用户名: 密码: 验证码:
铝合金车轮结构设计有限元分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车轮是汽车行驶系统中重要的安全部件,汽车前进的驱动力通过车轮传递,车轮的结构性能对整车的安全性和可靠性有着重要的影响。为满足强度及疲劳等的要求,ISO、JASO及GB等标准均规定,汽车铝合金车轮必须进行弯曲疲劳试验、径向滚动疲劳试验和冲击试验。传统的车轮设计多凭借经验展开,存在着设计盲目性大、设计制造周期长、成本高等弊端。面对日益激烈的市场竞争,企业迫切需要采用科学的手段改善设计方法。本文以浙江大学与浙江万丰奥威汽轮股份有限公司的合作项目“铝合金车轮轻量化设计与开发”为背景,研究车轮结构的有限元分析方法,在设计初期预测车轮试验的结果,提出轻量化和改进方案,解决传统车轮设计存在弊端的问题。
     为了达到研究目的,以固体力学(包括弹性力学、冲击动力学)数值模拟为理论依据,车轮结构实际性能试验和实验应力方法相结合,先后建立了汽车车轮弯曲疲劳试验和13°冲击试验的静态弹性有限元分析模型和动态有限元分析模型,并通过试验手段进行了验证。在建立车轮弯曲疲劳试验有限元分析模型时,通过建立瞬态载荷函数,模拟了旋转弯矩的作用,得出了车轮在旋转弯矩作用下的应力分布变化情况。在建立车轮冲击试验有限元分析模型时,首先进行了正则模态分析,以半正弦函数的冲击载荷谱进行了动态响应分析,初步实现了车轮结构的动态有限元分析。
     首先,针对车轮结构的三大性能试验进行了静态弹性有限元分析,分析中车轮结构的材料参数通过在实际车轮结构上取样,进行标准拉伸试验获得,在静态弹性分析中不考虑材料后期的塑性变形,只取弹性阶段的弹性模量E和泊松比μ作为材料参数,在最大应力不超过车轮材料屈服强度的条件下,通过静态弹性有限元分析可以得到车轮结构在相应试验条件下的应力分布,对于优化车轮结构的设计有一定的指导意义。对冲击试验的静态分析分别通过计算动荷系数和计算瞬时最大冲击载荷两种载荷计算方法,进行了分析,并对结果进行了比较,通过瞬时最大冲击载荷加载更合理。
     然而,车轮结构的弯曲疲劳试验和冲击试验均为动态试验,因此,有必要对其建立动态有限元分析模型,从而更准确地得到车轮结构在试验条件下的响应情况。首先,对车轮结构进行了弯曲疲劳试验和冲击试验条件下的模态分析,分析了车轮结构的模态振型和特点;然后,对车轮结构进行了旋转弯矩动态分析,发现在弯曲疲劳试验中车轮结构中的应力是非对称循环应力。针对两种弯曲疲劳试验装置工作原理的不同,对车轮结构进行了离心力分析,通过分析表明两种试验装置的试验结果是一致的。
     在对车轮结构进行了冲击试验条件下的模态分析后,参考相关文献,假定冲击载荷符合半正弦函数,对车轮结构在该冲击载荷作用下的动态响应进行了分析,由于I-DEAS软件碰撞分析是基于两个假设进行的,一是碰撞发生于事件的初始时刻,二是碰撞的持续时间极短以致可以忽略,因此,该动力学碰撞分析实际上进行的结构碰撞后的响应计算。分析得到了冲击试验后车轮结构中的应力、速度和加速度响应,车轮结构中的应力响应对于评判车轮结构的设计强度,指导车轮结构的设计优化起到了一定作用,但车轮结构的冲击试验涉及轮胎大变形、气固耦合、接触等问题,要做到完全准确地建立其有限元分析模型还有一定难度,这将是今后研究工作的重点。
     采用动态电阻应变仪及数据采集仪,利用实验应力分析电测法原理,对车轮结构在弯曲疲劳试验和冲击试验中的应力情况进行了实测,并采用先进的神经网络算法对试验数据进行了数据挖掘处理。对弯曲疲劳试验中车轮结构的应力测量结果表明,本文建立的车轮结构动态弯曲疲劳试验有限元模型是正确的,有限元计算结果能很好的反应车轮结构在实际弯曲疲劳试验中的应力情况;而对冲击试验中车轮结构中的应力测量结果表明,在冲击试验中,车轮结构中的应力波存在大约6个波峰,冲击作为一个瞬态的大位移和大变形过程,涉及几何、材料、接触状态等多重非线性,因此,试验数据的获得是很宝贵的,对于提高数值模拟精度有指导意义。
     以某型车轮为例进行了实验应力分析和极限疲劳寿命试验,拟建立一条有限元分析应力结果和实验应力分析结果与车轮结构实际极限疲劳寿命相对应的曲线,可以用做今后弯曲疲劳试验寿命预测的判定依据。以某型车轮结构为例,从初始设计,有限元分析后轻量化改进,到最终产品投产,通过试验,介绍了轻量化的多种方法,根据很多类似的经验,提出了各种尺寸规格车轮结构轻量化设计的目标重量。
     本文围绕车轮结构的性能试验,旨在提升车轮自主设计水平,进行了有限元分析方法的研究,并通过实验应力分析对本文建立的有限元分析模型进行了验证,指出了有限元分析的合理和不足之处,并通过极限疲劳寿命试验,建立了一条实用的车轮结构材料S-N曲线。提出基于等效损伤原则的冲击响应谱分析,对车轮结构冲击试验的实验应力分析结果进行了频谱分析,得出车轮结构冲击试验中的应力波及应力谱。
Wheel is an important safety component of vehicle driving system. Since all driving force of running vehicle is transferred through wheels, the performance of wheel structure is very important to the safety and reliability of the vehicle. In order to meet the requirements on strength and fatigue, ISO, JASO and GB all prescribe that aluminum alloy car wheels must do bending fatigue test, radial load fatigue test and impact test. In the past, the design of wheel mostly depends on experience. So there are a lot of shortages, such as blindly design, long design and manufacturing period, high cost, and so on. In face of the increasingly stinging competitions, enterprises cry for new scientific design