用户名: 密码: 验证码:
基于卫星及数值模式资料的云水凝物的气候特征分析和检验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云是一种重要的天气现象,也是一种重要的气候因子。由于人们对云的形成和变化认识不足,云及其反馈的不确定性已经成为模式预测未来气候变化的不确定性的最大来源。水凝物含量是描述云物理性质的重要物理量,其分布和变化与云的外观、相态密切相关,也是云光学特性的整体表现。了解水凝物含量的分布和变化规律,对理解和认识云的辐射性质及强迫效应、改善模式的预报性能都有重要意义。
     本文基于多种卫星资料、再分析资料,对全球尺度以及东亚地区的云水路径(cloud water path, CWP)、液态水路径(liquid water path, LWP)以及冰水路径(ice water path, IWP)的气候分布特征以及变化规律进行了分析。并以西太平洋台风“暹芭(Chaba)”为例,使用Advanced Regional Eta-coordinate Model (AREM)和Weather Research and Forecasting (WRF)两个中尺度模式对台风活动过程中的水凝物的分布进行模拟,然后借助卫星探测和反演结果,对AREM和WRF两个模式云水云冰的模拟能力进行了评估。取得的结果如下:
     (1)全球水凝物的气候分布特征
     利用International Satellite Cloud Climatology Project(ISCCP)、Special Sensor Microwave/Imager (SSM/I)、Microwave Limb Sounder (MLS)多年的云产品数据以及European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis(ERA-Interim)和National Centers for Environmental Prediction(NCEP) Climate Forecast System Reanalysis (CFSR)再分析资料,讨论了CWP、LWP和IWP的全球尺度的分布特征以及长期变化趋势。
     通过对ISCCP、ERA-Interim和CFSR的CWP资料的分析,结果表明,全球CWP的分布及变化与大尺度的环流形势及水汽的分布密切相关,具有很强的地域性特征。如陆面的CWP高值中心主要位于非洲中部、东南亚地区以及南美洲的热带雨林区;而洋面CWP则集中在赤道辐合带、南太平洋辐合带以及南北半球中纬度地区。1995-2009期间内,ISCCP、ERA-Interim和CFSR三种资料的CWP均表现为升高的趋势,线性拟合结果为ISCCP每年1.05g m-2,ERA-Interim为每年0.13g m-2,CFSR为每年0.18g m-2。
     研究结果显示,ERA-Interim、CFSR再分析资料与SSM/I反演结果的洋面LWP的数值和分布有较好的一致性,而ISCCP的LWP普遍偏小。对IWP而言,ISCCP和ERA-Interim、CFSR资料具有类似的分布形势;与ISCCP相比,ERA-Interim偏小,而CFSR偏高。长期变化趋势表明,1995-2009期间,ISCCP、ERA-Interim和CFSR的洋面LWP都一致表现出增加的趋势,而SSM/I的变化趋势不明显。ISCCP的陆面和洋面IWP表现出增加的趋势。
     基于MLS数据的对流层上层云冰含量的分析结果表明,云冰主要分布在非洲中部、东南亚、南美洲亚马孙流域,以及热带辐合带、南太平洋辐合带,其分布与250hPa高度上升运动的发生频次有很好的对应,并存在明显的季节变化。与MLS反演结果相比,ERA-Interim低估了对流层上层的云冰含量,CFSR则略有高估。
     (2)东亚地区水凝物的气候特征
     使用ISCCP云产品分析了东亚地区水凝物分布的区域性特征。结果表明,CWP主要集中在帕米尔高原迎风坡、中国西南、中国东部以及日本上空,CWP最大值可以超过140g m-2。LWP高值中心集中在四川盆地和中国东海地区,这种分布形势与这些地区层状云的富集有关。IWP的分布与地形抬升、对流活动有较好的对应,其中帕米尔高原和青藏高原以及中国东海地区IWP都较高。
     中国东部地区CWP和LWP都比高原地区偏高,但两个区域的IWP没有太大差异。这两个区域的水凝物季节变化规律有所不同,这种差异是由两地主导云型的不同所引起。长期变化趋势结果表明,高原地区和CWP和IWP都表现为逐渐增加的趋势,而LWP却在减少;中国东部地区CWP、LWP和IWP都呈增加趋势。再分析资料(ERA-Interim和CFSR)给出的冬季水凝物(CWP、LWP和IWP)的分布与ISCCP资料类似,但在夏季则表现出较大差异,此外,再分析资料的水凝物季节变化和长期变化趋势也和ISCCP存在一定的差异。
     (3)基于微波产品的中尺度模式水凝物检验
     利用TMI的探测及反演结果,结合微波辐射传输模式,就2004年17号台风暹芭(Chaba)个例,对AREM模式和WRF两个中尺度模式的水凝物模拟能力进行了检验。数值试验结果表明,两个模式模拟的台风路径与实际台风路径基本一致,模拟的降水与TMI反演降水也基本相同。在此基础上,利用TMI水凝物反演产品直接检验了AREM、WRF模拟的水凝物结构。论文还探讨了利用TMI探测的微波亮温间接检验了AREM和WRF对水凝物的模拟能力,即以AREM和WRF模式模拟的大气结构和水凝物结构作为微波辐射传输模式的输入参数,计算了相应大气层顶的微波亮温,通过对比该模拟亮温和TMI实测亮温的异同,实现了对AREM和WRF模式水凝物结构的检验。研究结果表明,两个中尺度模式对水凝物的模拟都有所不足。其中两模拟的液相粒子含量偏多;AREM模拟的冰粒子含量偏小,WRF对冰粒子的模拟能力稍优于AREM。
Cloud is an important phenomenon, and an important factor that influence climate as well. Because of the inadequacy in understanding the formations and changes of clouds, clouds and cloud feedbacks have become the major uncertainties in estimating climate change with models. Hydrometeor contents are physical quantities that describe the mass of water in clouds. Distributions and changes of hydrometeors are directly related with appearance and phase of cloud. Hydrometeors also show the composite manifestation of cloud structures and microphysical characteristics. So obtaining a comprehensive knowledge about hydrometeor contents is crucial in understanding the radiative properties of cloud, and in improving the performance of models.
     Using multiple satellite observations, reanalysis, climatological characteristics about the cloud water path (CWP), liquid water path (LWP) and ice water path (IWP) on both global scale and East Asia are analyzed. What is more, two meso-scale numeric models, i.e. Advanced Regional Eta-coordinate Model (AREM) and Weather Research and Forecasting (WRF) are used to simulate typhoon "Chaba". And then, the simulated hydrometeors are evaluated by using measured and retrieved products of TMI. The preliminary results are listed as follows.
     (1) Global climatological characteristics of hydrometeors
     Based on cloud datasets from International Satellite Cloud Climatology Project (ISCCP), Special Sensor Microwave/Imager (SSM/I), Microwave Limb Sounder (MLS) as well as European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim) and National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), climatological characteristics and trend of hydrometeors over the globe are discussed.
