用户名: 密码: 验证码:
Galectin-3特异性siRNA对肺癌肿瘤干细胞生物学功能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肿瘤干细胞对化疗药物的敏感性差,往往成为肿瘤复发的根源,研发特异性针对肿瘤干细胞的新型药物是目前临床治疗肿瘤的最具潜力的研究方向。肺癌干细胞分离后,通过表面标记纯化肺癌干细胞,研究它们的基因表达模式,找到肺癌发生过程中必需的功能蛋白,把该蛋白作为新的药物靶标来治疗肺癌,是目前肺癌防治的一个新的研究方向。本研究检测了肺腺癌CD133+细胞中Galectin-3的表达情况,并利用体外化学合成的特异性针对galectin-3的siRNA研究了CD133阳性肺腺癌肿瘤干细胞中表达的Galectin-3的生物学功能。
     方法:第一部分实验是从10例肺腺癌患者切除的肿瘤标本中通过磁珠分选技术分选出CD133+肺腺癌细胞,通过流式细胞术检测分选出的细胞中CD133+细胞百分率。第二部分实验是采用FQRT-PCR和Westernblot的方法分别在转录和翻译两个水平检测了CD133+肺腺癌细胞中Galectin-3的表达,同时流式细胞术检测了CD133+细胞中galectin-3的分布情况。第三部分研究内容旨在深入研究Galectin-3在CD133+细胞中高表达的生物学意义。采用针对galectin-3的特异性siRNA来研究降低CD133+细胞中galectin-3的表达对CD133+肺腺癌细胞的增殖,转移能力及其诱导CD8+T细胞凋亡能力的影响。首先通过FQRT-PCR和Westernblot检测siRNA对galectin-3的干扰效率,随后单克隆形成实验以及MTT法检测了特异性针对galectin-3的siRNA对CD133+肺腺癌细胞增殖的影响,Boyden小室模型检测了siRNA对CD133+肺腺癌细胞转移能力的影响,最后AnnexinV和PI双染检测转染siRNA的CD133+肺腺癌细胞上清诱导CD8+T细胞凋亡能力。
     结果:第一部分的实验结果表明,磁珠分选出的细胞中CD133+细胞数达到了90%,体外培养2-3天后经过磁珠分选出来的CD133+细胞能形成典型的肿瘤干细胞球。第二部分FQRT-PCR和Westernblot结果发现Galectin-3在CD133+细胞中的表达量分别为CD133-细胞中的1.24倍和1.5倍,差异有统计学意义(p<0.05)。流式细胞仪检测结果表明CD133+肺腺癌肿瘤干细胞胞内以及细胞膜上均有galectin-3的分布,且平均荧光强度统计结果显示CD133+细胞内(17.8±2.5)以及细胞膜(25.6±5.1)上的galectin-3的表达量均较CD133-细胞内(7.3±3.1)以及细胞膜(10.3±3.4)上galectin-3的表达量高,并且差异具有统计学意义(p<0.05)。第三部分的实验结果显示,针对galectin-3的siRNA平均干扰效率为80.3%,明显降低CD133+细胞中galectin-3的表达,并抑制CD133+细胞增殖,转染96h后细胞活率为未转染组的(75±3.5)%,转染siRNA后的CD133+细胞单克隆形成率(60.12±4.32)%明显较未转染组(87.34±4.89)%下降,差异具有统计学意义(p<0.05)。Boyden小室模型检测结果表明:转染siRNA后,CD133+细胞的转移侵袭能力(68±7)明显较未转染组(100±8)下降,差异具有统计学意义(p<0.05),凋亡检测结果表明CD133+细胞的上清诱导CD8+T细胞凋亡率为(18.6±3.5)%,并且这种诱导凋亡的能力能被乳糖以及抗Galectin-3的抗体中和,转染siRNA的CD133+肺腺癌细胞上清诱导CD8+T细胞凋亡率为8.2%,与未转染组凋亡率18.6%相比诱导凋亡的能力明显下降,差异有统计学意义(p<0.05)。
     结论:以上结果表明磁珠分选技术能够有效地从肿瘤标本中分选出CD133+的肺癌肿瘤干细胞,分选效率高,所分选的细胞体外培养能形成典型的肿瘤干细胞球。Galectin-3在CD133+肺腺癌细胞中高表达,在其细胞内以及细胞膜上均有表达且均高于CD133-细胞细胞内以及细胞膜的表达量。CD133+细胞表达出的Galectin-3具有很强的生物学活性,在体外具有明显的诱导CD8+T细胞凋亡的功能,针对galectin-3的siRNA能高效抑制galectin-3在CD133+细胞中的的表达,并能降低CD133+细胞的增殖能力、单克隆形成能力、体外转移能力及诱导CD8+T细胞凋亡的能力,具有潜在的临床应用价值。本研究进一步阐明了Galectin-3在肿瘤的发生发展中的作用,为抗肿瘤药物的研发提供了一条新的思路。
Purpose Cancer stem cells show poor sensitivity to chemotherapeutics, which often become the root of tumor recurrence. So far, numerous studies have focused on development of novel drugs specific to tumor stem cells, which would be one of the most effective treatment of cancers. Of note, to separate and purify lung cancer stem cells by surface marker, study their gene expression patterns and then find out the essential functional protein for oncogenesis as new drug targets for lung cancer treatment, is a dynamic research direction and may provide important information for developing novel therapy. In this study, we detect the expression of Galectin-3 in CD133+ pulmonary adenocarcinoma cells and investigate its biological functions by synthesized galectin-3-specific siRNA.
