用户名: 密码: 验证码:
河谷城市兰州热岛效应的观测与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化水平的不断提高,城市热岛效应及其对区域气候、环境和人体健康的影响己获得广泛关注。近50年来,兰州市城市化进程加快,城市热岛效应显著。但是,兰州市独特的河谷地形分布与复杂的下垫面性质,使得兰州市边界层结构及地表辐射能量平衡等特征较其他下垫面有很大不同。因此,开展对兰州市热岛效应的时空特征及形成机制的研究具有非常重要的现实意义。
     通过对比兰州市区站和榆中郊区站55年(1956~2010年)的逐日平均气温、最低气温和最高气温观测数据,总结了兰州市热岛效应的长时间尺度的演变规律,并定量分析了热岛效应对城市站温度序列的影响。在成功利用WRF中尺度数值模式模拟复杂地形自然下垫面边界层的基础上,运用WRF模式耦合城市冠层模块(UCM)对兰州市冬季个例(2005年1月25-27日)和夏季个例(2009年7月27-29日)的城市热岛效应进行了高分辨率数值模拟。通过与去城市下垫面敏感性试验的对比,系统地分析了城市下垫面对兰州市边界层、山谷风环流、地表辐射平衡及地表能量平衡的影响程度。主要结果如下
     (1)兰州城市热岛效应明显,并且热岛效应在最低气温上表现最显著。55年来,兰州市热岛强度的年代际变化具有明显的阶段性特征:1986年是显著的跃变点,跃变前后年平均气温热岛强度升高了1.04℃。夏季的热岛强度最大春秋季次之,冬季最小;但冬季热岛强度的增强趋势最为显著,增幅可以达到3℃。兰州市热岛强度同样具有明显的日变化特征:夜间强,白天弱,冬季正午还会出现城区温度低于郊区的冷岛效应。
     1956~2010年,年平均热岛增温率和增温贡献率分别为0.34℃/10a和69.4%,城市热岛效应对兰州站气温序列的影响不容忽视。1986年增温跃变后,年平均热岛增温率和增温贡献率分别减小到0.13℃/10a和22.4%,自然因素引起的增温贡献比重增加。冬季平均最低气温的热岛增温率最高,可以达到0.84℃/10a。
     (2)WRF中尺度数值模式能很好地模拟出复杂地形条件下的边界层结构及地表辐射和能量平衡场特征。通过与兰州大学半干旱气候与环境观测站(SACOL)观测资料的对比发现,加入了非局地混合作用以及边界层顶夹卷作用的YSU边界层参数化方案能够更好地模拟出对流边界层的的结构特征,而MYJ局地闭合方案则对稳定边界层的模拟表现更优。
     (3)兰州市冬季的热岛强度日变化曲线呈现双峰结构,峰值出现在19:00和06:00,谷值出现在13:00;夏季则变为单峰结构,峰值出现在20:00,谷值出现在10:00。冬季热岛效应维持时间长于夏季。
     通过与去城市下垫面模拟结果对比可知,城市下垫面上的近地层气温高于自然下垫面,并且在夜间表现最明显,冬季温差约为2.4℃,夏季则可以达到4.0℃。城市由于建筑物对风的阻挡作用导致近地层风速小于自然下垫面,风速差值约为1.0-1.5m.s-1。城市下垫面对兰州市热岛强度的贡献率约为40%,而其他因素(如人为热排放等)对热岛强度的贡献也相当可观。
     夜间,兰州站200m以下的近地层大气保持了白天的混合层特征;热岛环流的上升运动促进了山风环流,使得Urban试验上升气流达到的高度高于Nature试验近400m。冬季白天,由于山峰加热效应,两试验模拟的位温廓线在400m-600m高度间均存在一个脱地逆温层;11:00~15:00兰州站上空300m以下出现弱上升气流,抑制了谷风下沉支气流的发展。夏季白天,太阳辐射强烈,谷底的大气迅速升温,剧烈的湍流运动使得河谷中的大气混合均匀,1000m以下大气呈现近中性结构;16:00~20:00河谷中的气流转为上升运动,上升高度超过1000m,此时段内热岛环流与谷风环流相互促进。
     兰州市城乡地表辐射平衡存在差异的重要原因是城乡下垫面属性的不同。城市地表长波辐射的加热作用是造成城市热岛强度夜间强于白天的主要原因。城市下垫面对太阳辐射的“截陷”效应导致净辐射通量大于自然下垫面。由于建筑材料的不透水性,城市下垫面潜热通量远小于感热通量,且城市的储热能力明显增强。
With the improvement of urbanization, urban heat island (UHI) effect and its associated impact on regional climate, environment and human health have received wide attention. In the recent fifty years, the urbanization of Lanzhou has been development rapidly. Accordingly, Lanzhou has experienced a significant UHI effect. However, the unique river valley topography and complexed surface properties, making the boundary layer structure and the surface radiation energy balance characteristics has great different with the other citys. Therefore, the study which focus on the temporal and spatial characteristics as well as the formation mechanism of UHI effect over Lanzhou, has very important practical significance.
     Based on the daily average temperature, maximum temperature and minimum temperature data from Lanzhou urban station and Yuzhong rural station, this paper investigate the long-term variation of UHI effect for the time period1956to2010in Lanzhou, and quantitative analysis the impact of UHI effect on temperature series in Lanzhou urban station. On the other hand, Weather Research Forecasting (WRF) numerical model and its coupled single-layer Urban Canopy Model (UCM) are used to simulate the UHI effect over Lanzhou during25-27January2005(winter case) and27-29June2009(summer case). In order to evaluate the impacts of urbanization over Lanzhou, the land use data that inversed from MODIS lkm resolution data is applied. A sensitivity experiment that without urban underlying is designed to investigate the effects of urban underlying on urban boundary layer structures, valley wind circulation, land surface radiation balance and land surface energy budget. The main results are as follows:
     (1) The UHI effect of Lanzhou is obvious, especially for minimum temperature. For the past55years, the interdecadal variability of lanzhou UHI intensity has obvious stage features, the largest rise in the1980s and1990s. The UHI intensity is strongest in summer, and weakest in winter. But the increasing rate of UHI in winter, that is much higher than in any other seasons, can reach3.0℃. The UHI intensity demonstrates distinctive diurnal variation, with UHI intensity being stronger and more stable in nighttime than it is in daytime. The urban cool island effect, in which surface temperature in urban areas is lower than that in rural areas, also occurs at the winter noon.