     The result from ISCCP, ERA-Interim and CFSR shows that, distributions of CWP are greatly related with the large-scale circulation patterns and distributions of water vapor. Furthermore, cloud water shows great geographical incoherence. CWP on the lands are mainly located over rain forest in Central Africa, Southeast Asia, and South America; on the oceans, CWP are concentrated in ITCZ, SPCZ and the mid-latitudes in the northern and southern hemispheres. In the time period between1995and2009, CWP data of ISCCP, ERA-Interim and CFSR all show an increasing trend. Linear trends for each of the datasets are1.05g m-2yr-1(ISCCP),0.13(ERA-Interim) and0.18g m-2yr-1(CFSR).
     Results indicate that, LWP of ERA-Interim, CFSR as well as SSM/I show good agreement in magnitudes and distributions over the oceans, while LWP of ISCCP is drier than others. In the terms of IWP, ISCCP, ERA-Interim and CFSR show similar distribution pattern. Compared with IWP of ISCCP, ERA-Interim underestimates the magnitude, while CFSR produces more IWP. LWP of ISCCP, ERA-Interim and CFSR show consistent increasing trend over the oceans, while the trend of SSM/I is not significant. IWP of ISCCP shows an increasing trend over both lands and oceans.
     By analyzing MLS data, the results reveal that the upper tropospheric cloud ice is mainly distributed in the Central Africa, Southeast Asia, the Amazon Basin of South America, as well as the ITCZ and SPCZ. The distribution of IWC shows a good correspondence with the occurrences frequency of updraft at250hPa, and shows a remarkable seasonal variety. Compared with the retrieved data of MLS, ERA-Interim underestimated the cloud ice content, while CFSR overestimate the magnitude slightly.
     (2) Climatic characteristics of hydrometeors in East Asia
     Focusing on the hydrometeors in East Asia, cloud products of ISCCP are analyzed. Cloud water is mainly concentrated in the windward side of the Pamir Plateau, Southwest China, East China, and Japan, with the maximum above140g m-2. Liquid water path centers are located in the Sichuan Basin and the East China Sea, this distribution is related to the enrichment of stratiform cloud in these areas. Distributions of ice water path show good agreement with orographic uplifting and convective activities. Ice water path over the Pamir Plateau, the Tibetan Plateau and East China Sea is higher than other regions.
     CWP and LWP in East China show higher magnitudes than those over Tibetan Plateau. But ice water path between the two regions shows no significant difference. Seasonal varieties of hydrometeors of the Tibetan Plateau and East China are different, which is caused by the different types of dominant cloud. The long-term trend over the Tibetan Plateau shows a growing trend in CWP and IWP, while LWP is decreasing. In East China, CWP, LWP and IWP exhibits an increasing trend.
     Reanalysis (ERA-Interim and CFSR) show consistent distributions and magnitudes with ISCCP in winter. Conversely, great departures can be found among the three datasets in summer. Moreover, seasonal verities and long-term trend of hydrometeors of reanalysis datasets also show some differences.
     (3) Evaluations of hydrometeors of meso-scale numerical models based on microwave products
     Using the measured and retrieved products of TMI and combined with microwave radiative transfer model, simulation capability of hydrometeor variables of typhoon Chaba (0417) in AREM and WRF are verified. Results indicate that, the simulated track and rain of typhoon are consistent with the best track and retrieved rain from TMI respectively. Furthermore, hydrometeor structures and distributions are verified with retrieved data from TMI directly. Then indirect-approach evaluation of hydrometeors is applied with the measured brightness temperatures (TBs). That is, the simulated hydrometeor variables as well as the simulated atmospheric structures (temperature, humidity, sea surface status) are used as input data of microwave radiative transfer model to calculate equivalent microwave TBs. By comparing simulated and measured TBs, hydrometeors structures of AREM and WRF are verified indirectly. The results show that, there are some deficiencies in representing hydrometeors in both AREM and WRF. The two meso-scale models overestimated liquid hydrometeors, and AREM underestimated ice hydrometeors, WRF shows a relatively good skill in representing ice hydrometeors than AREM.
引文
Ackerman T P, Stokes G M.2003. The Atmospheric Radiation Measurement Program[J]. Physics Today,56(1):38-44.
    Adler R F, Negri A J, Keehn P R, et al.1993. Estimation of Monthly Rainfall over Japan and Surrounding Waters from a Combination of Low-Orbit Microwave and Geosynchronous IR Data[J]. Journal of Applied Meteorology,32(2):335-356.
    Alishouse J C, Snider J B, Westwater E R, et al.1990. Determination of cloud liquid water content using the SSM/I[J]. Geoscience and Remote Sensing, IEEE Transactions on,28(5):817-822.
    Andersson E, Bauer P, Beljaars A, et al.2005. Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system[J]. Bulletin of the American Meteorological Society,86:387.
    Annamalai H, Hamilton K, Sperber K R.2007. The South Asian Summer Monsoon and Its Relationship with ENSO in the IPCC AR4 Simulations[J]. Journal of Climate,20(6):1071-1092.
    Arakawa A, Schubert W H.1974. Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part Ⅰ[J]. Journal of the Atmospheric Sciences,31(3):674-701.
    Arakawa A.2004. The Cumulus Parameterization Problem:Past, Present, and Future[J]. Journal of Climate,17(13):2493-2525.
    Ardanuy P E, Stowe L L, Gruber A, et al.1991. Shortwave, longwave, and net cloud-radiative forcing as determined from Nimbus 7 observations[J]. Journal of Geophysical Research, 96(D10):18537-18549.
    Arkin P A.1979. The Relationship between Fractional Coverage of High Cloud and Rainfall Accumulations during GATE over the B-Scale Array[J]. Monthly Weather Review, 107(10):1382-1387.
    Arkin P A, Meisner B N.1987. The Relationship between Large-Scale Convective Rainfall and Cold Cloud over the Western Hemisphere during 1982-84[J]. Monthly Weather Review,115(1):51-74.
    Arkin P A, Joyce R, Janowiak J E.1994. The estimation of global monthly mean rainfall using infrared satellite data:The GOES precipitation index (GPI)[J]. Remote Sensing Reviews,11(1-4):107-124.
    Arking A, Childs J D.1985. Retrieval of Cloud Cover Parameters from Multispectral Satellite Images[J]. Journal of Climate and Applied Meteorology,24(4):322-333.
    Bauer P.2001. Over-Ocean Rainfall Retrieval from Multisensor Data of the Tropical Rainfall Measuring Mission. Part Ⅰ:Design and Evaluation of Inversion Databases[J]. Journal of Atmospheric and Oceanic Technology,18(8):1315-1330.