     Methods In the first part, we sepatated CD133+ pulmonary adenocarcinoma cells from excised pulmonary adenocarcinoma specimens of 10 patients by magnetic activated cell sorting (MACS) and determined the percentage of CD133+ cells in different cell populations by flow cytometry(FCM). In the second part, we detected the expression of Galectin-3 in lung cancer cells on both transcriptional and translational level by FQRT-PCR and Western blot respectively, whereas extracellular expression by ELISA.In the third part, the studies were aimed to investigate the biological functions of Galectin-3 in CD133+ cells. CD133+ cells were transfected with galectin-3-specific siRNA to explore the affects of galectin-3 inhibition on cancer cell growth, metastasis and its ability of inducing CD8+T cell apoptosis. The interference efficiency of galectin-3 expression by siRNA was determined by FQRT-PCR and Western blot, and then the proliferation rate of CD133+ lung cancer cells post-transfected was detected by colony formation assay and MTT test. Boyden chamber model was used to observe the metastasis ability of CD133+ lung cancer cells. Finally, Annexin V and PI double staining flow cytometry was performed to determine CD8+T cell apoptosis induced by supernatant of CD133+ lung cancer cells
     Results Cells expressing CD133 constituted 90% of the CD133+subpopulation after separation by MACS whereas only 1.2% in the unsorted cells. Expression of galectin-3 was 1.24 folds,1.5 folds and 2 folds higher in CD133+cells than in CD133-cells detected by FQRT-PCR, Western Blot and ELISA respectively(p<0.05). siRNA was able to interfere with galectin-3 and the interference efficiency was 80.3%, showed by FQRT-PCR and Western Blot. The MTT assay showed that proliferation rate of CD133+ cell treated with siRNA was decreased correlated with incubation time after transfection. At the point 96h after transfection, the viability rate of CD133+ cell treated with siRNA was significantly lower than CD133+ cell without treatment(p<0.05), the former 75 percents of the later, whereas there was no much difference between the viability rates of siRNA group and siRNA mutant group at the point 48h after transfection. The colony formation rate of CD133+ cells post-transfected (60.12%±4.32%) was lower than that of non-treated group (87.34%±4.89%). Boyden chamber model showed that siRNA transfected CD133+ lung cancer cells were less invasive than non-treated group,68±7 cells compared with 100±8 cells (p<0.05). Apoptosis detection by flow cytometry showed that the supernatants of CD133+ cells induced more efficiently apoptosis of CD8+T cells (18.6±3.5) compared with siRNA transfected cells(8.2%), which could be also inhibited by lactose, anti-galectin-3 polyclonal antibody.
     Conclusion Our data indicate that galectin-3 is expressed at a relatively higher level in CD133+ lung adenocarcinoma cells and could induce CD8+T cell apoptosis in vitro, both of which can be down-regulated by galectin-3 siRNA. Galectin-3-specific siRNA also reduce proliferation and metastasis abilities of CD133+ lung cancer cells, as well as their capacity to induce CD8+T cell apoptosis. These findings indicate Galectin-3 may play an important role during oncogenesis, implying a potential therapeutic target for pulmonary adenocarcinoma.
引文
[1]Moneeb E,Khubaib YM,Charles BS,and Reid CT. CXCR4 mediates the proliferation of glioblastoma progenitor cells. [J]Cancer Lett,2009,274(2):305-312;
    [2]A E ramo, F Lotti, G Sette, et al.Identification and expansion of the tumorigenic lung cancer stem cell population. [J]Cell Death and Differentiation.2008,15:504-514;
    [3]魏益平,王梅,华平,等肿瘤干细胞标记物CD133在非小细胞肺癌中的表达及临床意义.[J]中山大学学报(医学科学版),2008,29(3):312-316;
    [4]Liu Jing, Guo Wen-jun.Advances in lung cancer stem cells. [J]Int J Pathol Clin Med,2008,28(5):433-435;
    [5]李婕,张尚福Galectin-3与肺癌的关系.[J]中国肺癌杂志.2007,10(4):341-344;
    [6]Barondes SH, Cooper DN, Gitt MA, et al. Galectins. Structure and function of a large family of animal lectins. [J]J Biol Chem,1994,269 (33):20807-20810;
    [7]Gong HC, Honjo Y, Nangia-Makker P, et al.The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. [J]Cancer Res,1999,59 (24):6239-6245;
    [8]Herrmann J, Turck CW, Atchison RE, et al. Primary structure of the soluble lactose binding lectin L-29 from rat and dog and interaction of its non-collagenous proline-, glycine-, tyrosine-rich sequence with bacterial and tissue collagenase. [J]J Biol Chem,1993,268 (35):26704-26711;
    [9]Liu FT, Hsu DK, Zuberi RI, et al.Expression and function of galectin-3,a beta-galactoside-binding lectin, in human monocytes and macrophages. [J]Am J Pat hol,1995,147 (4):1016-1028;
    [10]Lotan R, Ito H, Yasui W, et al. Expression of a 31-kDa lactoside-binding lectin in normal human gastric mucosa and in primary and metastatic gastric carcinomas. [J]Int J Cancer,1994,56 (4):474-480;
    [11]Nagy N, Legendre H, Engels O, et al.Refined prognostic evaluation in colon carcinoma using immunohistochemical galectin fingerprinting. Cancer,2003,97 (8):1849-1858;
    [12]Schoeppner HL, Raz A, Ho SB, et al.Expression of an endogenous galactose-binding lectin correlates with neoplasticprogression in the colon. [J]Cancer,1995,75(12):2818-2826;
    [13]Grimm D,Streelz KL,Jopling CL,et al.Fatality in mice due to ocersaturation of cell ularmicro RNA/shorthairpinRNA pathways [J].Nature,2006,441(7092):537-541
    [14]Gorbatyuk M, Justolien V,Liu J,et al. Suppression of mouse rhodopsin expression in vivo by AAV mediated siRNA delivery[J].Vision Res,2007,47(9):1202-1208
    [15]Rudich SM, Zhou S, Srivastava R. Dose response to a single intramuscular injection of recombinant adeno-associated virus-erythropoietin in monkeys. J Surg Res, 2000,90:102-108.
    [16]Tsai MT, Chen SL, Chen PI. Inducible adeno-associatcd virus vecter delivered transgene expression in corneal endothelium. Invest ophthalmol vis Sci,2002, 43:752-757.
    [17]Lai CM, Brankov M, Zaknich T,et,al. Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization. Hum Gene Ther.2001,12:1299-1310.
