J] Macromol Rapad Commun. 2003, 24:316-319.
    [183] Lauter, U., Meyer, W.H., Wegner, G. Molecular compostes from rigid-rod poly(p-phenylene)s with oligo(oxyethylene) side chains as novel polymer electrolytes. [J] Macromolecules. 1997, 30:2092-2101.
    [184] Neugebauer, D., Zhang, Y., Pakula, T., Sheiko, S.S., Matyjaszewshi, K. Densely-grafted and double-grafted PEO brushes via ATRP. A rout to soft elastomers. [J] Macromolecules. 2003,36:6746-6755.
    [185] Wang, X.S., Arms, S.P. Facile atom transfer radical polymerization of methoxy-capped oligo(ethylene glycol) methacrylate in aqueous media at ambient temperature. [J] Macromolecules. 2000,33:6640-6647.
    [186] Neugebauer, D., Theis, M., Wegner, G., Pakula, T., Matyjaszewshi, K. Densely heterografted bush macromolecules with crystallizable grafts. Synthesis and bulk properties. [J] Macromolecules. 2006, 39:584-593.
    [187] Cheng, Z.P., Zhu, X.L., Fu, G.D., Kang, E.T., Neoh, K.G. Dual-brush-type amphiphilic triblock copolymer with intact epoxide functional groups from consecutive RAFT polymerizations and ATRP. [J] Macromolecules. 2005, 38:7187-7192.
    [188] Robinson, D.N., Peppas, N.A. Preparation and characterization of pH-responsive poly(methacrylic acid-g-ethylene glycol) Nanospheres. [J] Macromolecules. 2002, 35:3668-3674.
    [189] Chemtob, A., Heroguez, V., Gnanou, Y. Dispersion ring-opening metathesis polymerization of norbornene using PEO-based stabilizers. [J] Macromolecules. 2002, 35:9262-9269.
    [190] Rieger, J., Passirani, C., Benoit, J-P., Butsele, K.V., Jér?me, R., Jér?me, C. Synthesis of amphiphilic copolymers of poly(ethylene oxide) and poly(ε-caprolactone) with different architectures, and their role in the preparation of stealthy nanoparticles. [J] Adv Funct Mater. 2006, 16:1506-1514.
    [191] Deimede, V., Kallitsis, K. Synthesis of alternating polystyrene/poly(ethylene oxide) branched polymacromonomers. [J] Chem Eur J. 2008, 8:467-473.
    [192] Neugebauer, D. Atom transfer radical copolymerization of N, N’- dimethylacrylamide with methacrylate-functionalized poly(ethylene oxide). [J] React Funct Polym. 2008, 68:535-543.
    [193] Neugebauer, D. Graft copolymers with poly(ethylene oxide) segments. [J] Polym Int. 2007, 56:1469-1498.
    [194] Candau, F., Afchar, F., Taromi, F., Rempp, P. Synthesis and characterization of polystyrene-poly(ethylene oxide) graft copolymers. [J] Polymer. 1977, 18:1253-1257.
    [195] Twaik, M.A., Tahan, M., Zilkha, A. Grafting of poly(ethylene oxide) on poly(methyl methylate) by transesterification. [J] J Polym Sci, Part A: Polym Chem. 1969, 7(9):2469-2480.
    [196] Hua, F.J., Ruchenstein, E. Water-soluble conducting poly(ethylene oxide)-grafted polydiphenylamine synthesis through a“graft onto”process. [J] Macromolecules. 2003, 36:9971-9978.
    [197] Verbrugghe, S., Bernaerts, K. Du Prez, F.E. Thermo-responsive and emulsifying properties ofpoly(N-vinylcaprolactam) based graft copolymers. [J] Macromol Chem Phys. 2003, 204, 1217-1225.
    [198] Lanson, D., Schappacher, M., Borsali, R., Deffieux, A. Poly(styrene) comb-b-poly(ethylene oxide) comb copolymers: synthesis and AFM investigation of intra- and supramolecular organization as thin deposits. [J] Macromolecules. 2007, 40:9503-9509.
    [199] Han, S., Hagiwara, M., Ishizone, T. Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerization of oligo(ethylene glycol) methyl ether methacrylates. [J] Macromolecules. 2003, 36:8312-8319.
    [200] Robinson, K.L., de Paz-Banez, M.V., Wang, X.S., Armes, S.P. Synthesis of well-defined, semibranched, hydrophilic-hydrophobic block copolymers using atom transfer radical polymerization. [J] Macromolecules. 2001, 34:3155-3158.