    Betts A K.1986. A new convective adjustment scheme. Part Ⅰ:Observational and theoretical basis[J]. Quarterly Journal of the Royal Meteorological Society,112(473):677-691.
    Bodas-Salcedo A, Webb M J, Bony S, et al.2011. COSP:Satellite simulation software for model assessment[J]. Bulletin of the American Meteorological Society,92(8):1023-1043.
    Bony S, Colman R, Kattsov V M, et al.2006. How Well Do We Understand and Evaluate Climate Change Feedback Processes?[J]. Journal of Climate,19(15):3445-3482.
    Bromwich D H, Wang S.2005. Evaluation of the NCEP-NCAR and ECMWF 15-and 40-Yr Reanalyses Using Rawinsonde Data from Two Independent Arctic Field Experiments[J]. Monthly Weather Review,133(12):3562-3578.
    Cess R D.1976. Climate Change:An Appraisal of Atmospheric Feedback Mechanisms Employing Zonal Climatology[J]. Journal of the Atmospheric Sciences,33(10):1831-1843.
    Cess R D, Potter G L, Blanchet J P, et al.1989. Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models[J]. Science,245(4917):513-516.
    Cess R D, Potter G L, Blanchet J P, et al.1990. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models [J]. Journal of Geophysical Research, 95(D10):16601-16615.
    Cess R D, Zhang M H, Ingram W J, et al.1996. Cloud feedback in atmospheric general circulation models:An update[J]. Journal of Geophysical Research,101(D8):12791-12794.
    Chang C B, Pepkey D J, Kreitzberg C W.1984. Latent Heat Induced Energy Transformations during Cyclogenesis[J]. Monthly Weather Review,112(2):357-367.
    Chen S, Sun W.2002. A One-dimensional Time Dependent Cloud Model[J]. Journal of the Meteorological Society of Japan,80(1):99-118.
    Chen T, Rossow W B, Zhang Y.2000. Radiative Effects of Cloud-Type Variations[J]. Journal of Climate,13(1):264-286.
    Chen Y, Peng K, Huang J, et al.2010. Seasonal and regional variability of cloud liquid water path in northwestern China derived from MODIS/CERES observations[J]. International Journal of Remote Sensing,31(4):1037-1042.
    Chevallier F, Bauer P, Kelly G, et al.2001. Model Clouds over Oceans as Seen from Space: Comparison with HIRS/2 and MSU Radiances[J]. Journal of Climate,14(21):4216-4229.
    Chevallier F, Bauer P.2003. Model rain and clouds over oceans:Comparison with SSM/I observations[J]. Monthly Weather Review,131:1240-1255.
    Chevallier F, Kelly G, Simmons A J, et al.2005. High Clouds over Oceans in the ECMWF 15-and 45-Yr Reanalyses[J]. Journal of Climate,18(14):2647-2661.
    Cooper S J, L'Ecuyer T S, Stephens G L.2003. The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances[J]. Journal of Geophysical Research,108(D3):4107.
    Curry J A, Hobbs P V, King M D, et al.2000. FIRE Arctic Clouds Experiment[J]. Bulletin of the American Meteorological Society,81(1):5-29.
    de la Torre Juarez M, Davis A B, Fetzer E J.2011. Scale-by-scale analysis of probability distributions for global MODIS-Aqua cloud properties:how the large scale signature of turbulence may impact statistical analyses of clouds[J]. Atmospheric Chemistry and Physics, 11(6):2893-2901.
    Dee D P, Uppala S M, Simmons A J, et al.2011. The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society,137(656):553-597.
    Duan A, Wu G.2006. Change of cloud amount and the climate warming on the Tibetan Plateau[J]. Geophysical Research Letters,33(22):L22704.
    Dudhia J.1989. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model[J]. Journal of the Atmospheric Sciences, 46(20):3077-3107.
    Ebert E E, Manton M J, Arkin P A, et al.1996. Results from the GPCP Algorithm Intercomparison Programme[J]. Bulletin of the American Meteorological Society,77(12):2875-2887. ECMWF. Part IV:physical processes[Z].2007.
    Eliasson S, Buehler S A, Milz M, et al.2011. Assessing observed and modelled spatial distributions of ice water path using satellite data[J]. Atmospheric Chemistry and Physics,11(1):375-391.
    Engelen R J, Fowler L D, Gleckler P J, et al.2000. Sampling strategies for the comparison of climate model calculated and satellite observed brightness temperatures[J]. Journal of Geophysical Research, 105(D7):9393-9406.
    Feingold G, Stevens B, Cotton W R, et al.1994. An explicit cloud microphysics/LES model designed to simulate the Twomey effect[J]. Atmospheric Research,33(1-4):207-233.
    Feng S, Fu Y.2009. Seasonal Characteristics of Precipitation Occurrences in the Core Area of the Subtropical High[J]. Acta Meteorologica Sinica,23(06):681-690.
    Gates W L.1992. AMIP:The Atmospheric Model Intercomparison Project[J]. Bulletin of the American Meteorological Society,73(12):1962-1970.
    Gates W L, Boyle J S, Covey C, et al.1999. An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I)[J]. Bulletin of the American Meteorological Society,80(1):29-55.
    Greenwald T J, Stephens G L, Christopher S A, et al.1995. Observations of the Global Characteristics and Regional Radiative Effects of Marine Cloud Liquid Water[J]. Journal of Climate, 8(12):2928-2946.
    Greenwald T J, Combs C L, Jones A S, et al.1997. Further developments in estimating cloud liquid water over land using microwave and infrared satellite measurements[J]. Journal of Applied Meteorology,36(4):389-405.
    Greenwald T J, Lee Y, Otkin J A, et al.2010. Evaluation of midlatitude clouds in a large-scale high-resolution simulation using CloudSat observations[J]. Journal of Geophysical Research, 115(D19):D19203.
    Grody N C.1976. Remote sensing of atmospheric water content from satellites using microwave radiometry[J]. Antennas and Propagation, IEEE Transactions on,24(2):155-162.
    Guan B, Waliser D E, Li J F, et al.2013. Evaluating the impact of orbital sampling on satellite-climate model comparisons[J]. Journal of Geophysical Research,118:2012J-18590J.
    Hahn C J, Warren S G, London J.1995. The Effect of Moonlight on Observation of Cloud Cover at Night, and Application to Cloud Climatology[J]. Journal of Climate,8(5):1429-1446.
    Hahn C J, Rossow W B, Warren S G.2001. ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface Observations[J]. Journal of Climate,14(1):11-28.
    Han Q, Rossow W B, Lacis A A.1994. Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data[J]. Journal of Climate,7(4):465-497.
    Han Q, Welch R, Chou J, et al.1995. Validation of Satellite Retrievals of Cloud Microphysics and Liquid Water Path Using Observations from FIRE[J]. Journal of the Atmospheric Sciences, 52(23):4183-4195.