    [18]周炼红,胡燕华,汪道文.重组腺相关病毒经不同途径转染鼠眼球组织.眼科新进展,2004,24(3):182-184
    [1]Moneeb E,Khubaib YM,Charles BS,and Reid CT. CXCR4 mediates the proliferationof glioblastoma progenitor cells. [J]Cancer Lett,2009,274(2):305-312;
    [2]A E ramo, F Lotti, G Sette, et al.Identification and expansion of the tumorigenic lung cancer stem cell population. [J]Cell Death and Differentiation.2008, 15:504-514;
    [3]魏益平,王梅,华平,等.肿瘤干细胞标记物CD133在非小细胞肺癌中的表达及临床意义.[J]中山大学学报(医学科学版),2008,29(3):312-316;
    [4]Liu Jing, Guo Wen-jun.Advances in lung cancer stem cells. [J]Int J Pathol Clin Med,2008,28(5):433-435;
    [5]SiegelDL.Selecting antibodies to cell surface antigen susing magnetie sorting teehniques.MethodsMolBiol,2002,178:219-226.
    [6]MiragliaS,GodfreyW,YinAH,etal.Anovelfive-transmembrane hematoPoi-Etiestemeellantigen:isolation, eharacterization,and molecular cloning.Blood, 1997,90(12):5013-5021
    [7]UchidaN,BuckDW,HeDP,etal.Direet isolation of human central nervous system stem cells.ProcNatlAcadsei,2000,97(26):14720-1472
    [5]李婕,张尚福.Galectin-3与肺癌的关系.[J]中国肺癌杂志.2007,10(4):341-344;
    [6]Barondes SH, Cooper DN, Gitt MA, et al. Galectins. Structure and function of a large family of animal lectins. [J]J Biol Chem,1994,269 (33):20807-20810;
    [7]Gong HC, Honjo Y, Nangia-Makker P, et al.The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. [J]Cancer Res,1999,59 (24):6239-6245;
    [8]Herrmann J, Turck CW, Atchison RE, et al. Primary structure of the soluble lactose binding lectin L-29 from rat and dog and interaction of its non-collagenous proline-, glycine-, tyrosine-rich sequence with bacterial and tissue collagenase. [J]J Biol Chem,1993,268 (35):26704-26711;
    [9]Liu FT, Hsu DK, Zuberi RI, et al.Expression and function of galectin-3,a beta-galactoside-binding lectin, in human monocytes and macrophages. [J]Am J Pat hol,1995,147 (4):1016-1028;
    [10]Lotan R, Ito H, Yasui W, et al. Expression of a 31-kDa lactoside-binding lectin in normal human gastric mucosa and in primary and metastatic gastric carcinomas. [J]Int J Cancer,1994,56 (4):474-480;
    [11]Nagy N, Legendre H, Engels O, et al.Refined prognostic evaluation in colon carcinoma using immunohistochemical galectin fingerprinting. Cancer,2003,97 (8):1849-1858;
    [12]Schoeppner HL, Raz A, Ho SB, et al.Expression of an endogenous galactose-binding lectin correlates with neoplasticprogression in the colon. [J]Cancer,1995,75(12):2818-2826;
    [13]任声权,易绍琼,陈薇Galectin-1的生物学活性及其研究进展.[J]微生物学免疫学进展,2008,36(2):41-44:
    [14]Woo HJ, Shaw LM, Messier JM, Mercurio AM. The major non-integrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35 (Mac-2). J Biol Chem.1990.265(13):7097-9.
    [15]Albrandt K, Orida NK, Liu FT. An IgE-binding protein with a distinctive repetitive sequence and homology with an IgG receptor. Proc Natl Acad Sci U S A. 1987.84(19):6859-63.
    [16]Jia S, Mee RP, Morford G, et al. Carbohydrate-binding protein 35:molecular cloning and expression of a recombinant polypeptide with lectin activity in Escherichia coli. Gene.1987.60(2-3):197-204.
    [17]Cherayil BJ, Weiner SJ, Pillai S. The Mac-2 antigen is a galactose-specific lectin that binds IgE. J Exp Med.1989.170(6):1959-72.
    [18]Laing JG, Robertson MW, Gritzmacher CA, Wang JL, Liu FT. Biochemical and immunological comparisons of carbohydrate-binding protein 35 and an IgE-binding protein. J Biol Chem.1989.264(4):1097-10.
    [19]Leffler H, Masiarz FR, Barondes SH. Soluble lactose-binding vertebrate lectins:a growing family. Biochemistry.1989.28(23):9222-9.
    [20]Raz A, Carmi P, Raz T, Hogan V, Mohamed A, Wolman SR. Molecular cloning and chromosomal mapping of a human galactoside-binding protein. Cancer Res. 1991.51(8):2173-8.
    [21]Herrmann J, Turck CW, Atchison RE, et al. Primary structure of the soluble lactose binding lectin L-29 from rat and dog and interaction of its non-collagenous proline-, glycine-, tyrosine-rich sequence with bacterial and tissue collagenase. J Biol Chem.1993.268(35):26704-11.
    [22]Gaudin JC, Mehul B, Hughes RC. Nuclear localisation of wild type and mutant galectin-3 in transfected cells. Biol Cell.2000.92(1):49-58.
    [23]Houzelstein D, Goncalves IR, Fadden AJ, et al. Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol.2004.21(7):1177-87.
    [24]Hsu DK, Zuberi RI, Liu FT. Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin. J Biol Chem. 1992.267(20):14167-74.
    [25]Agrwal N, Sun Q, Wang SY, Wang JL. Carbohydrate-binding protein 35. Ⅰ. Properties of the recombinant polypeptide and the individuality of the domains. J Biol Chem.1993.268(20):14932-9.
    [26]Mehul B, Bawumia S, Martin SR, Hughes RC. Structure of baby hamster kidney carbohydrate-binding protein CBP30, an S-type animal lectin. J Biol Chem.1994. 269(27):18250-8.
    [27]Wang JL, Laing JG, Anderson RL. Lectins in the cell nucleus. Glycobiology.1991. 1(3):243-52.
    [28]Raz A, Pazerini G, Carmi P. Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Res.1989.49(13):3489-93.
    [29]Seetharaman J, Kanigsberg A, Slaaby R, Leffler H, Barondes SH, Rini JM. X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution. J Biol Chem.1998.273(21):13047-52.
    [30]Barboni EA, Bawumia S, Henrick K, Hughes RC. Molecular modeling and mutagenesis studies of the N-terminal domains of galectin-3:evidence for participation with the C-terminal carbohydrate recognition domain in oligosaccharide binding. Glycobiology.2000.10(11):1201-8.