    [201] Xu, Z.S., Feng, L.X., Ji, J., Cheng, S.Y., Cheng, Y.C., Yi, C.F. The micellization of amphiphilic graft copolymer PMMA-g-PEOin toluene. [J] Eur Polym J. 1998, 34:1499-1505.
    [202] Kim, H.W., Chung, C.W., Rhee, Y.H. UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly(3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion. [J] Int J Biol Macromol. 2005, 35:47-53.
    [203] Kim, H.W., Chung, C.W., Hwang, S.J., Rhee, Y.H. Drug release from and hydrolytic degradation of a poly(ethylene glycol) grafted poly(2-hydroxyoctanoate). [J] Int J Biol Macromol.2005, 36:84-89.
    [204] Pozzo, A.D., Vanini, L., Fagnoni, M., Guerrini, M., Benedittis, A.D., Muzzarelli, R.A.A. Preparation and characterization of poly(ethylene glycol)-crosslinked reacetylated chitosans. [J] Carbohydr Polym. 2000, 42:201-206.
    [205] Xie, H.Q., Cui, M.H., Guo, J.S. Some properties and morphology of poly(2-vinyl pyridine)-g-polyoxyethylene. [J] Eur Polym J. 1997, 33:1537-1542.
    [206] Drescher, B., Scranton, A.B., Klier, J. Synthesis and characterization of polymeric emulsifiers containing reversible hydrophobes: poly(mehtacrylic acid-g-ethylene glycol). [J] Polymer. 2001, 42:49-58.
    [207] Guo, S.R., Shen, L.J., Feng, L.X. Surface characterization of blood compatible amphiphilic graft copolymers having uniform poly(ethylene oxide) side chains. [J] Polymer. 2001, 42:1017-1022.
    [208] Ji, J., Feng, L.X., Qiu, Y.X., Yu, X.J., Barbosa, M.A. Self-assembly and surface structure of an amphiphilic graft copolymer, polystyrene-graft-ω-stearyl- poly(ethylene oxide). [J] J Colloid Interf Sci. 2000, 224:255-260.
    [209] Ishizone, T., Han, S., Hafiwara, M. Synthesis and surface characterization of well-defined amphiphilic block copolymers containing poly[oligo(ethylene glycol) methacrylate] segments. [J] Macromolecules. 2006, 39:962-970.
    [210] Xu, J.T., Ji, J. Crystallization and vitrification effect in a poly(styrene)-g-poly(ethylene oxide) graft copolymer. [J] Polymer. 2003, 44:6379-6385.
    [211] Sun, X.G., Kerr, J.B., Reeder, C.L., Liu, G., Han, Y.B. Network single ion conductors based on comb-branched polyepoxide ethers and lithium bis(allylmalonato) borate. [J] Macromolecules. 2004, 34:5133-5135.
    [212] Adebahr, J., Gavelin, P., Jannasch, P., Ostrovskii, D., Wesslen, B., Jacobsson, P. Cation coordination in ion-conducting gels based on PEO-grafted polymers. [J] Solid State Ionics. 2000, 135:149-154.
    [213] Li, D.C., Cui, Y., Wang, K.W., He, Q., Yan, X.H., Li, J.B. Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. [J] Adv Funct Mater. 2007, 17:3134-3140.
    [214] Chen, H.W., Li, J.F., Ding, Y.W., Zhang, G.Z. Folding and unfolding of individual PNIPAM-g-PEO copolymer chains in dilute aqueous solutions. [J] Macromolecules. 2005, 38:4403-4408.
    [215] Xu, L.Y., Shi, L.Q., Ma, R.J., Zhang, W.Q., An, Y.L., Zhu, X.X. Synthesis and micellization of thermo- and pH-responsive block copolymer of poly(N-isopropylacrylamide)-block-poly(4-vinylpridine). [J] Polymer. 2007, 48:1711-1717.
    [216] Sidorov, S.N., Bronstein, L.M., Kabachii, Y.A., Valetsky, P.M., Soo, P.L., Maysinger, D., Eisenberg, A. Influence of metalation on the morphologies of poly(ethylene oxide)-block-poly(4-vinylpryridine) block copolymer micelles. [J] Langmuir 2004, 20, 3543-3550.