method. The background of this research is the cooperative project "Aluminum wheel weight optimization design and development" between Zhejiang University and Zhejiang Wanfeng Auto Wheel Company. This dissertation focuses on the finite element method using in wheel structure design. The proposal of weight optimization and structure modification can be aroused through the finite element analysis (FEA) result which solved the shortage of traditional wheel design method.
     In order to achieve the objective of this research, according to the theory of numerical simulation of solid mechanics (including elastic mechanics and impact dynamics), by a way of combining real test on wheel and experimental stress analysis method, the FEM of bending fatigue test and 13°impact test were established, and verified through experiments. When establishing the FEM of bending fatigue test a transient load function was used to simulate the rotatory bending moment, the stress distribution in the wheel under this load was obtained. When establishing the FEM of impact test a half-sine function was used to define the impact load, after normal mode analysis the dynamic response analysis on impact test was elementarily realized.
     First of all, static elastic FEA was done on three performance test of aluminum alloy wheel. The material property of wheel used in FEA was measured on specimens taken from the real wheel. When doing static elastic analysis, only the modulus of elasticity E and the Poisson's ratioμwere set as the material parameters. When the maximum stress in the structure is lower than the yield strength of the material, static elastic analysis is usable to calculate the stress distribution in the structure under test condition. And the result can be used to guide the structure optimization of wheel. For impact test static analysis two load calculation methods were considered, one is using dynamic load coefficient and another is calculating the transient maximum impact load. The results of two ways were compared and the way by calculating the maximum impact load is more reasonable.
     But bending fatigue test and impact test of wheel are both dynamic tests. So it isnecessary to establish a dynamic FEM. First, mode analysis of wheel under bendingfatigue test and impact test condition was separately done. The mode vibration modality ofwheel structure was analyzed. Then the dynamic analysis of wheel under rotatory bendingmoment was done, and the stress in the wheel during bending fatigue test is not asymmetrical one. To compare the different working principle of two kinds of bendingfatigue test machines, stress distribution of wheel under centrifugal force was analyzed.And the result shows that the test result with these two different machines should be same.