    [31]Massa SM, Cooper DN, Leffler H, Barondes SH. L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity. Biochemistry.1993. 32(1):260-7.
    [32]Ochieng J, Green B, Evans S, James O, Warfield P. Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochim Biophys Acta.1998. 1379(1):97-106.
    [33]Shekhar MP, Nangia-Makker P, Tait L, Miller F, Raz A. Alterations in galectin-3 expression and distribution correlate with breast cancer progression:functional analysis of galectin-3 in breast epithelial-endothelial interactions. Am J Pathol. 2004.165(6):1931-41.
    [34]Menon RP, Hughes RC. Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum-Golgi complex. Eur J Biochem.1999.264(2):569-76.
    [35]Gong HC, Honjo Y, Nangia-Makker P, et al. The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res. 1999.59(24):6239-45.
    [36]Yoshii T, Fukumori T, Honjo Y, Inohara H, Kim HR, Raz A. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem.2002.277(9):6852-7.
    [37]Abrahante, J., Daul, A., Li, M., Volk, M.,Tennessen, J., Miller, E. and Rougvie, A. (2003).The Caenorhabditis elegans hunchback-like genelin-57/hbl-1 controls developmental timing and is regulated by microRNAs. Dev. Cell 4,625-637.
    [38]Guo S, Kemphues K J. Par21, a gene required fo r establish ing po larity in C. elegans embryo s, encodes a putat ive sero Th r k inase that is asymmet rically dist ributed[J]. Cell,1995,81:6112620
    [39]Sharp P A, Zamo re P D. RNA interference [J]. Science,2000,287:243122433.
    [40]W ianny F, Zernicka2Goetz M. Specif ic interference with gene funct ion by double st randed RNA in earlymouse development [J].Nat Cell Bio l,2000, (2): 70-75.
    [41]Tchurikov N A, Ch ristyakova L G, Zavilgelsky G B, et al. Gene specific silencing by expression of parallel comp lementary RNA inEscherich ia co li J [J]. Bio logical Chem ist ry,2000,275:26523-26529.
    [42]Hammond S M, Bernstein E, Beach D, et al. A n RNA 2 directed nuclease mediates po st2t ranscrip t ion algene silencing in D ro sophila cells[J]. N ature, 2000,404 (6775):293-296.
    [43]Bernstein E, Caudy A A, Hammond S M, et al. Role fo rabidentate ribonuclease in the init iat ion step of RNA interference [J]. N ature,2001,409 (6818) 363-366.
    [44]Yang D, L u H, Erick son J W. Evidence that p rocessed small dsRNA smaymediate sequence2specif icmRNA degradat ion during RNA i in D ro soph ila embryo s [J]. CurrBio,2000,10 (19):1191-1200.
    [45]F ire A. RNA 2t riggered gene silencing[J]. T IG,1999,15:358-361.
    [46]Kawasak i H, Taira K. Sho rt hairp in type of dsRNA s that are cont ro lied by tRNA (V al) p romo ter signif icant ly induce RNA I mediated gene silencing in the cytop lasm of human cells [J]. Nucleic A cids Res,2003,31:700-707.
    [47]Cap len N J, F leeno r J, F ire A, et al. dsRNA 2 mediated gene silencing in cultured D ro soph ila cells [J]. Gene,2000,252:95-105.
    [48]F ire A, Xu S, Montgomery M K, et al. Po tent and specif ic genet ic interference by dsRNA in caeno rhabdit is elegans [J].Nature,1998,391:806-811.
    [49]Zamo re P D, Tusch l T, Sharp P A, et al. RNA i:dsRNA directs the A TP2 dependent cleavage of mRNA at 21 to 23 nucleo t ide intervals[J]. Cell,1999,101: 25-33.
    [50]朱睿,张开立,邹向阳.RNA干扰(RNA i)技术及其在功能基因组学研究中的应用[J].大连医科大学学报,2003,25(2):105-107.
    [51]Xiao-Feng Q in, Dong Sung A n, Irvin S Y, et al. Inh ibit ing HIV-1 infect ion in human T cells by lent iviral2 mediated delivery of small interfering RNA against CCR5 [J]. P roc Natl Acad Sci,2003, (1):183-188.
    [52]Git lin L, Karelsky S, A ndino R. Sho rt interfering RNA confers int racellular ant iviral immunity in human cells[J]. N ature,2002,418 (6896):430-434.
    [53]Elbashir SM, Harborth J, Lendeckel W, et al. Dupleses of 21-nucleotide RNAs mediate RNA interference in cultured mamalian cells[J]. Nature,2001,411 (6836):494-498.
    [54]Brummelkamp TR, Bernards R, Agami R. A System for Stable Expression of Short Interfering RNAs in Mammalian Cells [J]. Science,2002,296 (5567):550-553.
    [55]Miyagishi M,Taira K. U6 promoter-driven siRNAs with four uridine 3π overhangs efficiently suppress targeted gene expression in mammalian cells[J] Nat Biotech,2002,20(5):497-500.
    [56]Kamath RS,Fraser AG,Dong y,et al. Systemic functional analysis of he Caenorhabditis elegans genome using RNAi [J]. Nature,2003,421 (6920):231-237.
    [1]Barondes SH, Castronovo V, Cooper DN, et al. Galectins:a family of animal beta-galactoside-binding lectins. Cell.1994.76(4):597-8.
    [2]Cooper DN. Galectinomics:finding themes in complexity. Biochim Biophys Acta. 2002.1572(2-3):209-31.
    [3]Hirabayashi J, Hashidate T, Arata Y, et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta.2002. 1572(2-3):232-54.
    [4]Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta.1999.1473(1):172-85.
    [5]Ho MK, Springer TA. Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol. 1982.128(3):1221-8.
    [6]Roff CF, Wang JL. Endogenous lectins from cultured cells. Isolation and characterization of carbohydrate-binding proteins from 3T3 fibroblasts. J Biol Chem.1983.258(17):10657-63.
    [7]Liu FT, Orida N. Synthesis of surface immunoglobulin E receptor in Xenopus oocytes by translation of mRNA from rat basophilic leukemia cells. J Biol Chem. 1984.259(17):10649-52.
    [8]Cerra RF, Gitt MA, Barondes SH. Three soluble rat beta-galactoside-binding lectins. J Biol Chem.1985.260(19):10474-7.