    [217] Vidts, K.R.M., Du Prez, F.E. Design of water-soluble block copolymers containing poly(4-vinylpyridine) by atom transfer radical polymerizatiom. [J] Eur Polym J. 2006, 42:43–50.
    [218] Soo, P.L, Sidorov, S.N., Mui , J., Bronstein, L.M., Vali, H., Eisenberg, A., Maysinger, D. Gold-labeled bock copolymer micelles reveal gold aggregates at multiple subcellular sites. [J] Langmuir. 2007, 23:4830–4836.
    [219] Lu, G.Q., Jia, Z.F., Yi, W., Huang, J.L. Synthesis of a novel block copolymer poly(ethylene oxide)-block-poly(4-vinylpyridine) by combination of anionic ring-opening and controllable free-radical polymerization. [J] J Polym Sci Part A: Polym Chem. 2002, 40:4404–4409.
    [220] Mansri, B.K., Francois, A. Oligo(ethylene oxide) side-chain steric screening effects onconductimetric properties of grafted poly(4-vinylpyridinium) salts in aqueous solutions. [J] Polym Int. 2003, 52:1506–1514.
    [221] Chovino, C., Frere, Y., Gramain, P. Single-ion and salt conductor polymer electrolytes based on poly(4-vinylpyridine) quaternized with poly(ethylene oxide) side chains. [J] J Polym Sci Part A: Polym Chem. 1997, 35:2719–2728.
    [222] Chen, H.W., Zhang, Q.J., Li, J.F., Ding, Y.W., Zhang, G.Z., Wu, C. Formation of mesoglobular phase of PNIPAM-g-PEO copolymer with a high PEO content in dilute solutions. [J] Macromolecules. 2005, 38:8045-8050.
    [223] Laukkanen, A., Hietala, S., Maunu, S.L., Tenhu, H. Poly(N-vinylcaprolactam) Microgel Paticles Grafted with amphiphilic chains. [J] Macromolecules. 2000, 33:8703-8708.
    [224] Khousakoun, E.; Gohy, J. F.; Jér?me, R. Self-association of double-hydrophilic copolymers of acrylic acid and poly(ethylene oxide) macromonomer. [J] Polymer. 2004, 45:8303–8310.
    [225] Qiu, X.P., Wu, C. Study of the core-shell nanoparticle formed through the“coil-to-globule”transition of poly(N-isopropylacrylamide) grafted with poly(ethylene oxide). [J] Macromolecules. 1997, 30:7921-7926.
    [226] Wang, Y.B., Huang, J.L. Controlled radical copolymerization of styrene and the macromonomer of PEO with a methacryloyl end group. [J] Macromolecules. 1998, 31:4057-4060.
    [227] Kim, S.Y., Ha, J.C., Lee, Y.M. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(ε-caprolactone) (PCL) amphiphilic block copolymeric nanospheres: II. Thermo-responsive drug release behaviors. [J] J Control Release. 2000, 65:345-358.
    [228] Yamaoka, T., Takahashi, Y., Fujisato, T., Lee, C.W., Tsuji, T., Ohta, T., Murakami, A., Kimura, A. Novel adhesion prevention membrane based on a bioresorbable copoly(ester-etehre) comprised of poly-L-lactide and Pluronic: in vitro and in vivo evaluations. [J] J Biomed Mater Res. 2001, 54:470-479.
    [229] Xiong, X.Y., Tam, K.C., Gan, L.H. Synthesis and thermal responsive properties of P(LA-b-EO-b-PO-b-EO-b-LA) block copolymers with short hydrophobic poly(lactic acid) (PLA) segments. [J] Polymer. 2005, 46:1841-1850.
    [230] Xiong, X.Y., Tam, K.C., Gan, L.H. Synthesis and aggregation behavior of Pluronic F127/poly(lactic acid) block copolymers in aqueous solutions. [J] Macromolecules. 2003, 36:9979-9985.
    [231] Zhang, Y., Lam, Y.M. Controlled synthesis and association behavior of graft Pluronic in aqueous solutions. [J] J Colloid Interface Sci. 2007, 306:398-404.
    [232] Dong, J., Chowdhry, B.Z., Leharne, S.A. Surface activity of poloxamines art her interfaces between air-water and hexane-water. [J] Colloids Surf A Physicochem Eng Aspects. 2003, 212:9-17.
    [233] Sosnik, A., Sefton, M.V. Methylation of poloxamine for enhanced cell adhesion. [J] Biomacromolecules. 2006, 7:331-338.