     During1956-2010, the impact of UHI effect on temperature series recorded in Lanzhou is significant. The warming rate of annual average UHI is0.34℃/10a, and its contribution to surface temperature warming trends is69.4%. Around the year1986, an apparent temperature jump occured in northwest China. Therefore, temperature changes during1986-2010in lanzhou is mainly caused by natural factors, while contribution rate of UHI effects caused by human factors is relatively reduced.
     (2) Mesoscale numerical model WRF can well simulate the boundary layer structrue, characteristics of land surface radiation balance and energy in the complex terrain conditions. The simulated results are compared with the observations provided by Semi-Arid Climate Observatory Laboratory (SACOL) of Lanzhou University. The comparison results reveal that the non-local scheme (YSU) with the entrainment flux proportional to the surface flux is favourable under unstable conditions. Under stable conditions, the local TKE closure schemes (MYJ) perform better than the first-order approaches.
     (3) Diurnal variation of UHI intensity in winter presents the double-peak structure, the peak value appeared at19:00and06:00, while the valley value appeared at13:00. But diurnal variation of UHI intensity in summer presents the single-peak structure, the peak value appeared at20:00, while the valley value appeared at10:00. The UHI effect in winter maintain longer than in summer. Surface air temperature on urban underlying is higher than on natural underlying, and showed the most obvious during the night. The temperature difference is about2.4℃in winter, while can reach4.0℃in summer. Surface wind speed of urban is less than natural underlying surface, the wind speed difference is about1.0-1.5m-s-1, which is caused by the resistance of building to wind. The contribution rate of urban underlying to Lanzhou UHI intensity is about40%. Accordingly, Other factors (e.g., anthropogenic heat emission) also play important role for UHI intensity.
     The urban surface air keep the characteristic of mixing layer at nighttime. Due to the heating effects of mountain peak, there is a inversion layer exist above the city400m-600m at winter daytime. During the summer daytime, that the vertical turbulent motion is severe, atmospheric boundary layer presents nearly neutral structures. Furthermore, the UHI effect also has a significant impact on valley breeze circulation. At afternoon, the weak upflow caused by UHI circulation could restrain the formation and development of the valley breeze.
     Different of the underlying attributes can lead to a greater difference in surface radiation balance between urban and rural areas. The main reason of UHI intensity stronger in nighttime than in daytime is heating effect of urban surface long-wave radiation. The trapping effect of urban underlying on solar radiation could lead to the net radiation in urban areas are more than that in non-urban areas. In summer, the magnitude of surface latent heat flux on natural underlaying is about10times as much as that in winter. Because of materials waterproofness of building, the latent heat flux is far less than sensible heat flux, while the heat storage capacity is obvious enhanced.
引文
[1]Climate change 2007-the physical science basis:Working group I contribution to the fourth assessment report of the IPCC[M]. Cambridge University Press,2007.
    [2]Hu Z Z, Yang S, Wu R. Long-term climate variations in China and global warming signals[J]. J. Geophys. Res.,2003,108(D19):4614.
    [3]任国玉,初子莹,周雅清,等.中国气温变化研究最新进展[J].气候与环境研究,2005,10(4):701-716.
    [4]赵宗慈,王绍武,徐影,等.近百年我国地表气温趋势变化的可能原因[J].气候与环境研究,2005,10(4):808-817.
    [5]Kalnay E, Cai M. Impact of urbanization and land-use change on climate[J]. Nature,2003, 423(6939):528-531.
    [6]Martine G, Marshall A. State of world population 2007:unleashing the potential of urban growth[M]. New York:United Nations Population Fund.2007.
    [7]Wanner H, Hertig J. Studies of urban climates and air pollution in Switzerland[J]. J. Appl. Meteorol.;(United States),1984,23(12).
    [8]Oke T R, Zeuner G, Jauregui E. The surface energy balance in Mexico City[J]. Atmospheric Environment. Part B. Urban Atmosphere,1992,26(4):433-444.
    [9]Oke T R. Review of urban climatology 1968-1973[M]. Secretariat of the World Meteorological Organization,1974.
    [10]Howard L. The climate of London[M]. W. Phillips, sold also by J. and A. Arch,1818.
    [11]Renou E J. Instructions meteorologiques[M].1855.
    [12]Manley G. On the frequency of snowfall in metropolitan England[J]. Quart. J. Roy. Meteor. Soc,1958,84(359):70-72.
    [13]Bornstein, Robert D.1968. Observations of the urban heat island effect in New York City[J], J. Appl. Meteor.,7:575-582.
    [14]Changnon S A. Inadvertent weather modification in urban areas:Lessons for global climate change[J]. Bulletin of the American Meteorological Society,1992,73:619-752.
    [15]Fernando H J S, Lee S M, Anderson J, et al. Urban fluid mechanics:Air circulation and contaminant dispersion in cities[J]. Environmental Fluid Mechanics,2001,1(1):107-164.
    [16]Meehl G A, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century[J]. Science,2004,305(5686):994-997.
    [17]谈建国,郑有飞,彭丽,等.城市热岛对上海夏季高温热浪的影响[J].高原气象,2008,27(B12):144-149.
    [18]Changnon S A, Kunkel K E, Rienke B. Impacts and responses to the 1995 heat wave:A call to action[J]. USA Today,1995.
    [19]Santamouris M, Papanikolaou N, Livada I, et al. On the impact of urban climate on the energy consumption of buildings[J]. Solar energy,2001,70(3):201-216.
    [20]Fung W Y, Lam K S, Hung W T, et al. Impact of urban temperature on energy consumption of Hong Kong[J]. Energy,2006,33(14):2623-2637.
    [21]Thielen J, Wobrock W, Gadian A, et al. The possible influence of urban surfaces on rainfall development:a sensitivity study in 2D in the meso-y-scale[J]. Atmospheric Research,2000, 54(1):15-39.