    [9]Sparrow CP, Leffler H, Barondes SH. Multiple soluble beta-galactoside-binding lectins from human lung. J Biol Chem.1987.262(15):7383-90.
    [10]Raz A, Meromsky L, Zvibel I, Lotan R. Transformation-related changes in the expression of endogenous cell lectins. Int J Cancer.1987.39(3):353-60.
    [11]Woo HJ, Shaw LM, Messier JM, Mercurio AM. The major non-integrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35
    (Mac-2). J Biol Chem.1990.265(13):7097-9.
    [12]Agrwal N, Sun Q, Wang SY, Wang JL. Carbohydrate-binding protein 35.Ⅰ. Properties of the recombinant polypeptide and the individuality of the domains. J Biol Chem.1993.268(20):14932-9.
    [13]Wang JL, Laing JG, Anderson RL. Lectins in the cell nucleus. Glycobiology.1991. 1(3):243-52.
    [14]Raz A, Pazerini G, Carmi P. Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Res.1989.49(13):3489-93.
    [15]Barboni EA, Bawumia S, Henrick K, Hughes RC. Molecular modeling and mutagenesis studies of the N-terminal domains of galectin-3:evidence for participation with the C-terminal carbohydrate recognition domain in oligosaccharide binding. Glycobiology.2000.10(11):1201-8.
    [16]Shekhar MP, Nangia-Makker P, Tait L, Miller F, Raz A. Alterations in galectin-3 expression and distribution correlate with breast cancer progression:functional analysis of galectin-3 in breast epithelial-endothelial interactions. Am J Pathol. 2004.165(6):1931-41.
    [17]Menon RP, Hughes RC. Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum-Golgi complex. Eur J Biochem.1999.264(2):569-76.
    [18]Gong HC, Honjo Y, Nangia-Makker P, et al. The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res. 1999.59(24):6239-45.
    [19]Yoshii T, Fukumori T, Honjo Y, Inohara H, Kim HR, Raz A. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem.2002.277(9):6852-7.
    [20]Ochieng J, Platt D, Tait L, et al. Structure-function relationship of a recombinant human galactoside-binding protein. Biochemistry.1993.32(16):4455-60.
    [21]Birdsall B, Feeney J, Burdett ID, Bawumia S, Barboni EA, Hughes RC. NMR solution studies of hamster galectin-3 and electron microscopic visualization of surface-adsorbed complexes:evidence for interactions between the N-and C-terminal domains. Biochemistry.2001.40(15):4859-66.
    [22]Yang RY, Hill PN, Hsu DK, Liu FT. Role of the carboxyl-terminal lectin domain in self-association of galectin-3. Biochemistry.1998.37(12):4086-92.
    [23]Kuklinski S, Probstmeier R. Homophilic binding properties of galectin-3: involvement of the carbohydrate recognition domain. J Neurochem.1998.70(2): 814-23.
    [24]Vlassara H, Li YM, Imani F, et al. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE):a new member of the AGE-receptor complex. Mol Med.1995.1(6):634-46.
    [25]Henrick K, Bawumia S, Barboni EA, Mehul B, Hughes RC. Evidence for subsites in the galectins involved in sugar binding at the nonreducing end of the central galactose of oligosaccharide ligands:sequence analysis, homology modeling and mutagenesis studies of hamster galectin-3. Glycobiology.1998.8(1):45-57.
    [26]Hirabayashi J, Hashidate T, Arata Y, et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta.2002. 1572(2-3):232-54.
    [27]Umemoto K, Leffler H, Venot A, Valafar H, Prestegard JH. Conformational differences in liganded and unliganded states of Galectin-3. Biochemistry.2003. 42(13):3688-95.
    [28]Ahmad N, Gabius HJ, Andre S, et al. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem.2004.279(12):10841-7.
    [29]Demetriou M, Granovsky M, Quaggin S, Dennis JW. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature.2001. 409(6821):733-9.
    [30]Partridge EA, Le RC, Di GGM, et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science.2004.306(5693):120-4.
    [31]Shimura T, Takenaka Y, Tsutsumi S, Hogan V, Kikuchi A, Raz A. Galectin-3, a novel binding partner of beta-catenin. Cancer Res.2004.64(18):6363-7.
    [32]Shimura T, Takenaka Y, Fukumori T, et al. Implication of galectin-3 in Wnt signaling. Cancer Res.2005.65(9):3535-7.
    [33]Cowles EA, Agrwal N, Anderson RL, Wang JL. Carbohydrate-binding protein 35. Isoelectric points of the polypeptide and a phosphorylated derivative. J Biol Chem. 1990.265(29):17706-12.
    [34]Huflejt ME, Turck CW, Lindstedt R, Barondes SH, Leffler H. L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. J Biol Chem.1993.268(35):26712-8.
    [35]Yamazaki K, Kawai A, Kawaguchi M, et al. Simultaneous induction of galectin-3 phosphorylated on tyrosine residue, p21(WAF1/Cip1/Sdi1), and the proliferating cell nuclear antigen at a distinctive period of repair of hepatocytes injured by CC14. Biochem Biophys Res Commun.2001.280(4):1077-84.
    [36]Van den Brule FA, Fernandez PL, Buicu C, et al. Differential expression of galectin-1 and galectin-3 during first trimester human embryogenesis. Dev Dyn. 1997.209(4):399-405.
    [83]Phillips B, Knisley K, Weitlauf KD, Dorsett J, Lee V, Weitlauf H. Differential expression of two beta-galactoside-binding lectins in the reproductive tracts of pregnant mice. Biol Reprod.1996.55(3):548-58.
    [38]den Brule F v, Califice S, Castronovo V. Expression of galectins in cancer:a critical review. Glycoconj J.2004.19(7-9):537-42.
    [39]Raimond J, Zimonjic DB, Mignon C, et al. Mapping of the galectin-3 gene (LGALS3) to human chromosome 14 at region 14q21-22. Mamm Genome.1997. 8(9):706-7.
    [40]Kadrofske MM, Openo KP, Wang JL. The human LGALS3 (galectin-3) gene: determination of the gene structure and functional characterization of the promoter. Arch Biochem Biophys.1998.349(1):7-20.