    [234] Armstrong, J.K., Chowdry, B.Z., Snowden, M.J., Dong, J., Leharne, S.A. The effect of pH and concentration upon aggregation transitions in aqueous solutions of poloxamine T701. [J] Int J Pharm. 2001, 229:57-66.
    [235] Dong, J., Chowdry, B.Z., Leharne, S.A. Solubilisation of polyaromatic hydrocarbons in aqueous so lutions of poloxamine T803. [J] Colloids Surf A Physicochem Eng Aspects. 2004, 246:91-98.
    [236] Dong, J., Armstrong, J., Chowdry, B.Z., Leharne, S.A. Thermodynamic modeling of the effect of pH upon aggregation transitions in aqueous solutions of the poloxamine, T701. [J] Therm Acta. 2004, 417:201-206.
    [237] Alvarez-Lorenzo, C., Gonzalez-Lopez, J., Fernandez-Tarrio, M., Sandez-Macho, I., Concheiro, A. Tetronic micellization, gelation and drug solubilization: Influence of pH and ionic strength. [J] Eur J Pharm Biopharm. 2007, 66:244-252.
    [238] Durme, K.V., Assche, G.V., Aseyev, V., Raula, J., Tenhu, H., Mele, B.V. Influence of macromolecular architecture on the thermal response rate of amphiphilic copolymer, based on poly(N-isopropylacrylamide) and poly(oxyethylene), in water. [J] Macromolecules. 2007, 40:3765-3772.
    [239] Canciello, M., Maglio, G., Nese, R.P. Poly( -caprolactone)-poly(oxyethylene) multiblock copolymers bBearing along the chain regularly spaced pendant amino groups. [J] Macromol Biosci. 2007, 7:491-499.
    [240] Klaikherd, A., Nagamani, C., Thayumanavan, S. Multi-stimuli sensitive amphiphilic block copolymer assemblies. [J] J Am Chem Soc. 2009, 131:4830-4838.
    [241] Voronov, A., Kohut, A., Peukert, W., Voronov, S., Gevus, O., Tokarev, V. Invertible architectures from amphiphilic polyesters. [J] Langmuir. 2006, 22:1946-1948.
    [242] Xiong, X.B., Uluda?, H., Lavasanifar, A. Biodegradable amphiphilic poly(ethylene oxide)-block-polyester with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. [J] Biomaterials. 2009, 30:242-253.
    [243] Verbrugghe, S., Laukkanen, A., Vladimir, A., Heikki, T., Winnik, F.M., Prez, F.E.D. Light scattering and microcalorimetry studies on aqueous solutions of thermo-respinsive PVCL-g-PEOcopolymers. [J] Polymer. 2003, 44:6807-6814.
    [244] Neugebauer, D. Graft copolyers with hydrophilic and hydrophobic polyether side chains. [J] Polymer. 2007, 48:4966-4973.
    [245] Iijima, M., Nagasaki, Y. Synthesis of poly[N-isopropylacrylamide-g- poly(ethylene glycol)] with a reactive group at the poly(ethylene glycol) end and its thermosensitive self-assembling character. [J] J Polym Sci Part A: Polym Chem. 2006, 44:1457-1469.
    [246] Hong, H.Y., Mai, Y.Y., Zhou, Y.F., Yan, D.Y., Chen, Y. Synthesis and supramolecular self-assembly of thermosensitive amphiphilic star copolymer based on a hyperbranched polyether core. [J] J Polym Sci Part A: Polym Chem. 2008, 46:668-681.
    [247] Li, P.P., Li, Z.Y., Huang, J.L. Preparation of star copolymers with three arms of poly(ethylene oxide-co-glycidol)-graft-polystyrene and investigation of their aggregation in water. [J] Polymer. 2007, 48:1557-1566.
    [248] Butsele, K.V., Fustin, C.A., Gohy, J.F., Jér?me, R., Jér?me, C. Self-assembly and pH-responsiveness of ABC Miktoarm star terpolymers. [J] Langmuir. 2009, 25:107-111.
    [249] Xin, X., Xu, G.Y., Zhang, Z.Q., Chen, Y.J., Wang, F. Aggregation behavior of star-like PEO-PPO-PEO block copolymer in aqueous solution. [J] Eur Polym J. 2007, 43:3106-3111.
    [250] Wang, H.B., Chem, X.S., Pan, C.Y. Synthesis and micellization of star-like hyperbranched polymer with poly(ethylene oxide) and pol(ε-caprolactone) arms. [J] J Polym Sci Part A: Polym Chem. 2008, 46:1388-1401.