    [22]Shepherd J M, Pierce H, Negri A J. Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite[J]. Journal of Applied Meteorology,2002,41(7):689-701.
    [23]Diem J E, Brown D P. Anthropogenic impacts on summer precipitation in central Arizona, USA[J]. The Professional Geographer,2003,55(3):343-355.
    [24]Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle[J], science,2001,294(5549):2119-2124.
    [25]Bornstein R, Lin Q. Urban heat islands and summertime convective thunderstorms in Atlanta:three case studies[J]. Atmospheric Environment,2000,34(3):507-516.
    [26]Chen T C, Wang S Y, Yen M C. Enhancement of afternoon thunderstorm activity by urbanization in a valley:Taipei [J]. Journal of Applied Meteorology and Climatology,2007, 46(9):1324-1340.
    [27]Arnfield A J. Two decades of urban climate research:a review of turbulence, exchanges of energy and water, and the urban heat island[J], International Journal of Climatology,2003, 23(1):1-26.
    [28]Duckworth F S, Sandberg J S. The effect of cities upon horizontal and vertical temperature gradients[J]. Bull. Amer. Meteor. Soc,1954,35:198-207.
    [29]Klysik K, Fortuniak K. Temporal and spatial characteristics of the urban heat island of Lodz, Poland[J]. Atmospheric Environment,1999,33(24):3885-3895.
    [30]Magee N, Curtis J, Wendler G. The urban heat island effect at Fairbanks, Alaska[J]. Theoretical and Applied Climatology,1999,64(1-2):39-47.
    [31]Morris C J G, Simmonds I, Plummer N. Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city[J]. Journal of Applied Meteorology,2001, 40(2):169-182.
    [32]Karl T R, Diaz H F, Kukla G. Urbanization:Its detection and effect in the United States climate record[J]. Journal of Climate,1988,1(11):1099-1123.
    [33]Jones P D, Kelly P M, Goodess C M, et al. The effect of urban warming on the Northern Hemisphere temperature average[J]. Journal of climate,1989,2:285-290.
    [34]Kim Y H, Baik J J. Daily maximum urban heat island intensity in large cities of Korea[J]. Theoretical and Applied Climatology,2004,79(3-4):151-164.
    [35]Gedzelman S D, Austin S, Cermak R, et al. Mesoscale aspects of the urban heat island around New York City[J], Theoretical and Applied Climatology,2003,75(1-2):29-42.
    [36]Wang W C, Zeng Z, Karl T R. Urban heat islands in China[J], Geophysical Research Letters, 1990,17(13):2377-2380.
    [37]赵宗慈.近39年中国的气温变化与城市化影响[J].气象,1991,17(4):14-17.
    [38]Hua L J, Ma Z G, Guo W D. The impact of urbanization on air temperature across China[J]. Theoretical and Applied Climatology,2008,93(3-4):179-194.
    [39]Li Q, Zhang H, Liu X, et al. Urban heat island effect on annual mean temperature during the last 50 years in China[J]. Theoretical and Applied Climatology,2004,79(3-4):165-174.
    [40]He J F, Liu J Y, Zhuang D F, et al. Assessing the effect of land use/land cover change on the change of urban heat island intensity[J]. Theoretical and Applied Climatology,2007, 90(3-4):217-226.
    [41]刘学锋,于长文,任国玉.河北省城市热岛强度变化对区域地表平均气温序列的影响[J].气候与环境研究,2005,10(4):763-770.
    [42]周雅清,任国玉.华北地区地表气温观测中城镇化影响的检测和订正[J].气候与环境研究,2005,10(4):743-753.
    [43]华丽娟,马柱国,曾昭美.中国东部地区大城市和小城镇极端温度及日较差变化对比分析[J].大气科学,2006,30(1):80-92.
    [44]王喜全,王自发,郭虎.北京“城市热岛”效应现状及特征[J].气候与环境研究,2006,11(5):627-636.
    [45]张光智,王继志.北京及周边地区城市尺度热岛特征及其演变[J].应用气象学报,2002,13(U01):43-50.
    [46]季崇萍,刘伟东,轩春怡.北京城市化进程对城市热岛的影响研究[J].地球物理学报,2006,49(1):69-77.
    [47]周淑贞,张超.上海城市热岛效应[J].地理学报,1982,37(4):372-382.
    [48]邓莲堂,束炯,李朝颐.上海城市热岛的变化特征分析[J].热带气象学报,2001,17(3):273-280.
    [49]侯依玲,陈葆德,陈伯民,等.上海城市化进程导致的局地气温变化特征[J].高原气象,2008,27(B12):131-137.
    [50]唐国利,丁一汇.近44年南京温度变化的特征及其可能原因的分析[J].2006,30(1):56-68.
    [51]邱新法,顾丽华,曾燕,等.南京城市热岛效应研究[J].气候与环境研究,2008,13(6):807-814.
    [52]刘红年,蒋维楣,孙鉴泞,等.南京城市边界层微气象特征观测与分析[J].南京大学学报:自然科学版,2008,44(1):99-106.
    [53]于淑秋,卞林根,林学椿.北京城市热岛“尺度”变化与城市发展[J].中国科学:D辑,2005,35(Ⅰ):97-106.
    [54]林学椿,于淑秋.北京地区气温的年代际变化和热岛效应[J].地球物理学报,2005,48(1):39-45.
    [55]王郁,胡非.近10年来北京夏季城市热岛的变化及环境效应的分析研究[J].地球物理学报,2006,49(1):61-68.
    [56]刘熙明,胡非,李磊,等.北京地区夏季城市气候趋势和环境效应的分析研究[J].地球 物理学报,2006,49(3):689-697.
    [57]谢庄,崔继良,陈大刚,等.北京城市热岛效应的昼夜变化特征分析[J].气候与环境研究,2006,11(1):69-75.
    [58]张艳,鲍文杰,余琦,等.超大城市热岛效应的季节变化特征及其年际差异[J].地球物理学报,2012,55(4):1121-1128.
    [59]朱家其,汤绪,江灏.上海市城区气温变化及城市热岛[J].高原气象,2006,25(6):1154-1160.