     After doing mode analysis to wheel structure under impact test condition, referring torelated literature, dynamic response analysis on wheel's impact test was done with anassumption that the impact load meet half-sine function. Since the I-DEAS software has twoassumptions (1. impact occurred at the beginning of event; 2. the persistence timing is tooshort, so can be neglected.), when doing initial impact analysis, this dynamic responseanalysis was a response analysis after the impact. The displacement, stress, velocity andacceleration response of wheel structure after impact were analyzed. These results are usefulto judge the strength of wheel design and to optimize the wheel design. But to build acompletely accurate FEM is still difficult because there are tyre big deformation, gas-solidcoupling and contact issues in wheel's impact test. To solve this difficult problem is thekeystone of future study.
     Using dynamic resistance strain gauge and the data collection instrument, based on the theory of electricity measurement method, the real stress of wheel structure under bending fatigue test and impact test were separately measured. Data mining was done on the stress data using artifical neural networks method. The stress measuring result of wheel in bending fatigue test shows that the FEM on bending fatigue test established in this dissertation was correct. The stress in wheel structure under bending fatigue test can be correctively reflected by the FEA result. The measuring stress result of wheel structure under impact test shows that during impact test there were 6 obvious wave crests on the stress wave of the wheel structure. As a transient process with big displacement and big distortion, there are many unlinear issues, such as geometry, material and contact. So the measuring results are very precious and have directive meaning to increase the digital simulation precision.
     Experimental stress analysis and limited fatigue life test were done using one kind of wheel as an example. A stress and fatigue life curve based on the FEA result and experimental test result was planned to set up which can be used as a judgment basis when predict the fatigue life of wheel based on FEA result in the future. Using a wheel structure designing process as an example, from the original design, FEA, weight optimization ways to final design, several typical way to optimize the weight were described. A target weight of weight optimization on different size wheels was brought forward.
     Focus on the performance tests of wheel structure the research on FEA method was carried through in order to improve the self-determination design level. Then experiments were used to verify the FEA model. The shortage of the FEA was found. Through limited fatigue life test an applied S-N curve was going to be established based on the real material of wheel through common casting techniques. Analysis of shock response spectrum based on equivalent damnification principle was brought forward. The stress wave and stress spectrum in wheel structure during impact test were gained through frequency spectrum analysis to the test result.
引文
[1]赵玉涛,铝合金车轮制造技术[M],北京:机械工业出版社,2004
    [2]张正智,越人,国内外铝合金车轮制造业的现状与发展趋势[J],汽车研究与开发,2004(12):5-9
    [3]国内外轮毂制造业现状与趋势,http://info.pf.hc360.com/HTML/001/009/001/30664.htm.