    [251] Chung, Y-W., Lee, J-K., Zin, W-C., Cho, B-K. Self-assembling behavior of amphiphilic dendron coils in the bulk crystalline and liquid crystalline states. [J] J Am Chem Soc. 2008, 130:7139-7147.
    [252]恽魁宏.有机化学.高等教育出版社. 1998:210-211.
    [253]何秋琴,刘超美,李科,曹永兵,董环文,赵荔华.叔丁基三唑醇类衍生物的合成及其抗真菌活性. [J]中国药物化学杂志. 2007, 17(3):140-143.
    [254] Toom, L., Villo, P., Liblikas, I., Vares, L. Synthesis of amphiphilic amino alcohols. [J] Synthetic Communication. 2008, 38:4295-4313.
    [255] Goddard, E.D., Hoeve, C.A.J., Benson, G.C. [J] J Phys Chem. 1957, 61:563.
    [256] Winnik, M.A., Bystryak, S.M., Liu, Z. Synthesis and characterization of pyrene-labeled poly(ethyleneimine). [J] Macromolecules. 1998, 31:6885-6864.
    [257] Voronov, A., Kohut, A., Peukert, W., Voronov, S., Gevus, O., Tokarev, V. Invertible Architectures from amphiphilic polyesters. [J] Langmuir. 2006, 22:1946-1948.
    [258]张晓宏,吴世康.荧光探针技术研究共溶剂对PEO-PPO-PEO嵌段共聚物溶液胶束的形成及内部结构的影响. [J]高分子学报. 1999, (2):183-188.
    [259] Nishijima, Y. Fluorescence methods in polymer science. [J] J Polym Sci Part C: Polym Symposia. 1970, 31:353-373.
    [260] Morawetz H. Some applications of fluorimetry to synthetic polymer studies. [J]Science. 1979, 203:405-410.
    [261] Dai, H. Carbon nanotubes: Synthesis, integration, and properties. [J] Acc Chem Res. 2002, 35:1035-1044.
    [262] Avouris, P. Molecular electronics with carbon nanotubes [J] Acc Chem Res. 2002, 35:1026-1034.
    [263] Bachtold, A.,Hadley, P., Nakanishi, T., Dekker, C. Logic circuits with carbon nanotube transistors. [J] Science. 2001, 294:1317-1320.
    [264] Joseph, S., Mashl, R.J., Jakobsson, E., Aluru, N.R. Electrolytic Transport in Modified Carbon. Nanotubes. [J] Nano Lett. 2003, 3:1399-1403.
    [265] Wang, S.F., Shen, L., Zhang, W.D., Tong, Y.J. Preparation mechanical properties of chitosan/carbon nanotubes composites. [J] Biomacromolecules. 2005, 6:3067-3072.
    [266] Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M. Chemistry of Carbon Nanotubes. [J] Chem Rev. 2006, 106:1105-1136.
    [267] Banerjee, S., Hemraj-Benny, T., Wong, S.S. Covalent surface chemistry of single-walled carbon nanotubes. [J] Adv Mater. 2005, 17:17-29.
    [268] Morishima, Y. Photophysics in amphiphilic polyelectrolyte systems. [J] Prog Polym Sci. 1990, 15:949-997.
    [269] Winnik, F.M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. [J] Chem Rev. 1993, 93:587-614.
    [270] Yang, Q., Shuai, L., Pan, X.J. Synthesis of fluorescent chitosan and its application in noncovalent functionalization of carbon nanotubes. [J] Biomacromolecules. 2008, 9:3422-3426.
    [271] Yang, Q., Shuai, L., Zhou, J.J., Lu, F.C., Pan, X.J. Functionalization of Multiwalled Carbon Nanotubes by Pyrene-Labeled Hydroxypropyl Cellulose. [J] J Phys Chem B. 2008, 112:13934-12939.
    [272] Liu, Y.Y., Tang, J., Chen, X.Q., Xin, J.H. Decoration of Carbon Nanotubes with Chitosan [J] Carbon. 2005, 43:3178-3180.
    [273] Kimura, M., Miki, N., Suzuki, D., Adachi, N., Tatewaki, Y., Shirai, H. Wrapping of Self-Organized Fluorescent Nanofibers with a Silica Wall. [J] Langmuir. 2009, 25:776-780

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700