    [60]Grimmond C S B. Progress in measuring and observing the urban atmosphere[J]. Theoretical and Applied Climatology,2006,84(1-3):3-22.
    [61]Changnon S A, Huff F A, Schickedanz P T, et al. Summary of METROMEX, volume 1: weather anomalies and impacts[J]. Illinois State Water Survey,1977, Bull.62, Champaign, IL,260 pp.
    [62]Ackerman B, Changnon S A J, Dzurisin G, et al. Summary of METROMEX, volume 2: Causes of precipitation anomalies[J].1978.
    [63]寿亦萱,张大林.城市热岛效应的研究进展与展望[J].气象学报,2012,70(3):338-353.
    [64]Allwine K J, Shinn J H, Streit G E, et al. Overview of URBAN 2000:A multiscale field study of dispersion through an urban environment [J]. Bulletin of the American Meteorological Society,2002,83(4):521-536.
    [65]Doran J C, Fast J D, Horel J. The VTMX 2000 campaign[J]. Bulletin of the American Meteorological Society,2002,83(4):537-551.
    [66]Allwine K J, Leach M J, Stockham L W, et al. Overview of Joint Urban 2003-an atmospheric dispersion study in Oklahoma City[C]//Preprints, Symp. on Planning, Nowcasting and Forecasting in the Urban Zone, Seattle, WA, Amer. Meteor. Soc, CD-ROM J.2004,7.
    [67]Cros B, Durand P, Cachier H, et al. The ESCOMPTE program:an overview[J]. Atmospheric Research,2004,69(3):241-279.
    [68]Mestayer P G, Durand P, Augustin P, et al. The urban boundary-layer field campaign in Marseille (UBL/CLU-ESCOMPTE):set-up and first results[J]. Boundary-Layer Meteorology,2005,114(2):315-365.
    [69]徐祥德,丁国安,卞林根,等.BECAPEX科学试验城市建筑群落边界层大气环境特征及其影响[J].气象学报,2004,62(5):663-671.
    [70]徐祥德,颜鹏.城市环境大气重污染过程周边源影响域术[J].中国科学D辑,2004,34(10):958-966.
    [71]胡华浪,陈云浩,宫阿都.城市热岛的遥感研究进展[J].国土资源遥感,2005,3:5-9.
    [72]Rao P K. Remote sensing of urban heat islands from an environmental satellite[J]. Bulletin of the American meteorological society,1972,53(7):647-648.
    [73]Balling Jr R C, Brazel S W. High-resolution surface temperature patterns in a complex urban terrain[J]. PHOTOGRAM. ENG. REMOTE SENS.,1988,54(9):1289-1293.
    [74]Roth M, Oke T R, Emery W J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology[J]. International Journal of Remote Sensing,1989,10(11):1699-1720.
    [75]Streutker D R. Satellite-measured growth of the urban heat island of Houston, Texas[J]. Remote Sensing of Environment,2003,85(3):282-289.
    [76]Tomlinson C J, Chapman L, Thornes J E, et al. Derivation of Birmingham's summer surface urban heat island from MODIS satellite images[J]. International Journal of Climatology, 2012,32(2):214-224.
    [77]杨星卫,周红妹,楼萌.卫旱资料在上海浦东新区热力场分析中的应用[J].应用气象学报,1994,5(3):369-373.
    [78]王建凯,王开存,网普才.基于MODIS地表温度产品的北京热岛(冷岛)强度分析[J].遥感学报,2007,11(3).
    [79]Gallo K P, McNab A L, Karl T R, et al. The use of a vegetation index for assessment of the urban heat island effect[J]. Remote Sensing,1993,14(11):2223-2230.
    [80]Gallo K P, Tarpley J D. The comparison of vegetation index and surface temperature composites for urban heat-island analysis[J]. International journal of remote sensing,1996, 17(15):3071-3076.
    [81]Weng Q, Lu D, Schubring J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote sensing of Environment,2004,89(4): 467-483.
    [82]网艳姣,闫峰,张培群,等.基于植被指数和地表反照率影响的北京城市热岛变化[J].环境科学研究,2009,22(2):215-220.
    [83]Jiahong L. Study of relation between land-cover conditions and temperature based on Landsat/TM data[J]. Remote Sensing Technology and Application,1998,13(1):18-28.
    [84]Weng Q. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China[J]. International Journal of Remote Sensing,2001, 22(10):1999-2014.
    [85]岳文泽,徐建华,徐丽华.基于遥感影像的城市土地利用生态环境效应研究-以城市热环境和植被指数为例[J].生态学报,2006,26(5):1450-1460.
    [86]杨沈斌,赵小艳,申双和,等.基于Landsat TM/ETM+数据的北京城市热岛季节特征研究[J].大气科学学报,2010(004):427-435.
    [87]Kim H H. Urban heat island[J]. International Journal of Remote Sensing,1992,13(12): 2319-2336.
    [88]苏伟忠,杨英宝,杨桂山.南京市热场分布特征及其与土地利用/覆被关系研究[J].地理科学,2005,25(6):697-703.
    [89]Kato S, Yamaguchi Y. Analysis of urban heat-island effect using ASTER and ETM+Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux[J]. Remote Sensing of Environment,2005,99(1):44-54.
    [90]Martilli A. Current research and future challenges in urban mesoscale modelling[J]. International journal of climatology,2007,27(14):1909-1918.
    [91]Myrup L D. A numerical model of the urban heat island[J]. Journal of Applied Meteorology, 1969,8(6):908-918.
    [92]Delage Y, Taylor P A. Numerical studies of heat island circulations[J]. Boundary-Layer Meteorology,1970,1(2):201-226.
    [93]Bornstein R D. The two-dimensional URBMET urban boundary layer model[J]. Journal of Applied Meteorology,1975,14(8):1459-1477.
    [94]叶卓佳,关虹.夜间城市边界层发展的数值研究[J].大气科学,1986,10(1):80-88.
    [95]Vukovich F M, Dunn III J W, Crissman B W. A Theoretical Study of the St. Louis Heat Island:The Wind and Temperature Distribution[J]. Journal of Applied Meteorology,1976, 15:417-440.