    [41]Voss PG, Tsay YG, Wang JL. Galectin-3:differential accumulation of distinct mRNAs in serum-stimulated mouse 3T3 fibroblasts. Glycoconj J.1994.11(4): 353-62.
    [42]Raimond J, Rouleux F, Monsigny M, Legrand A. The second intron of the human galectin-3 gene has a strong promoter activity down-regulated by p53. FEBS Lett. 1995.363(1-2):165-9.
    [43]Guittaut M, Charpentier S, Normand T, Dubois M, Raimond J, Legrand A. Identification of an internal gene to the human Galectin-3 gene with two different overlapping reading frames that do not encode Galectin-3. J Biol Chem.2001. 276(4):2652-7.
    [44]Duneau M, Boyer-Guittaut M, Gonzalez P, et al. Galig, a novel cell death gene that encodes a mitochondrial protein promoting cytochrome c release. Exp Cell Res.2005.302(2):194-205.
    [45]Agrwal N, Wang JL, Voss PG. Carbohydrate-binding protein 35. Levels of transcription and mRNA accumulation in quiescent and proliferating cells. J Biol Chem.1989.264(29):17236-42.
    [46]Hebert E, Monsigny M. Galectin-3 mRNA level depends on transformation phenotype in ras-transformed NIH 3T3 cells. Biol Cell.1994.81(1):73-6.
    [47]Abedin MJ, Kashio Y, Seki M, Nakamura K, Hirashima M. Potential roles of galectins in myeloid differentiation into three different lineages. J Leukoc Biol. 2003.73(5):650-6.
    [48]Elliott MJ, Strasser A, Metcalf D. Selective up-regulation of macrophage function in granulocyte-macrophage colony-stimulating factor transgenic mice. J Immunol. 1991.147(9):2957-63.
    [49]Kim K, Mayer EP, Nachtigal M. Galectin-3 expression in macrophages is signaled by Ras/MAP kinase pathway and up-regulated by modified lipoproteins. Biochim Biophys Acta.2003.1641(1):13-23.
    [50]Abu-Amer Y, Bar-Shavit Z. Modulation of vitamin D increased H2O2 production and MAC-2 expression in the bone marrow-derived macrophages by estrogen. Calcif Tissue Int.1994.55(1):29-32.
    [51]Pesheva P, Urschel S, Frei K, Probstmeier R. Murine microglial cells express functionally active galectin-3 in vitro. J Neurosci Res.1998.51(1):49-57.
    [52]Reichert F, Rotshenker S. Galectin-3/MAC-2 in experimental allergic encephalomyelitis. Exp Neurol.1999.160(2):508-14.
    [53]Quintana A, Raczka E, Giralt MT, Quintana MA. Effects of aspirin and indomethacin on cerebral circulation in the conscious rat:evidence for a physiological role of endogenous prostaglandins. Prostaglandins.1983.25(4): 549-56.
    [54]Consten D, Lambert JG, Komen H, Goos HJ. Corticosteroids affect the testicular androgen production in male common carp (Cyprinus carpio L.). Biol Reprod. 2002.66(1):106-11.
    [55]Joo HG, Goedegebuure PS, Sadanaga N, Nagoshi M, von BW, Eberlein TJ. Expression and function of galectin-3, a beta-galactoside-binding protein in activated T lymphocytes. J Leukoc Biol.2001.69(4):555-64.
    [56]Hsu DK, Hammes SR, Kuwabara I, Greene WC, Liu FT. Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol.1996.148(5):1661-70.
    [57]Schroder HC, Ushijima H, Theis C, Seve AP, Hubert J, Muller WE. Expression of nuclear lectin carbohydrate-binding protein 35 in human immunodeficiency virus type 1-infected Molt-3 cells. J Acquir Immune Defic Syndr Hum Retrovirol.1995. 9(4):340-8.
    [58]Acosta-Rodriguez EV, Montes CL, Motran CC, et al. Galectin-3 mediates IL-4-induced survival and differentiation of B cells:functional cross-talk and implications during Trypanosoma cruzi infection. J Immunol.2004.172(1): 493-502.
    [59]Fogel S, Guittaut M, Legrand A, Monsigny M, Hebert E. The tat protein of HIV-1 induces galectin-3 expression. Glycobiology.1999.9(4):383-7.
    [60]Dumic J, Lauc G, Flogel M. Expression of galectin-3 in cells exposed to stress-roles of jun and NF-kappaB. Cell Physiol Biochem.2000.10(3):149-58.
    [61]Liu L, Sakai T, Sano N, Fukui K. Nucling mediates apoptosis by inhibiting expression of galectin-3 through interference with nuclear factor kappaB signalling. Biochem J.2004.380(Pt 1):31-41.
    [62]Hsu DK, Dowling CA, Jeng KC, Chen JT, Yang RY, Liu FT. Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma. Int J Cancer. 1999.81(4):519-26.
    [63]Costessi A, Pines A, D Andrea P, et al. Extracellular nucleotides activate Runx2 in the osteoblast-like HOBIT cell line:a possible molecular link between mechanical stress and osteoblasts'response. Bone.2005.36(3):418-32.
    [64]Ruebel KH, Jin L, Qian X, et al. Effects of DNA methylation on galectin-3 expression in pituitary tumors. Cancer Res.2005.65(4):1136-40.
    [65]Openo KP, Kadrofske MM, Patterson RJ, Wang JL. Galectin-3 expression and subcellular localization in senescent human fibroblasts. Exp Cell Res.2000. 255(2):278-90.
    [66]Dumic J, Lauc G, Hadzija M, Flogel M. Transfer to in vitro conditions influences expression and intracellular distribution of galectin-3 in murine peritoneal macrophages. Z Naturforsch C.2000.55(3-4):261-6.
    [67]Puglisi F, Minisini AM, Barbone F, et al. Galectin-3 expression in non-small cell lung carcinoma. Cancer Lett.2004.212(2):233-9.
    [68]Fukumori T, Takenaka Y, Oka N, et al. Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res.2004.64(10):3376-9.
    [69]Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta.2002.1572(2-3):263-73.
    [70]Oka N, Nakahara S, Takenaka Y, et al. Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res.2005.65(17):7546-53.