    Harringon J Y, Meyers M P, Walko R L, et al.1995. Parameterization of Ice Crystal Conversion Processes Due to Vapor Deposition for Mesoscale Models Using Double-Moment Basis Functions. Part Ⅰ:Basic Formulation and Parcel Model Results[J]. Journal of the Atmospheric Sciences, 52(23):4344-4366.
    Hartmann D L, Hendon H H, Houze R A.1984. Some Implications of the Mesoscale Circulations in Tropical Cloud Clusters for Large-Scale Dynamics and Climate[J]. Journal of the Atmospheric Sciences,41(1):113-121.
    Hartmann D L, Ockert-Bell M E, Michelsen M L.1992. The Effect of Cloud Type on Earth's Energy Balance:Global Analysis[J]. Journal of Climate,5(11):1281-1304.
    Hartmann D L, Holton J R, Fu Q.2001. The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration[J]. Geophysical Research Letters,28(10):1969-1972.
    Heidinger A K, Stephens G L.2000. Molecular Line Absorption in a Scattering Atmosphere. Part Ⅱ: Application to Remote Sensing in the O2 A band[J]. Journal of the Atmospheric Sciences, 57(10):1615-1634.
    Ho S, Lin B, Minnis P, et al.2003. Estimates of cloud vertical structure and water amount over tropical oceans using VIRS and TMI data[J]. Journal of Geophysical Research,108(D14):4419.
    Hobbs P V, Radke L F.1975. The Nature of Winter Clouds and Precipitation in the Cascade Mountains and their Modification by Artificial Seeding. Part Ⅱ:Techniques for the Physical Evaluation of Seeding[J]. Journal of Applied Meteorology,14(5):805-818.
    Hollinger J P, Peirce J L, Poe G A.1990. SSM/I instrument evaluation[J]. Geoscience and Remote Sensing, IEEE Transactions on,28(5):781-790.
    Horvath A, Davies R.2007. Comparison of microwave and optical cloud water path estimates from TMI, MODIS, and MISR[J]. J. Geophys. Res.,112(D1):D1202.
    Houze R A, Hobbs P V, Herzegh P H, et al.1979. Size Distributions of Precipitation Particles in Frontal Clouds[J]. Journal of the Atmospheric Sciences,36(1):156-162.
    Huffman G J, Adler R F, Arkin P, et al.1997. The global precipitation climatology project (GPCP) combined precipitation dataset[J]. Bulletin of the American Meteorological Society,78(1):5-20.
    Hunt G E.1973. Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths[J]. Quarterly Journal of the Royal Meteorological Society,99(420):346-369.
    IPCC.2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. SOLOMON S, QIN D, MANNING M, et al. United Kingdom:Cambridge University Press
    Jiang J H, Su H, Pawson S, et al.2010. Five year (2004-2009) observations of upper tropospheric water vapor and cloud ice from MLS and comparisons with GEOS-5 analyses[J]. Journal of Geophysical Research,115(D15):D15103.
    John V O, Soden B J.2006. Does convectively-detrained cloud ice enhance water vapor feedback?[J]. Geophysical Research Letters,33(20):L20701.
    Jovanovic B, Collins D, Braganza K, et al.2011. A high-quality monthly total cloud amount dataset for Australia[J]. Climatic Change,108(3):485-517.
    Kain J S.2004. The Kain-Fritsch Convective Parameterization:An Update[J]. Journal of Applied Meteorology,43(1):170-181.
    Kalnay E, Kanamitsu M, Kistler R, et al.1996. The NCEP/NCAR 40-Year Reanalysis Project[J]. Bulletin of the American Meteorological Society,77(3):437-471.
    Kanamitsu M, Ebisuzaki W, Woollen J, et al.2002. NCEP-DOE AMIP-Ⅱ Reanalysis (R-2)[J]. Bulletin of the American Meteorological Society,83(11):1631-1643.
    Khairoutdinov M F, Randall D A.2001. A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model:Preliminary results[J]. Geophysical Research Letters, 28(18):3617-3620.
    King P W S, Hogg W D, Arkin P A.1995. The Role of Visible Data in Improving Satellite Rain-Rate Estimates[J]. Journal of Applied Meteorology,34(7):1608-1621.
    Klein S A, Hartmann D L.1993. The Seasonal Cycle of Low Stratiform Clouds[J]. Journal of Climate, 6(8):1587-1606.
    Klein S A, Jakob C.1999. Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF Model[J]. Monthly Weather Review,127(10):2514-2531.
    Klemp J B, Wilhelmson R B.1978. The Simulation of Three-Dimensional Convective Storm Dynamics[J]. Journal of the Atmospheric Sciences,35(6):1070-1096.
    Koren I, Oreopoulos L, Feingold G, et al.2008. How small is a small cloud?[J]. Atmospheric Chemistry and Physics,8(14):3855-3864.
    Kotarba A Z.2009. A comparison of MODIS-derived cloud amount with visual surface observations[J]. Atmospheric Research,92(4):522-530.
    Krijger J M, van Weele M, Aben I, et al.2007. Technical Note:The effect of sensor resolution on the number of cloud-free observations from space[J]. Atmospheric Chemistry and Physics, 7(11):2881-2891.
    Kummerow C, Olson W S, Giglio L.1996. A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors[J]. Geoscience and Remote Sensing, IEEE Transactions on,34(5):1213-1232.
    Kummerow C, Barnes W, Kozu T, et al.1998. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package[J]. Journal of Atmospheric and Oceanic Technology,15(3):809-817.
    Kummerow C, Simpson J, Thiele O, et al.2000. The Status of the Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit[J]. Journal of Applied Meteorology,39(12):1965-1982.
    Kummerow C, Hong Y, Olson W S, et al.2001. The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors[J]. Journal of Applied Meteorology,40(11):1801-1820.
    Kuo H L.1965. On Formation and Intensification of Tropical Cyclones Through Latent Heat Release by Cumulus Convection[J]. Journal of the Atmospheric Sciences,22(1):40-63.
    Kuo H L.1974. Further Studies of the Parameterization of the Influence of Cumulus Convection on Large-Scale Flow[J], Journal of the Atmospheric Sciences,31(5):1232-1240.
    Lemus L, Rikus L, Martin C, et al.1997. Global Cloud Liquid Water Path Simulations[J]. Journal of Climate,10(1):52-64.
    Li J F, Waliser D, Woods C, et al.2008. Comparisons of satellites liquid water estimates to ECMWF and GMAO analyses,20th century IPCC AR4 climate simulations, and GCM simulations[J]. Geophysical Research Letters,35(19):L19710.
    Li J L F, Waliser D E, Chen W T, et al.2012. An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data[J]. Journal of Geophysical Research,117(D16):D16105.