    [96]Kimura F, Takahashi S. The effects of land-use and anthropogenic heating on the surface temperature in the Tokyo metropolitan area:A numerical experiment[J]. Atmospheric Environment. Part B. Urban Atmosphere,1991,25(2):155-164.
    [97]Saitoh T S, Shimada T, Hoshi H. Modeling and simulation of the Tokyo urban heat island[J]. Atmospheric Environment,1996,30(20):3431-3442.
    [98]桑建国,张治坤,张伯寅.热岛环流的动力学分析[J].气象学报,2000,58(3):321-327.
    [99]Pielke R A, Cotton W R, Walko R L, et al. A comprehensive meteorological modeling system-RAMS[J]. Meteorology and Atmospheric Physics,1992,49(1-4):69-91.
    [100]Grell G A, Dudhia J, Stauffer D R. A description of the fifth-generation Penn State/NCAR mesoscale model (MM5)[J].1994.
    [101]Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF version 2[R]. NATIONAL CENTER FOR ATMOSPHERIC RESEARCH BOULDER CO MESOSCALE AND MICROSCALE METEOROLOGY DIV,2005.
    [102]鞠丽霞,王勤耕,张美根,等.济南市城市热岛和山谷风环流的模拟研究[J].气候与环境研究,2003,8(4):467-474.
    [103]Trusilova K, Jung M, Churkina G, et al. Urbanization impacts on the climate in Europe: Numerical experiments by the PSU-NCAR Mesoscale Model (MM5)[J]. Journal of Applied Meteorology and Climatology,2008,47(5):1442-1455.
    [104]李维亮,刘洪利,周秀骥,等.长江三角洲城市热岛与太湖对局地环流影响的分析研究[J].中国科学:D辑,2003,33(2):97-104.
    [105]佟华,陈仲良,桑建国.城市边界层数值模式研究以及在香港地区复杂地形下的应用[J].大气科学,2004,28(6):957-978.
    [106]Lin C Y, Chen W C, Liu S C, et al. Numerical study of the impact of urbanization on the precipitation over Taiwan[J]. Atmospheric Environment,2008,42(13):2934-2947.
    [107]Zhang N, Zhu L, Zhu Y. Urban heat island and boundary layer structures under hot weather synoptic conditions:A case study of Suzhou City, China[J]. Advances in Atmospheric Sciences,2011,28(4):855-865.
    [108]Oke T R. Boundary layer climates[M]. Psychology Press,1992.
    [109]Kusaka H, Kondo H, Kikegawa Y, et al. A simple single-layer urban canopy model for atmospheric models:Comparison with multi-layer and slab models[J]. Boundary-Layer Meteorology,2001,101(3):329-358.
    [110]Holt T, Pullen J. Urban canopy modeling of the New York City metropolitan area:A comparison and validation of single-and multilayer parameterizations[J]. Monthly weather review,2007,135(5):1906-1930.
    [111]Lemonsu A, Grimmond C S B, Masson V. Modeling the surface energy balance of the core of an old Mediterranean city:Marseille[J]. Journal of Applied Meteorology,2004, 43(2):312-327.
    [112]Chen F, Kusaka H, Tewari M, et al. Utilizing the coupled WRF/LSM/Urban modeling system with detailed urban classification to simulate the urban heat island phenomena over the Greater Houston area[C]//Fifth Symposium on the Urban Environment.2004:9-11.
    [113]Kusaka H, Kimura F. Thermal effects of urban canyon structure on the nocturnal heat island:Numerical experiment using a mesoscale model coupled with an urban canopy model[J]. Journal of applied meteorology,2004,43(12):1899-1910.
    [114]Zhang H, Sato N, Izumi T, et al. Modified RAMS-urban canopy model for heat island simulation in Chongqing, China[J]. Journal of Applied Meteorology and Climatology, 2008,47(2):509-524.
    [115]Freitas E D, Rozoff C M, Cotton W R, et al. Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of Sao Paulo, Brazil[J]. Boundary-Layer Meteorology,2007,122(1):43-65.
    [116]李晓莉,毕宝贵,李泽椿.北京冬季城市边界层结构形成机制的初步数值研究[J].气象学报,2005,63(6):889-902.
    [117]Shou Y X, Zhang D L. Impact of environmental flows on the daytime urban boundary layer structures over the Baltimore metropolitan region[J]. Atmospheric Science Letters, 2010,11(1):1-6.
    [118]蒙伟光,张艳霞,李江南,等WRF/UCM在广州高温天气及城市热岛模拟研究中的应用[J].热带气象学报,2010,26(003):273-282.
    [119]Ryu Y H, Baik J J. Quantitative Analysis of Factors Contributing to Urban Heat Island Intensity[J]. Journal of Applied Meteorology and Climatology,2012,51(5):842-854.
    [120]潘竞虎,冯兆东,相得年,等.河谷型城市土地利用类型及格局的热环境效应遥感分析—以兰州市为例[J].遥感技术与应用,2008,23(2):202-207.
    [121]国家统计局.中国城市统计年鉴[M].北京:中国统计出版社,2000,2010.
    [122]杨永春,孟彩红,郭十梅,等.基于GIS的兰州城市用地变化分析[J].山地学报,2005,23(2):174-184.
    [123]陈长和.复杂地形上大气边界层和大气扩散的研究[M].气象出版社,1993.
    [124]陈榛妹.兰州的城市热岛效应[J].高原气象,1991,10(1):83-87.
    [125]杨德保,王玉玺.兰州城市气候变化及热岛效应分析[J].兰州大学学报:自然科学版,1994,30(4):161-167.
    [126]白虎志,张焕儒.兰州城市化发展对局地气候的影响[J].高原气象,1997,16(4):410-416.
    [127]李卓仑,王乃昂,轧靖,等.近40年兰州城市气候季节性变化与城市发展[J].高原气象,2007,26(3):586-592.
    [128]安兴琴,陈玉春,吕世华.中尺度模式对冬季兰州市低空风场和温度场的数值模拟[J].高原气象,2002,21(2):186-192.
    [129]安兴琴,胡隐樵,吕世华,等.山峰加热效应的数值试验研究[J].高原气象,2008,27(2):286-292.
    [130]缪国军,张镭,舒红.利用WRF对兰州冬季大气边界层的数值模拟[J].气象科学,2007,27(2):169-175.