    [71]Yu F, Finley RL Jr, Raz A, Kim HR. Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem.2002.277(18):15819-27.
    [72]Goletz S, Hanisch FG, Karsten U. Novel alphaGalNAc containing glycans on cytokeratins are recognized invitro by galectins with type Ⅱ carbohydrate recognition domains. J Cell Sci.1997.110 (Pt 14):1585-96.
    [73]Bawumia S, Barboni EA, Menon RP, Hughes RC. Specificity of interactions of galectin-3 with Chrp, a cysteine-and histidine-rich cytoplasmic protein. Biochimie.2003.85(1-2):189-94.
    [74]Sato S, Burdett I, Hughes RC. Secretion of the baby hamster kidney 30-kDa galactose-binding lectin from polarized and nonpolarized cells:a pathway independent of the endoplasmic reticulum-Golgi complex. Exp Cell Res.1993. 207(1):8-18.
    [75]Tsay YG, Lin NY, Voss PG, Patterson RJ, Wang JL. Export of galectin-3 from nuclei of digitonin-permeabilized mouse 3T3 fibroblasts. Exp Cell Res.1999. 252(2):250-61.
    [76]Dagher SF, Wang JL, Patterson RJ. Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci U S A.1995.92(4):1213-7.
    [77]Park JW, Voss PG, Grabski S, Wang JL, Patterson RJ. Association of galectin-1 and galectin-3 with Gemin4 in complexes containing the SMN protein. Nucleic Acids Res.2001.29(17):3595-602.
    [78]Lin HM, Pestell RG, Raz A, Kim HR. Galectin-3 enhances cyclin D(1) promoter activity through SP1 and a cAMP-responsive element in human breast epithelial cells. Oncogene.2002.21(52):8001-10.
    [79]Kim HR, Lin HM, Biliran H, Raz A. Cell cycle arrest and inhibition of anoikis by
    galectin-3 in human breast epithelial cells. Cancer Res.1999.59(16):4148-54.
    [80]Seve AP, Felin M, Doyennette-Moyne MA, Sahraoui T, Aubery M, Hubert J. Evidence for a lactose-mediated association between two nuclear carbohydrate-binding proteins. Glycobiology.1993.3(1):23-30.
    [81]Mehul B, Hughes RC. Plasma membrane targetting, vesicular budding and release of galectin 3 from the cytoplasm of mammalian cells during secretion. J Cell Sci. 1997.110 (Pt 10):1169-78.
    [82]Garin J, Diez R, Kieffer S, et al. The phagosome proteome:insight into phagosome functions. J Cell Biol.2001.152(1):165-80.
    [83]Furtak V, Hatcher F, Ochieng J. Galectin-3 mediates the endocytosis of beta-1 integrins by breast carcinoma cells. Biochem Biophys Res Commun.2001. 289(4):845-50.
    [84]Zhu W, Sano H, Nagai R, Fukuhara K, Miyazaki A, Horiuchi S. The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun.2001.280(4):1183-8.
    [85]Liang Y, Li H, Hou SC, et al. [The expression of galectin-3 and osteopontin in occult metastasis of non-small cell lung cancer]. Zhonghua Wai Ke Za Zhi.2009. 47(14):1061-3.
    [86]Kuwabara I, Liu FT. Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol.1996.156(10):3939-44.
    [87]Hikita C, Vijayakumar S, Takito J, Erdjument-Bromage H, Tempst P, Al-Awqati Q. Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin 3. J Cell Biol.2000.151(6):1235-46.
    [88]Dong S, Hughes RC. Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen). Glycoconj J.1997.14(2):267-74.
    [89]Hughes RC. Galectins as modulators of cell adhesion. Biochimie.2001.83(7): 667-76.
    [90]Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG. Role of
    galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol.2002.168(4):1813-22.
    [91]Swarte VV, Mebius RE, Joziasse DH, Van den Eijnden DH, Kraal G. Lymphocyte triggering via L-selectin leads to enhanced galectin-3-mediated binding to dendritic cells. Eur J Immunol.1998.28(9):2864-71.
    [92]Matarrese P, Fusco O, Tinari N, et al. Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties. Int J Cancer.2000.85(4): 545-54.
    [93]Paret C, Bourouba M, Beer A, et al. Ly6 family member C4.4A binds laminins 1 and 5, associates with galectin-3 and supports cell migration. Int J Cancer.2005. 115(5):724-33.
    [94]Inohara H, Akahani S, Koths K, Raz A. Interactions between galectin-3 and Mac-2-binding protein mediate cell-cell adhesion. Cancer Res.1996.56(19): 4530-4.
    [95]Aten RF, Kolodecik TR, Rossi MJ, Debusscher C, Behrman HR. Prostaglandin f2alpha treatment in vivo, but not in vitro, stimulates protein kinase C-activated superoxide production by nonsteroidogenic cells of the rat corpus luteum. Biol Reprod.1998.59(5):1069-76.
    [96]Almkvist J, Faldt J, Dahlgren C, Leffler H, Karlsson A. Lipopolysaccharide-induced gelatinase granule mobilization primes neutrophils for activation by galectin-3 and formylmethionyl-Leu-Phe. Infect Immun.2001. 69(2):832-7.
    [97]Fernandez GC, Ilarregui JM, Rubel CJ, et al. Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival:involvement of alternative MAPK pathways. Glycobiology.2005.15(5):519-27.
    [98]Kimata H. Enhancement of IgE production in B cells by neutrophils via galectin-3 in IgE-associated atopic eczema/dermatitis syndrome. Int Arch Allergy Immunol.2002.128(2):168-70.
    [99]Cortegano I, Pozo V, Cardaba B, et al. Interaction between galectin-3 and FcgammaRII induces down-regulation of IL-5 gene:implication of the promoter sequence IL-5REIII. Glycobiology.2000.10(3):237-42.
    [100]Nangia-Makker P, Honjo Y, Sarvis R, et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol.2000.156(3):899-909.
    [101]Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3betal integrin. Mol Biol Cell.2004.15(8):3580-90.
    [102]Sharma UC, Pokharel S, van BTJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation.2004.110(19):3121-8.
    [103]Neidhart M, Zaucke F, von KR, et al. Galectin-3 is induced in rheumatoid arthritis synovial fibroblasts after adhesion to cartilage oligomeric matrix protein. Ann Rheum Dis.2005.64(3):419-24.