    Li Y, Liu X, Chen B.2006. Cloud type climatology over the Tibetan Plateau:A comparison of ISCCP and MODIS/TERRA measurements with surface observations[J]. Geophysical Research Letters, 33(17).
    Li Y, Gu H.2006. Relationship between middle stratiform clouds and large scale circulation over eastern China[J]. Geophysical Research Letters,33(9):L9706.
    Lin B, Rossow W B.1994. Observations of cloud liquid water path over oceans:Optical and microwave remote sensing methods[J]. Journal of Geophysical Research,99(D10):20907-20927.
    Lin B, Rossow W B.1996. Seasonal Variation of Liquid and Ice Water Path in Nonprecipitating Clouds over Oceans[J]. Journal of Climate,9(11):2890-2902.
    Lin B, Minnis P, Wielicki B, et al.1998. Estimation of water cloud properties from satellite microwave, infrared and visible measurements in oceanic environments 2. Results[J]. Journal of Geophysical Research,103(D4):3887-3905.
    Lin B, Wielicki B, Minnis P, et al.1998. Estimation of water cloud properties from satellite microwave, infrared and visible measurements in oceanic environments 1. Microwave brightness temperature simulations[J]. Journal of Geophysical Research,103(D4):3873-3886.
    Lin J, Mapes B E, Weickmann K M, et al.2008. North American Monsoon and Convectively Coupled Equatorial Waves Simulated by IPCC AR4 Coupled GCMs[J]. Journal of Climate, 21(12):2919-2937.
    Lin J, Shinoda T, Liebmann B, et al.2009. Intraseasonal Variability Associated with Summer Precipitation over South America Simulated by 14 IPCC AR4 Coupled GCMs[J]. Monthly Weather Review,137(9):2931-2954.
    Lin J, Shinoda T, Qian T, et al.2010. Intraseasonal Variation of Winter Precipitation over the Western United States Simulated by 14 IPCC AR4 Coupled GCMs[J]. Journal of Climate,23(11):3094-3119.
    Lin Y, Farley R D, Orville H D.1983. Bulk Parameterization of the Snow Field in a Cloud Model[J]. Journal of Climate and Applied Meteorology,22(6):1065-1092.
    Liu G.1998. A fast and accurate model for microwave radiance calculations[J]. Journal of the Meteorological Society of Japan,76(2):335-343.
    Liu G, Curry J A.1998. An Investigation of the Relationship between Emission and Scattering Signals in SSM/I Data[J]. Journal of the Atmospheric Sciences,55(9):1628-1643.
    Liu G.2004. Approximation of single scattering properties of ice and snow particles for high microwave frequencies[J]. Journal of the Atmospheric Sciences,61:2441-2456.
    Lopez P.2007. Cloud and Precipitation Parameterizations in Modeling and Variational Data Assimilation:A Review[J]. Journal of the Atmospheric Sciences,64(11):3766-3784.
    Ma H Y, Kohler M, Li J L F, et al.2012. Evaluation of an ice cloud parameterization based on a dynamical-microphysical lifetime concept using CloudSat observations and the ERA-Interim reanalysis[J]. Journal of Geophysical Research,117(D5):D5210.
    Manabe S, Smagorinsky J.1965. Simulated climatology of a general circulation model with a hydrological cycle[J]. Monthly Weather Review:769-798.
    Marshall J S, Palmer W M K.1948. The distribution of raindrops with size[J]. Journal of Meteorology, 5(4):165-166.
    Masunaga H, Matsui T, Tao W, et al.2010. Satellite Data Simulator Unit:A Multisensor, Multispectral Satellite Simulator Package[J]. Bulletin of the American Meteorological Society,91(12):1625-1632.
    McDonald J E.1958. The Physics of Cloud Modification[J]. Advances in Geophysics,5:223-303.
    Meehl G A, Boer G J, Covey C, et al.2000. The Coupled Model Intercomparison Project (CMIP)[J]. Bulletin of the American Meteorological Society,81(2):313-318.
    Meehl G A, Covey C, McAvaney B, et al.2005. Overview of the Coupled Model Intercomparison Project[J]. Bulletin of the American Meteorological Society,86(1):89-93.
    Meirold-Mautner Ⅰ, Prigent C, Defer E, et al.2007. Radiative transfer simulations using mesoscale cloud model outputs:Comparisons with passive microwave and infrared satellite observations for midlatitudes[J]. Journal of the Atmospheric Sciences,64:1550-1568.
    Meissner T, Wentz F J.2004. The complex dielectric constant of pure and sea water from microwave satellite observations[J]. Geoscience and Remote Sensing, IEEE Transactions on,42(9):14.
    Mlawer E J, Taubman S J, Brown P D, et al.1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research, 102(D14):16663-16682.
    Moorthi S, Pan H, Caplan P. Changes to the 2001 NCEP Operational MRF/AVN Global Analysis/Forecast System[Z].2001.
    Nakajima T, King M D.1990. Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I:Theory[J]. Journal of the Atmospheric Sciences,47(15):1878-1893.
    Nakajima T Y, Nakajma T.1995. Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions[J]. Journal of the Atmospheric Sciences,52(23):4043-4059.
    Ogura Y, Takahashi T.1971. Numerical Simulation of The Life Cycle of A Thunderstorm Cell[J]. Monthly Weather Review,99(12):895-911.
    Okamoto K, Derber J C.2006. Assimilation of SSM/I radiances in the NCEP global data assimilation system[J]. Monthly Weather Review,134:2612-2631.
    Olson W S, Kummerow C D, Hong Y, et al.1999. Atmospheric Latent Heating Distributions in the Tropics Derived from Satellite Passive Microwave Radiometer Measurements[J]. Journal of Applied Meteorology,38(6):633-664.
    Olson W S, Kummerow C D, Yang S, et al.2006. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part I:Improved Method and Uncertainties[J]. Journal of Applied Meteorology and Climatology,45(5):702-720.
    Pan L, Lu D.2013. A new method for retrieving equivalent cloud base height and equivalent emissivity by using the ground-based Atmospheric Emitted Radiance Interferometer (AERI)[J]. Science China(Earth Sciences),56(01):43-53.
    Petty G W, Katsaros K B.1994. The Response of the SSM/I to the Marine Environment. Part II:A Parameterization of the Effect of the Sea Surface Slope Distribution on Emission and Reflection[J]. Journal of Atmospheric and Oceanic Technology,11(3):617-628.
    Platnick S, Twomey S.1994. Determining the Susceptibility of Cloud Albedo to Changes in Droplet
    Concentration with the Advanced Very High Resolution Radiometer[J]. Journal of Applied Meteorology,33(3):334-347.
    Platnick S, Pincus R, Wind B, et al.2004. An initial analysis of the pixel-level uncertainties in global MODIS cloud optical thickness and effective particle size retrievals[J]. Proc. SPIE,5652:30-40.