    [131]李江林,陈玉春,吕世华,等.利用RAMS模式对山谷城市冬季局地风场的数值模拟[J].高原气象,2009,28(6).
    [132]张建明,王鹏龙,马宁,等.河谷地形下兰州市城市热岛效应的时空演变研究[J].地理科学,2012,32(12).
    [1]李毅,潘晓滨.新一代天气研究预报模式WRF简介[J].教学与研究(南京),2003,24(1):54-59.
    [2]章国材.美国WRF模式的进展和应用前景[J].气象,2004,30(12):27-31.
    [3]Weather Research & Forecasting Version 3 Modeling System User's Guide,2009.
    [4]Skamaroek W C, KlemP J B, Dudbhia J, et al. A deseription of the Advanced Reasearch WRF Version3, NCAR Technical Note,2008.
    [5]Kessler, E. On the distribution and continuity of water substance in atmospheric circulation[J]. Meteorological Monographs,1969,10(32), American Meteorological Society,84pp.
    [6]Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model [J]. Journal of Applied Meteorogy,1983,22(6):1065-1092.
    [7]Hong S Y and Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Monthly Weather Review,2004,132: 103-120.
    [8]Thompson G, Rasmussen R M, and Manning K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I:Description and sensitivity analysis[J]. Monthly Weather Review.2004,132:519-542.
    [9]Kain J S and Fritsch J M. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. Journal of the Atmospheric Sciences,1990, 47(23):2784-2802.
    [10]Kain J S. Convective parameterization for mesoscale models:The Kain-Fritsch scheme[J]. The representation of cumulus convection in numerical models, Meteor. Monogr,1993,46: 165-170.
    [11]Janjic Z I. The step-mountain eta coordinate model:further developments of the convection, viscous sublayer and turbulence closure schemes[J]. Monthly Weather Review,1994,122: 927-945.
    [12]Janjic Z I. Comments on "Development and evaluation of a convection scheme for use in climate models" [J]. Journal of the Atmospheric Sciences,2000,57:3686.
    [13]Betts A K. A new convective adjustment scheme. Part I:Observational and theoretical basis[J]. Quarterly Journal of the Royal Meteorological Society,1986,112(473):677-691.
    [14]Betts A K. and Miller M J. A new convective adjustment scheme. Part Ⅱ:Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets [J]. Quarterly Journal of the Royal Meteorological Society,1986,112:693-709.
    [15]Grell G A, Devenyi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophysical Research Letters,2002,29(14): 1693.
    [16]Hong S Y and Pan H. Nonlocal boundary layer vertical diffusion in a medium-range forecast model [J].1996, Monthly Weather Review,124:2322-2339.
    [17]Janjic Z I. The step-mountain coordinate:physical package[J]. Monthly Weather Review, 1990,118:1429-1443.
    [18]Janjic Z I. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model [J]. NCEP Office Note,2002,437:61.
    [19]Mellor G L. and Yamada T.. Development of a turbulence closure model for geophysical fluid problems [J]. Reviews of Geophysics and Space Physics,1982,20(4):851-875.
    [20]Pleim J E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I:Model description and testing[J]. Journal of Applied Meteorology and Climatology, 2007,46(9):1383-1395.
    [21]Chen F and Dudhia J. Coupling an advanced land-surface/hydrology model with the Perm State/NCAR MM5 modeling system. Part I:Model description and implementation [J]. Monthly Weather Review,2001,129:569-585.
    [22]Smirnova T G, Brown J M, Benjamin S G. Performance of different soil model configurations in simulating ground surface temperature and surface fluxes [J]. Monthly Weather Review,1997,125:1870-1884.
    [23]Smirnova T G Brown J M, Benjamin S G, et al. Parameterization of cloud season processes in the MAPS land-surface scheme[J]. Journal of Geophysical Research,2000,105(D3): 4077-4086.
    [24]Pleim J E, Xiu A. Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models[J]. Journal of Applied Meteorology,1995,34(1): 16-32.
    [25]Xiu A, Pleim J E. Development of a land surface model. Part I:Application in a mesoscale meteorological model[J]. Journal of Applied Meteorology,2001,40(2):192-209.
    [26]Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave[J]. Journal of geophysical research,1997,102(D14):16663-16682.
    [27]Fels S B, Schwarzkopf M D. The simplified exchange approximation-A new method for radiative transfer calculations[J]. Journal of Atmospheric Sciences,1975,32:1475-1488.
    [28]Schwarzkopf M D, FELS S. The simplified exchange method revisited-An accurate, rapid method for computation of infrared cooling rates and fluxes[J]. Journal of Geophysical Research,1991,96(D5):9075-9096.
    [29]Collins W D, Rasch P J, Boville B A, et al. The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3)[J]. Journal of Climate,2006,19(11): 2144-2161.
    [30]Lacis A A, Hansen J. A parameterization for the absorption of solar radiation in the earth's atmosphere [J]. Journal of the Atmospheric Sciences,1974,31(1):118-133.
    [31]Dudhia J. Numerical study of convection observed during the witer monsoon experiment using amesoscale two-dimensional model [J], Journal of the Atmospheric Sciences,1989, 46:3077-3107.
    [32]Stephens G L. Radiation profiles in extended water clouds. Part II:Parameterization schemes [J], Journal of the Atmospheric Sciences,1978,35:2123-2132.
    [33]Chou M D, Suarez M J. An efficient thermal infrared radiation parameterization for use in general circulation models[J]. NASA Tech. Memo,1994,104606(3):85.
    [34]Oke T R. Boundary Layer Climates[M]. Cambridge:Great Britain at the University Press,1987.
    [35]Chen F, Kusaka H, Tewari M, et al. Utilizing the coupled WRF/LSM/Urban modeling system with detailed urban classification to simulate the urban heat island phenomena over the Greater Houston area[C]. Fifth Conference on Urban Environment, Vancouver, BC, Canada, Amer. Meteor. Soc,2004, CD-ROM.9.11
    [36]Tewari M, Chen F, Kusaka H. Implementation and evaluation of a single-layer urban canopy model in WRF/Noah[C]. In:Proceedings of the 7th WRF Users'Workshop, June 2006.