    [4]王祖德,中国汽车车轮生产现状及展望[J],汽车与配件,2001(23):21
    [5]A.Coulibaly,B.Mutel.CAD/CAM Systems as the Basis of Integration Feature Based Technologies in Mechanical Engineering[J],International Journal of Modeling and Simulation,1998,18(1):26-35
    [6]刘文海,全球铝轮圈市场分析[J],机械工业杂志,2005,(10):117-127
    [7]刘静安,大力发展铝合金零部件产业促进汽车工业的现代化进程[J],铝加工,2005,162(3):8-17
    [8]宋春强,铝合金汽车轮毂的市场需求与发展趋势[J],铝加工,2006,171(5):5-8
    [9]J.Wesson,Colorful Future for Aluminum Wheels[J],Products Finishing,1986,51(3):54-58
    [10]李平化,周华祥,龙华等,铝车轮设计的有限元分析[J],装备制造技术,2006(4):85-86,99
    [11]谭继锦,汽车有限元法[M],北京:人民交通出版社,2005
    [12]杜宏云,施红星,计算机辅助工程CAE在汽车开发中的应用与发展[J],交通标准化,2004(4):39-41
    [13]姜晋庆,张铎,结构弹塑性有限元分析法[M],北京:宇航出版社,1990
    [14]杨鼎宁,邹经湘,盖登宇,计算机辅助工程(CAE)及其发展[J],力学与实践,2005,27(3):7-16
    [15]崔俊芝,计算机辅助工程(CAE)的现在和未来[J],计算机辅助设计与制造,2000,(6):3-7
    [16]李裕春,时党勇,赵远,ANSYS 10.0/LS-DYNA基础理论与工程实践[M],北京:中国水利水电出版社,2006
    [17]J.Stearns,T.S.Srivatsan,A.Prakash,et al.Modeling the mechanical response of an aluminum alloy automotive rim[J],Materials Science and Engineering A366,2004:262-268
    [18]崔胜民,杨占春,汽车车轮疲劳寿命预测方法的研究[J],机械强度,2002,24(4):617-619
    [19]Haruyuki KONISHI,Akibumi FUJIWARA,Toshihiro KATSURA,et al.Impact Strength of Aluminum Wheel(Influence of Disk and Rim Rigidity on the JWL Impact Strength of Aluminum Wheel)[J],日本机械学会论文集,1996,62(7):2884-2890
    [20]R.Richter,Destructive Testing of Aluminum Wheels[C],SAE Paper No.700444,1970
    [21]Pat Glance,Automotive Road Wheel Analysis Tools[C],SAE Paper No.790711,1979
    [22]E.H.Lund,An Efficient Approach for Considering Durability Schedules in the Structural Optimization of Ground Vehicles[J].SAE,1994,2(52):171-175
    [23]T.J.Brown,The Design of Passenger Car Cast Aluminum Wheels[C],SAE Paper No.830016,1983
    [24]R Reipert,Optimization of an Extremely Light Cast Aluminum Wheel Rim[J],International Journal of Vehicle Design,1985,6(4-5):509-513
    [25]D.C.Wei,Rim Section Fatigue Results of Aluminum and Steel Wheels[C],SAE Paper No.820341,1982
    [26]G.Fischer,V.Grubisic,Fatigue Behavior of Cast Aluminum Wheels for Commercial Vehicles[J],Automobiltechnische Zeitschrift,1985,87(2):67-73
    [27]Roger S.Simpson,David R.McCagg,Effects of Peening on Fatigue Life of Wrought SAE 5454 Aluminum Automotive Road Wheels[C],SAE Paper No.850539,1985
    [28]H.M.Karandikar,Willi Fuchs,Fatigue Life Prediction for Wheels By Simulation of the Rotating Bending Test[C],SAE Paper No.900147,1990
    [29]S.Dhar,Fracture Analysis of Wheel Hub Fabricated From Pressure Die Cast aluminum alloy[J],Theoretical and Applied Fracture Mechanics,1988,9(1):45-53
    [30]S.C.Kerr,D.L.Rusell.FE-Based Wheel Fatigue Analysis Using MSC.FATIGUE[J],1# MSC Worldwide Automotive Conference.Munich Germany,1999
    [31]U.Kocabicak,M.Firat.Numerical analysis of wheel cornering fatigue tests[J],Engineering Failure Analysis,2001(8):339-354
    [32]U.Kocabicak,M.Firat.A simple approach for multiaxial fatigue damage prediction based on FEM post-processing[J],Material and Design,2004,(25):73-82
    [33]M.Firat,U.Kocabicak,Analytical durability modeling and evaluation- complementary techniques for physical testing of automotive components[J],Engineering Failure Analysis,2004,11(04):655-674
    [34]H.Akbulut.An optimization of a car rim using finite element method[J],Finite Elements in Analysis and Design,2003,39(5-6):433-443