    Poetzsch-Heffter C, Liu Q, Ruperecht E, et al.1995. Effect of Cloud Types on the Earth Radiation Budget Calculated with the ISCCP Cl Dataset:Methodology and Initial Results[J]. Journal of Climate,8(4):829-843.
    Rajeevan M, Srinivasan J.2000. Net Cloud Radiative Forcing at the Top of the Atmosphere in the Asian Monsoon Region[J]. Journal of Climate,13(3):650-657.
    Ramanathan V.1987. The role of earth radiation budget studies in climate and general circulation research[J]. Journal of Geophysical Research,92(D4):4075-4095.
    Ramanathan V, Cess R D, Harrison E F, et al.1989. Cloud-Radiative Forcing and Climate:Results from the Earth Radiation Budget Experiment[J]. Science,243(4887): WOS:A1989R64690002857-63.
    Randall D, Khairoutdinov M, Arakawa A, et al.2003. Breaking the Cloud Parameterization Deadlock[J]. Bulletin of the American Meteorological Society,84(11):1547-1564.
    Randall D, Krueger S, Bretherton C, et al.2003. Confronting Models with Data:The GEWEX Cloud Systems Study[J]. Bulletin of the American Meteorological Society,84(4):455-469.
    Randall D A, Wood R A, Bony S, et al. Cilmate Models and Their Evaluation[M]//SOLOMON S, QIN D, MANNING M, et al. Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2007.
    Rao M S.1984. Retrieval of worldwide precipitation and allied parameters from satellite microwave observations[J]. Advances in Geophysics,26:237-336.
    Roebeling R A, Feijt A J, Stammes P.2006. Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRJ) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17[J]. Journal of Geophysical Research,111(D20):D20210.
    Rosenfeld D, Gutman G.1994. Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data[J]. Atmospheric Research,34(1-4):259-283.
    Rosenfeld D.1999. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall[J]. Geophysical Research Letters,26(20):3105-3108.
    Rossow W B, Lacis A A.1990. Global, Seasonal Cloud Variations from Satellite Radiance Measurements. Part Ⅱ. Cloud Properties and Radiative Effects[J]. Journal of Climate, 3(11):1204-1253.
    Rossow W B, Schiffer R A.1999. Advances in Understanding Clouds from ISCCP[J]. Bulletin of the American Meteorological Society,80(11):2261-2287.
    Rutledge S A, Hobbs P V.1984. The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII:A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands[J]. Journal of the Atmospheric Sciences, 41(20):2949-2972.
    Saha S, Moorthi S, Pan H, et al.2010. The NCEP Climate Forecast System Reanalysis[J]. Bulletin of the American Meteorological Society,91(8):1015-1057.
    Salby M L, Callaghan P.1997. Sampling error in climate properties derived from satellite measurements:Consequences of undersampled diurnal variability[J]. Journal of Climate, 10(1):18-36.
    Schoenberg Ferrier B.1994. A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description[J]. Journal of the Atmospheric Sciences,51(2):249-280.
    Seethala C, Horvath A.2010. Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds[J]. Journal of Geophysical Research,115(D13):D13202.
    Senior C A, Mitchell J F B.1993. Carbon Dioxide and Climate. The Impact of Cloud Parameterization[J]. Journal of Climate,6(3):393-418.
    Shah K P, Rind D.1995. Use of microwave brightness temperatures with a general circulation model[J]. Journal of Geophysical Research,100(D7):13841-13874.
    Shao H, Liu G.2004. Detecting drizzle in marine warm clouds using combined visible, infrared, and microwave satellite data[J]. Journal of Geophysical Research,109(D7):D7205.
    Shin D, Chiu L S.2008. Effects of TRMM Boost on Oceanic Rainfall Estimates Based on Microwave Emission Brightness Temperature Histograms (METH)[J]. Journal of Atmospheric and Oceanic Technology,25(10):1888-1893.
    Shupe M D, Intrieri J M.2004. Cloud Radiative Forcing of the Arctic Surface:The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle[J]. Journal of Climate,17(3):616-628.
    Smith E A, Xiang X, Mugnai A, et al.1994. Design of an inversion-based precipitation proflie retrieval algorithm using an explicit cloud model for initial guess microphysics[J].54(1-4):53-78.
    Spencer R W, Goodman H M, Hood R E.1989. Precipitation Retrieval over Land and Ocean with the SSM/I:Identification and Characteristics of the Scattering Signal[J]. Journal of Atmospheric and Oceanic Technology,6(2):254-273.
    Staelin D H, Kunzi K F, Pettyjohn R L, et al.1976. Remote sensing of atmospheric water vapor and liquid water with the Nimbus 5 microwave spectrometer[J]. Journal of Applied Meteorology, 15(11):1204-1214.
    Stevens B, Feingold G, Cotton W R, et al.1996. Elements of the Microphysical Structure of Numerically Simulated Nonprecipitating Stratocumulus[J]. Journal of the Atmospheric Sciences, 53(7):980-1006.
    Stevens B, Lenschow D H, Vali G, et al.2003. Dynamics and chemistry of marine stratocumulus-DYCOMS-II[J]. Bulletin of the American Meteorological Society,84(5):579-594.
    Stokes G M, Schwartz S E.1994. The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed[J]. Bulletin of the American Meteorological Society,75(7):1201-1221.
    Straka J M, Mansell E R.2005. A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories [J]. Journal of Applied Meteorology,44(4):445-466.
    Sundqvist H, Berge E, Kristjansson J E.1989. Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model[J]. Monthly Weather Review,117(8):1641-1657.
    Takeda T, Liu G.1987. Estimation of Atmospheric Liquid-Water Amount by Nimbus SMMR Data:A New Method and Its Application to the Western North-Pacific Region[J]. Journal of the Meteorological Society of Japan,65(6).
    Tao W, Simpson J, Lang S, et al.1990. An Algorithm to Estimate the Heating Budget from Vertical Hydrometeor Profiles[J]. Journal of Applied Meteorology,29(12):1232-1244.
    Tao W, Lau W, Simpson J, et al.2009. A Multiscale Modeling System:Developments, Applications, and Critical Issues[J]. Bulletin of the American Meteorological Society,90(4):515-534.
    Tao W K, Moncrieff M W.2009. Multiscale cloud system modeling[J]. Rev. Geophys.,47(4):1-41.
    Taylor K E, Ghan S J.1992. An Analysis of Cloud Liquid Water Feedback and Global Climate Sensitivity in a General Circulation Model[J]. Journal of Climate,5(9):907-919.
    Taylor K E, Stouffer R J, Meehl G A.2012. An Overview of CMIP5 and the Experiment Design[J]. Bulletin of the American Meteorological Society,93(4):485-498.