    [37]Kusaka H, Kondo H, Kikegawa Y, et al. A simple single-layer urban canopy model for atmospheric models:Comparison with multi-layer and slab models[J]. Boundary-Layer Meteorology,2001,101(3):329-358.
    [38]Kusaka H, Kimura F. Coupling a single-layer urban canopy model with a simple atmospheric model:impact on urban heat islandsimulation for an idealized case[J]. Journal of Applied Meteorology,2004,43:1899-1910.
    [1]周淑贞,束炯.城市气候学[M].气象,1994.
    [2]Oke T R. Boundary layer climates[M]. Routledge,1988.
    [3]Karl T R, Jones P D. Urban Bias in Area-averaged Surface Air Temperature Trends[J]. Bulletin of the American Meteorological Society,1989,70:265-270.
    [4]Hughes W S, Balling R C. Urban influences on South African temperature trends[J]. International Journal of Climatology,1996,16(8):935-940.
    [5]赵宗慈.近39年中国的气温变化与城市化影响[J].气象,1991,17(4):14-17.
    [6]初子莹,任国玉.北京地区城市热岛强度变化对区域温度序列的影响[J].气象学报,2005,63(4):534-540.
    [7]陈正洪,王海军,任国玉,等.湖北省城市热岛强度变化对区域气温序列的影响[J].气候与环境研究,2005,10(4):771-779.
    [8]马玉霞,王式功,魏海茹.兰州市近50年城市热岛强度变化特征[J].气象科技,2009,37(006):660-664.
    [9]林学椿,于淑秋.北京地区气温的年代际变化和热岛效应[J].地球物理学报,2005,48(1):39-45.
    [10]符淙斌,王强.气候突变的定义和检测方法[J].大气科学,1992,16(4):482-493.
    [11]魏凤英.现代气候统计诊断与预测技术[M].气象出版社,1999.
    [12]赵芳芳,徐宗学.黄河兰州以上气候要素长期变化趋势和突变特征分析[J].气象学报,2006,64(2).
    [13]初子莹,任国玉.北京地区城市热岛强度变化对区域温度序列的影响[J].气象学报,2005,63(4):534-540.
    [14]陈隆勋,周秀骥,李维亮.中国近80年来气候变化特征及其形成机制[J].气象学报,2004,62(5):634-646.
    [15]于淑秋,林学椿,徐祥德.我国西北地区近50年降水和温度的变化[J].气候与环境研究,2003,8(1).
    [16]李卓仑,王乃昂,轧靖,等.近40年兰州城市气候季节性变化与城市发展[J].高原气象,2007,26(3):586-592.
    [17]季崇萍,刘伟东,轩春怡.北京城市化进程对城市热岛的影响研究[J].地球物理学报,2006,49(1):69-77.
    [18]邓莲堂,束炯,李朝颐.上海城市热岛的变化特征分析[J].热带气象学报,2001,17(3):273-280.
    [19]谢庄,崔继良,陈大刚,等.北京城市热岛效应的昼夜变化特征分析[J].气候与环境研究,2006,11(1):69-75.
    [20]李国栋.兰州城市气候效应的时空特征及形成机制研究[D].兰州大学,2009.
    [1]赵鸣等.边界层气象学教程.北京:气象出版社,1991:Ⅱ.
    [2]Stull R B.边界层气象学导论[M].徐静琦,杨殿荣,译.青岛:青岛海洋大学,1991:1-21.
    [3]Steeneveld GJ, Mauritsen T. Evaluation of limited area models for the representation of the diurnal cycle and contrasting nights in CASES99[J]. J Appl Meteor Climatol,2008,47:869-887.
    [4]Abhijit Sarkar, Koen De Ridder. The urban heat island intensity of Paris:a case study based on a simple urban surface parametrization[J]. Boundary-Layer Meteorol,2010, doi: 10.1007/s10546-010-9568-y.
    [5]Zhang D L, W Z Zheng. Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations[J]. Journal of Applied Meteorology,2004,43:157-169.
    [6]Pleim J E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part Ⅱ:Application and evaluation in a mesoscale meteorological model[J]. Journal of Applied Meteorology and Climatology,2007,46(9):1396-1409.
    [7]Zhang Y, Dubey M K, Olsen S C. Comparisons of WRF/Chem simulations in Mexico City with ground-based RAMA measurements during the MILAGRO-2006 period[J]. Atmospheric Chemistry & Physics,2009,9:1329-1376.
    [8]Hu X M, Nielsen-Gammon J W, Zhang F. Evaluation of three planetary boundary layer schemes in the WRF model[J]. Journal of Applied Meteorology and Climatology,2010, 49(9):1831-1844.
    [9]Miglietta M M, Zecchetto S, De Biasio F. WRF model and ASAR-retrieved 10 m wind field comparison in a case study over eastern Mediterranean Sea[J]. Adv Sci Res,2010,4:83-88.
    [10]Hyeyum Hailey Shin, Song You Hong. Intercomparison of planetary boundary-layer parame-triczations in the WRF model for a single day from CASES99[J]. Boundary-Layer Meteorol,2011, doi:10.1007/s 10546-010-9583-z.
    [11]陈炯,王建捷.北京地区夏季边界层结构日变化的高分辨模拟对比[J].应用气象学报,2006,17(4):403-411.
    [12]王颖,张镭,张燕等.WRF模拟对山谷城市边界层模拟能力的检验及地面气象特征分析[J].高原气象,2010,29(6):1397-1407.
    [13]胡春生.兰州段O.MSaBP.黄河阶地与黄土高原地面抬升研究[D].兰州大学硕士学位论文,2006.
    [14]Huang J, Zhang W, Zuo J, et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Advances in atmospheric sciences,2008, 25(6):906-921.
    [15]Noh Y, Cheon W G, Hong S Y, et al. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data[J]. Boundary-layer meteorology,2003, 107(2):401-427.
    [16]Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review,2006,134(9):2318-2341.
    [17]Hong S Y. A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon[J]. Quarterly Journal of the Royal Meteorological Society, 2010,136(651):1481-1496.
    [18]Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Monthly weather review,1996,124(10):2322-2339.