    [104]Sano H, Hsu DK, Yu L, et al. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol.2000.165(4):2156-64.
    [105]Pesheva P, Kuklinski S, Schmitz B, Probstmeier R. Galectin-3 promotes neural cell adhesion and neurite growth. J Neurosci Res.1998.54(5):639-54.
    [106]Inohara H, Akahani S, Raz A. Galectin-3 stimulates cell proliferation. Exp Cell Res.1998.245(2):294-302.
    [107]Krugluger W, Frigeri LG, Lucas T, et al. Galectin-3 inhibits granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven rat bone marrow cell proliferation and GM-CSF-induced gene transcription. Immunobiology.1997. 197(1):97-109.
    [108]Bao Q, Hughes RC. Galectin-3 and polarized growth within collagen gels of wild-type and ricin-resistant MDCK renal epithelial cells. Glycobiology.1999. 9(5):489-95.
    [109]Honjo Y, Nangia-Makker P, Inohara H, Raz A. Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells. Clin Cancer Res. 2001.7(3):661-8.
    [110]Yoshii T, Inohara H, Takenaka Y, et al. Galectin-3 maintains the transformed phenotype of thyroid papillary carcinoma cells. Int J Oncol.2001.18(4):787-92.
    [111]Ellerhorst JA, Stephens LC, Nguyen T, Xu XC. Effects of galectin-3 expression on growth and tumorigenicity of the prostate cancer cell line LNCaP. Prostate. 2002.50(1):64-70.
    [112]Wei L, Kanbe K, Lee M, et al. Stimulation of chondrocyte hypertrophy by chemokine stromal cell-derived factor 1 in the chondro-osseous junction during endochondral bone formation. Dev Biol.2010.
    [113]Hoyer KK, Pang M, Gui D, et al. An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am J Pathol.2004.164(3):893-902.
    [114]Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A. Galectin-3:a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res.1997.57(23):5272-6.
    [115]Hsu DK, Yang RY, Pan Z, et al. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol.2000.156(3): 1073-83.
    [116]Takenaka Y, Fukumori T, Yoshii T, et al. Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol.2004.24(10):4395-406.
    [117]Fukumori T, Takenaka Y, Yoshii T, et al. CD29 and CD7 mediate galectin-3-induced type Ⅱ T-cell apoptosis. Cancer Res.2003.63(23):8302-11.
    [118]Nakahara S, Oka N, Raz A. On the role of galectin-3 in cancer apoptosis. Apoptosis.2005.10(2):267-75.
    [119]Lin HM, Moon BK, Yu F, Kim HR. Galectin-3 mediates genistein-induced G(2)/M arrest and inhibits apoptosis. Carcinogenesis.2000.21(11):1941-5.
    [120]Sano H, Hsu DK, Apgar JR, et al. Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest.2003.112(3):389-97.
    [121]Mandrell RE, Apicella MA, Lindstedt R, Leffler H. Possible interaction between animal lectins and bacterial carbohydrates. Methods Enzymol.1994.236:231-54.
    [122]Mey A, Leffler H, Hmama Z, Normier G, Revillard JP. The animal lectin galectin-3 interacts with bacterial lipopolysaccharides via two independent sites. J Immunol.1996.156(4):1572-7.
    [123]den Berg TK v, Honing H, Franke N, et al. LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. J Immunol.2004. 173(3):1902-7.
    [124]Pelletier I, Sato S. Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. J Biol Chem.2002.277(20): 17663-70.
    [125]Sato S, Nieminen J. Seeing strangers or announcing "danger":galectin-3 in two models of innate immunity. Glycoconj J.2004.19(7-9):583-91.
    [126]Mayuzumi H, Ohki Y, Tokuyama K, et al. Age-related difference in the persistency of allergic airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Int Arch Allergy Immunol.2007.143(4):255-62.
    [127]del PV, Rojo M, Rubio ML, et al. Gene therapy with galectin-3 inhibits bronchial obstruction and inflammation in antigen-challenged rats through interleukin-5 gene downregulation. Am J Respir Crit Care Med.2002.166(5):732-7.
    [128]Jensen-Jarolim E, Neumann C, Oberhuber G, et al. Anti-Galectin-3 IgG autoantibodies in patients with Crohn's disease characterized by means of phage display peptide libraries. J Clin Immunol.2001.21(5):348-56.
    [129]Desmetz C, Bascoul-Mollevi C, Rochaix P, et al. Identification of a new panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women. Clin Cancer Res.2009.15(14):4733-41.
    [130]Matsushita R, Hashimoto A, Tomita T, et al. Enhanced expression of mRNA for FK506-binding protein 5 in bone marrow CD34 positive cells in patients with rheumatoid arthritis. Clin Exp Rheumatol.2010.28(1):87-90.
    [131]Choi JH, Chun KH, Raz A, Lotan R. Inhibition of N-(4-hydroxyphenyl) retinamide-induced apoptosis in breast cancer cells by galectin-3. Cancer Biol Ther.2004.3(5):447-52.
    [132]Colnot C, Sidhu SS, Balmain N, Poirier F. Uncoupling of chondrocyte death and vascular invasion in mouse galectin 3 null mutant bones. Dev Biol.2001.229(1): 203-14.
    [133]Bichara M, Attmane-Elakeb A, Brown D, et al. Exploring the role of galectin 3 in kidney function:a genetic approach. Glycobiology.2006.16(1):36-45.
    [134]Sorme P, Qian Y, Nyholm PG, Leffler H, Nilsson UJ. Low micromolar inhibitors of galectin-3 based on 3'-derivatization of N-acetyllactosamine. Chembiochem. 2002.3(2-3):183-9.
    [135]Sorme P, Arnoux P, Kahl-Knutsson B, Leffler H, Rini JM, Nilsson UJ. Structural and thermodynamic studies on cation-Pi interactions in lectin-ligand complexes: high-affinity galectin-3 inhibitors through fine-tuning of an arginine-arene interaction. J Am Chem Soc.2005.127(6):1737-43.
    [136]Zou J, Glinsky VV, Landon LA, Matthews L, Deutscher SL. Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion. Carcinogenesis.2005.26(2):309-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700