    Trenberth K E, Fasullo J T, Kiehl J.2009. Earth's Global Energy Budget[J]. Bulletin of the American Meteorological Society,90(3):311-323.
    Tripoli G J, Cotton W R.1980. A Numerical Investigation of Several Factors Contributing to the Observed Variable Intensity of Deep Convection over South Florida[J]. Journal of Applied Meteorology,19(9):1037-1063.
    Turner D D.2007. Improved ground-based liquid water path retrievals using a combined infrared and microwave approach[J]. Journal of Geophysical Research,112(D15):D15204.
    Turner D D, Vogelmann A M, Austin R T, et al.2007. Thin liquid water clouds-Their importance and our challenge[J]. Bulletin of the American Meteorological Society,88:177-190.
    Twomey S, Seton K J.1980. Inferences of Gross Microphysical Properties of Clouds from Spectral Reflectance Measurements[J]. Journal of the Atmospheric Sciences,37(5):1065-1069.
    Uppala S M, KAllberg P W, Simmons A J, et al.2005. The ERA-40 re-analysis[J]. Quarterly Journal of the Royal Meteorological Society,131 (612):2961-3012.
    van Meijgaard E, Crewell S.2005. Comparison of model predicted liquid water path with ground-based measurements during CLIWA-NET[J]. Atmospheric Research,75(3):201-226.
    Waliser D E, Li J F, Woods C P, et al.2009. Cloud ice:A climate model challenge with signs and expectations of progress[J]. Journal of Geophysical Research,114(3):1-27.
    Wang J, Wang W, Fu X, et al.2012. Tropical intraseasonal rainfall variability in the CFSR[J]. Climate Dynamics,38(11):2191-2207.
    Wang W, Bruyere C, Duda M, et al. ARW Version 3 Modeling System User's Guide[R].Mesoscale & Microscale Meteorology Division, NCAR,2012.
    Wang Y, Fu Y, Wang Z, et al.2008. Retrieval of Liquid Water Path Inside Nonprecipitating Clouds Using TMI Measurements[J]. Acta Meteorologica Sinica,22(03):342-350.
    Weare B C.2000. Near-Global Observations of Low Clouds[J]. Journal of Climate,13(7):1255-1268.
    Webb M, Senior C, Bony S, et al.2001. Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models[J]. Climate Dynamics, 17(12):905-922.
    Weng F, Grody N C, Ferraro R, et al.1997. Cloud Liquid Water Climatology from the Special Sensor Microwave/Imager[J]. Journal of Climate,10(5):1086-1098.
    Wentz F J, Spencer R W.1998. SSM/I Rain Retrievals within a Unified All-Weather Ocean Algorithm[J]. Journal of the Atmospheric Sciences,55(9):1613-1627.
    Wentz F J, Ricciardulli L, Hilburn K, et al.2007. How Much More Rain Will Global Warming Bring?[J]. Science,317(5835):233-235.
    Westwater E R.1972. Microwave emission from clouds[M].Environmental Research Laboratories
    Wiedner M, Prigent C, Pardo J R, et al.2004. Modeling of passive microwave responses in convective situations using output from mesoscale models:Comparison with TRMM/TMI satellite observations[J]. Journal of Geophysical Research,109(D6):D6214.
    Wielicki B A, Suttles J T, Heymsfield A J, et al.1990. The 27-28 October 1986 FIRF IFO Cirrus Case Study:Comparison of Radiative Transfer Theory with Observations by Satellite and Aircraft[J]. Monthly Weather Review,118(11):2356-2376.
    Wilheit T T, Chang A T C, V. Rao M S, et al.1977. A Satellite Technique for Quantitatively Mapping Rainfall Rates over the Oceans[J]. Journal of Applied Meteorology,16(5):551-560.
    Wood R, Hartmann D L.2006. Spatial Variability of Liquid Water Path in Marine Low Cloud:The Importance of Mesoscale Cellular Convection[J]. Journal of Climate,19(9):1748-1764.
    Wu D L, Jiang J H, Read W G, et al.2008. Validation of the Aura MLS cloud ice water content measurements[J]. Journal of Geophysical Research,113(D15):D10S-D15S.
    Wu D L, Austin R T, Deng M, et al.2009. Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets[J]. Journal of Geophysical Research,114(D8):D24A.
    Xia D, Xu Y.1998. The Water-Bearing Numerical Model and Its Operational Forecasting Experiments Part I:The Water-Bearing Numerical Model[J]. Advances in Atmospheric Sciences,15(02):221-232.
    Xia X.2010. Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954-2005[J]. Journal of Geophysical Research,115:D6K.
    Xu L, Gao X, Sorooshian S, et al.1999. A Microwave Infrared Threshold Technique to Improve the GOES Precipitation Index[J]. Journal of Applied Meteorology,38(5):569-579.
    Yang P, Liou K N.1998. Single-scattering properties of complex ice crystals in terrestrial atmosphere[J]. Contributions to atmospheric physics,71(2).
    Yang S, Smith E A.1999a. Moisture Budget Analysis of TOGA COARE Area Using SSM/I-Retrieved Latent Heating and Large-Scale Q2 Estimates[J]. Journal of Atmospheric and Oceanic Technology, 16(6):633-655.
    Yang S, Smith E A.1999b. Four-Dimensional Structure of Monthly Latent Heating Derived from SSM/ISatellite Measurements[J]. Journal of Climate,12(4):1016-1037.
    Young D F, Minnis P, Doelling D R, et al.1998. Temporal Interpolation Methods for the Clouds and the Earth's Radiant Energy System (CERES) Experiment[J]. Journal of Applied Meteorology, 37(6):572-590.
    Zhang M H, Lin W Y, Klein S A, et al.2005. Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements[J]. Journal of Geophysical Research,110(D15):1-18.
    Zhang Y, Sperber K R, Boyle J S, et al.1997. East Asian winter monsoon:results from eight AMIP models[J]. Climate Dynamics,13(11):797-820.
    Zhang Y, Klein S A, Liu C, et al.2008. On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the Multiscale Modeling Framework[J]. Journal of Geophysical Research,113(D16):n/a-n/a.
    Zhao Q, Carr F H.1997. A Prognostic Cloud Scheme for Operational NWP Models[J]. Monthly Weather Review,125(8):1931-1953.
    Zhou T, Yu R.2006. Twentieth-Century Surface Air Temperature over China and the Globe Simulated by Coupled Climate Models[J]. Journal of Climate,19(22):5843-5858.
    Zhu H, Hendon H, Jakob C.2009. Convection in a Parameterized and Superparameterized Model and Its Role in the Representation of the MJO[J]. Journal of the Atmospheric Sciences,66(9):2796-2811.
    Zuidema P, Joyce R.2008. Water vapor, cloud liquid water paths, and rain rates over northern high latitude open seas[J]. Journal of Geophysical Research,113(D5):D5205.