    [19]Janjic Z I. The step-mountain coordinate:Physical package[J]. Monthly Weather Review, 1990,118(7):1429-1443.
    [20]Sukoriansky S, Galperin B, Perov V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J]. Boundary-layer meteorology,2005,117(2):231-257.
    [21]Willmott C J. Some comments on the evaluation of model performance[J]. Bulletin of the American Meteorological Society,1982,63:1309-1369.
    [22]Shimada S, Ohsawa T, Chikaoka S, et al. Accuracy of the Wind Speed Profile in the Lower PBL as Simulated by the WRF Model [J]. Sola,2011,7(0):109-112.
    [23]张强,王胜,张杰,等.干旱区陆面过程和大气边界层研究进展[J].地球科学进展,2009,24(11):1185-1194.
    [24]左金清,王介民,黄建平,等.半干旱草地地表土壤热通量的计算及其对能量平衡的影响[J].高原气象,2010,29(4):840-848.
    [25]岳平,张强,杨金虎,等.黄土高原半干旱草地地表能量通量及闭合率[J].生态学报,2011,31(22):6866-6876.
    [26]Jacobs A F G, Heusinkveld B G, Holtslag A A M. Towards closing the surface energy budget of a mid-latitude grassland[J]. Boundary-Layer Meteorology,2008,126(1): 125-136.
    [27]鲍婧,张镭,张燕,等.半干旱区近地层动量热通量计算[J].兰州大学学报(自然科学版),2009,45(5):63-67.
    [28]张碧辉,刘树华,马雁军.MYJ和YSU方案对WRF边界层气象要素模拟的影响[J].地球物理学报,2012,55(7):2239-2248.
    [29]赵世强,张镭,王治厅,等.利用激光雷达结合数值模式估算兰州远郊榆中地区夏季边界层高度[J].气候与环境研究,2012,17(5):523-531.
    [30]岳平,牛杰生,张强.春季晴日蒙古高原半干旱荒漠草原地边界层结构的一次观测研究[J].高原气象,2008,27(4):757-763.
    [1]李晓莉,毕宝贵,李泽椿.北京冬季城市边界层结构形成机制的初步数值研究[J].气象学报,2005,63(6):889-902.
    [2]寿亦萱,张大林.城市热岛效应的研究进展与展望[J].气象学报,2012,70(3):338-353.
    [3]Kim Y H, Baik J J. Daily maximum urban heat island intensity in large cities of Korea[J]. Theoretical and Applied Climatology,2004,79(3-4):151-164.
    [4]Oliveira A P, Bornstein R D, Soares J. Annual and diurnal wind patterns in the city of Sao Paulo[J]. Water, Air and Soil Pollution:Focus,2003,3(5-6):3-15.
    [5]Freitas E D, Rozoff C M, Cotton W R, et al. Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of Sao Paulo, Brazil[J]. Boundary-Layer Meteorology,2007,122(1):43-65.
    [6]刘树华,刘振鑫,李炬,等.京津冀地区大气局地环流耦合效应的数值模拟[J].中国科学:D辑,2009(1):88-98.
    [7]Ohashi Y, Kida H. Local circulations developed in the vicinity of both coastal and inland urban areas:A numerical study with a mesoscale atmospheric model[J]. Journal of Applied Meteorology,2002,41(1):30-45.
    [8]佟华,陈仲良,桑建国.城市边界层数值模式研究以及在香港地区复杂地形下的应用[J].大气科学,2004,28(6):957-978.
    [9]王欣,卞林根,逯昌贵.2003.北京市秋季城区和郊区大气边界层参数观测分析[J].气候与环境研究,8(4):475-484.
    [10]王建凯,王开存,王普才.2007.基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析[J].遥感学报,11(3):330-339.
    [11]Niyogi D, Holt T, Zhong S, et al. Urban and land surface effects on the 30 July 2003 mesoscale convective system event observed in the southern Great Plains[J]. Journal of geophysical research,2006,111(D19):D19107.
    [12]Lin C Y, Chen W C, Liu S C, et al. Numerical study of the impact of urbanization on the precipitation over Taiwan[J]. Atmospheric Environment,2008,42(13):2934-2947.
    [13]宋静,汤剑平,孙鉴泞.南京地区城市冠层效应的模拟试验研究[J].南京大学学报:自然科学版,2009,45(006):779-789.
    [14]蒙伟光,李昊睿,张艳霞,等.珠三角城市环境对对流降水影响的模拟研究[J].大气科学,2012,36(5):1063-1076.
    [15]周淑贞,束炯.城市气候学[M].气象,1994.
    [16]张杰,张强,郭铌,等.应用EOS-MODIS卫星资料反演西北干旱绿洲的地表反照率[J].大气科学,2011,29(4):510-517.
    [17]Sarkar A, De Ridder K. The urban heat island intensity of Paris:a case study based on a simple urban surface parametrization[J]. Boundary-layer meteorology,2011,138(3): 511-520.
    [18]安兴琴,陈玉春.中尺度模式对冬季兰州市低空风场和温度场的数值模拟[J].高原气象,2002,21(2):186-192.
    [19]缪国军,张镭,舒红.利用WRF对兰州冬季大气边界层的数值模拟[J].气象科学,2007,27(2):169-175.
    [20]李江林,陈玉春,吕世华,等.利用RAMS模式对山谷城市冬季局地风场的数值模拟[J].高原气象,2009,28(006):1250-1259.
    [21]安兴琴,胡隐樵,吕世华,等.山峰加热效应的数值试验研究[J].高原气象,2008,27(2):286-292.
    [22]张强,吕世华.兰州市大气污染物越山输送与地形和小气候特征的关系[J].高原气象,2001,20:118-125.
    [23]张强.地形和逆温层对兰州市污染物输送的影响[J].中国环境科学,2001,21(3):230-234.
    [24]王式功,姜大膀,杨德保,等.兰州市区最大混合层厚度变化特征分析[J].高原气象,2000,19(3):363-370.
    [25]李欣,杨修群,汤剑平,等.WRF/NCAR模拟的夏季长三角城市群区域多城市热岛和地表能量平衡[J].气象科学,2011,31(4):441-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700