    曾智华,陈联寿,王玉清,等.2009.2006年超级台风“桑美”强度与结构变化的数值模拟研究[J].气象学报,67(05):750-763.
    陈楠,赵光平,陈晓光.2006.近40年宁夏云量和气温年际变化的相关分析[J].高原气象,25(06):1176-1183.
    陈勇航,黄建平,王天河,等.2005.西北地区不同类型云的时空分布及其与降水的关系[J].应用气象学报,16(06):717-727.
    程麟生.1994.中尺度大气数值模式和模拟[M].北京:气象出版社
    傅云飞,刘栋,王雨,等.2007.热带测雨卫星综合探测结果之“云娜”台风降水云与非降水云特征[J].气象学报,(03):316-328.
    傅云飞,冯沙,刘鹏,等.2010.热带测雨卫星测雨雷达探测的亚洲夏季积雨云云砧[J].气象学报,68(02):195-206.
    傅云飞,刘鹏,刘奇,等.2011.夏季热带及副热带降水云可见光/红外信号气候分布特征[J].大气与环境光学学报,6(02):129-140.
    公颖.2007.2007年汛期AREM模式降水预报效果检验分析[J].暴雨灾害,26(04):372-380.
    衡志炜,宇如聪,傅云飞,等.2011.基于TMI产品资料对数值模式水凝物模拟能力的检验分析[J].大气科学,35(03):506-518.
    黄荣辉,张振洲,黄刚,等.1998.夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别[J].大气科学,22(04):76-85.
    李兴宇,郭学良,朱江.2008.中国地区空中云水资源气候分布特征及变化趋势[J].大气科学,32(05):1094-1106.
    李昀英,宇如聪,徐幼平,等.2003.中国南方地区层状云的形成和日变化特征分析[J].气象学报,61(06):733-743.
    李昀英,宇如聪.2006AREM模拟云参数与卫星观测的比较研究[J].大气科学,30(06):1198-1206.
    林文实,黄美元.1998.积云参数化方案研究的现状[J].热带气象学报,14(04):87-92.
    刘洪利,朱文琴,宜树华,等.2003.中国地区云的气候特征分析[J].气象学报,61(04):466-473.
    刘鹏,李崇银,王雨,等.2012.基于TRMM PR探测的热带及副热带对流和层云降水气候特征分析[J].中国科学:地球科学,42(09):1358-1369.
    刘鹏,王雨,冯沙,等.2012.冬、夏季热带及副热带穿透性对流气候特征分析[J].大气科学,36(03):579-589.
    刘奇俊,胡志晋,周秀骥.2003.HLAFS显式云降水方案及其对暴雨和云的模拟(I)云降水显式方案[J].应用气象学报,14(S1):60-67.
    刘瑞霞,刘玉洁,杜秉玉.2004.中国云气候特征的分析[J].应用气象学报,15(04):468-476.
    刘屹岷,吴国雄,刘辉,等.1999.空间非均匀加热对副热带高压形成和变异的影响——Ⅲ:凝结潜热加热与南亚高压及西太平洋副高[J].气象学报,57(05):525-538.
    邱玉珺,杨会文,倪婷,等.2012.基于美国AMF寿县观测的云特性研究[J].大气科学学报,35(01):80-86.
    任国玉,封国林,严中伟.2010.中国极端气候变化观测研究回顾与展望[J].气候与环境研究,15(04):337-353.
    沈如金,张宝严.1982.凝结潜热加热对台风降水分布的影响[J].大气科学,6(03):249-257.
    苏正军,王广河,刘卫国,等.2003.青海省春季降水云的微物理特征分析[J].应用气象学报,14(S1):36-40.
    唐国利,任国玉.2005.近百年中国地表气温变化趋势的再分析[J].气候与环境研究,10(04):791-798.
    王旻燕,王伯民.2009ISCCPj产品和我国地面观测总云量差异[J].应用气象学报,20(04):411-418.
    王雨,傅云飞.2010.微波成像仪通道对降水云参数响应的数值模拟研究[J].气象学报,68(03):315-324.
    温敏,施晓晖.2006.1998年夏季西太副高活动与凝结潜热加热的关系[J].高原气象,25(04):616-623.
    杨大生,王普才.2012.中国地区夏季6~8月云水含量的垂直分布特征[J].大气科学,36(01):89-101.
    姚遥,罗勇,黄建斌.2012.8个CMIP5模式对中国极端气温的模拟和预估[J].气候变化研究进展,8(04):250-256.
    叶成志,潘志祥,程锐,等.2007.强台风“云娜”登陆过程的研究——基于AREM模式的数值分析[J].气象学报,65(02):208-220.
    宇如聪.1994.一个η坐标有限区域数值预报模式对1993年中国汛期降水的实时预报试验[J].大气科学,18(03):801-809.
    宇如聪,徐幼平.2004AREM及其对2003年汛期降水的模拟[J].气象学报,62(06):715-724.
    翟盘茂,王萃萃,李威.2007.极端降水事件变化的观测研究[J].气候变化研究进展,3(03):144-148.
    张佃国,郭学良,付丹红,等.2007.2003年8-9月北京及周边地区云系微物理飞机探测研究[J].大气科学,31(04):596-610.
    张丁玲,黄建平,刘玉芝,等.2012.利用CERES(SYN)资料分析青藏高原云辐射强迫的时空变化[J].高原气象,31(05):1192-1202.
    张琪,李跃清,陈权亮,等.2011.近46年西南地区云量的时空变化特征[J].高原气象,30(02):339-348.
    张岩,吕达仁,段民征.2011.两种氧气A吸收带云顶高度反演算法的理论比较与实测结果验证[J]. 遥感技术与应用,26(01):18-32.
    张瑜,银燕,石立新,等.2012.2007年秋季河北地区云微物理结构的飞机探测分析[J].高原气象,31(02):530-537.
    章丽娜,王必正,曾庆存.2005.高云与高层垂直速度关系的个例研究Ⅰ·观测事实[J].气候与环境研究,10(03):310-325.
    赵天保,符淙斌.2009.应用探空观测资料评估几类再分析资料在中国区域的适用性[J].大气科学,33(03):634-648.
    赵增亮,毛节泰,王磊,等.2011.一次典型层积云的飞机观测结果及与卫星资料的对比分析[J].气象学报,69(03):521-527.
    赵宗慈,罗勇,黄建斌.2013.对地球系统模式评估方法的回顾[J].气候变化研究进展,9(01):1-8.
    郑良杰,夏大庆.1993.一个载水的套网格N层原始方程模式[J].科学通报,38(08):719-723.
    周慧,李象玉,黎祖贤,等.2008AREM3.0模式对“5.31”天气过程的模拟分析[J].热带气象学报,24(01):88-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700