    [35]K.N.Smith,P.Watson,T.H.Topper,Stress-strain function for the fatigue of metals[J],Journal of Materials,1970,5(4):767-778
    [36]M.Stuky,M.Richard,Influence of surface quality on fatigue behavior of A1-Si7-Mg type alloys[J],Mater Sci Forum,1996:1389-1394
    [37]Q.G.Wang,D.Apelian,D.A.Lados,Fatigue Behavior of A356-T6 Aluminum Cast Alloys:Part Ⅰ Effect of Casting Defects[J],J.of Light Metals,2001,1(1):73-84
    [38]P.F.Li,D.M.Maijer,T.C.Lindley,P.D.Lee,A validated model of the cyclic stress state of an A356 automotive wheel and its impact on fatigue life[C].San Antonio,TX,United States:Minerals,Metals and Materials Society,Warrendale,PA 15086,United States,2006.pp.73-80
    [39]Y.L.Hsu,M.S.Hsu,Weight reduction of aluminum disc wheels under fatigue constraints using a sequential neural network approximation method[J],Computers in Industry,2001,46(2):167-179
    [40]T.Mizoguchi,H.Nishimura,K.Nakata,J.Kawakami,Stress Analysis and Fatigue Strength Evaluation of Sheet Fabricated 2-Piece Aluminium Wheels for Passenger Cars[J],Kobe Research and Development,1982,32(2):8-12
    [41]Conle F A,Chu C C.Fatigue analysis and the local stress-strain approach in complex vehicular structures[J],International Journal of Fatigue,1997,19(1):317-323
    [42]C.Berger,K.-G.Eulitz,P.Heuler,K.-L.Kotte,H.Naundorf,W.Schuetz,C.M.Sonsino,A.Wimmer,H.Zenner,Betriebsfestigkeit in Germany-an overview[J],International Journal of Fatigue,2002,24(6):603-625
    [43]Y.-L.Lee,J.Pan,R.B.Hathaway,M.E.Barkey,Fatigue Testing and Analysis-Theory and Practice[M],Elsevier,2005
    [44]张斌,汽车车轮有限元分析与抗疲劳设计,硕士学位论文,哈尔滨:哈尔滨工业大学,2003
    [45]王霄锋,王波,赵震伟等,汽车车轮结构强度分析[J],机械强度,2002,24(01):066-069
    [46]赵震伟,王波,应用有限元软件指导车轮的结构改进[J],机械设计与制造,2000,(05):27-28
    [47]翁运忠,张小格,载货车车轮轮辐结构优化分析[J],汽车科技,2002,(01):18-20
    [48]齐铁力,王立辉,李海鹏等,汽车车轮的强度分析及优化设计[J],河北工业大学学报,2002,3l(05):95-98
    [49]李海鹏,王立辉,铝合金汽车车轮的优化设计[J],CAD/CAM与制造业信息化,2003,(08):35-37
    [50]崔青玲,赵民,刘相华,王国栋,两种车轮轮辐结构的强度比较[J],机械设计与制造,2004.(03):74-75
    [51]韦倾,李尚平,陈伟叙,徐武彬,轿车车轮钢圈疲劳寿命的有限元分析[J],机械工程师,2007,(02):68-70
    [52]刘春海,铝合金车轮弯曲疲劳性能试验分析与评价[J],黄金学报,2000,2(3):173-175
    [53]周荣,刘继承,崔胜民,赵桂范,汽车车轮弯曲疲劳试验计算机仿真[J],汽车研究与开发,2000,(01):31-33
    [54]杨占春,汽车车轮疲劳寿命预测与优化设计,硕士毕业论文,哈尔滨工业大学,1998
    [55]杨占春,崔胜民,赵桂范,用改进的史密斯公式预测汽车车轮疲劳寿命[J],哈尔滨工业大学学报,2000,32(06):100-102
    [56]Y.L.Hsu,S.G.Wang,T.C.Liu,M.S.Hsu,Prediction of fatigue failures of aluminum disc wheels using the failure probability contour based on historical test data[J],Journal of the Chinese Institute of Industrial Engineers 2004,21(6):551-558
    [57]王颂泰等,摩托车轻合金车轮径向冲击试验有限元方法研究[J],汽车技术,1999,(11)
    [58]张治国等,弹性车轮瞬态动力响应的有限元仿真方法研究[J],北方交通大学学报,2003,27(01):25-27.35
    [59]#12
    [60]Konishi,H.;Fujiwara,A.;Katsura,T.,Takeuchi,K.;Nakata,M.,Impact Strength of Aluminum Wheel:Influence of Disk and Rim Rigidity on the JWL Impact Strength of Aluminum Wheel [J],Transactions of the Japan Society of Mechanical Engineers.C,1996,62(599):2884-2890
    [61]Konishi,H;Fujiwara,A;Katsura,T;Nakata,M;Takeuchi,K;Sakamoto,S.,Impact Strength of Aluminum Disk Wheel[J],Kobe Steel Engineering Reports,1997,47(2):25-28
    [62]Charles J.Russo,The Design and Processing of Cast Aluminum Wheels for Impact Performance[C],SAE Paper No.2001-01-0749
    [63]R.Shang,W.Altenhof,N.Li,H.Hu,Wheel impact performance with consideration of material inhomogeneity and a simplified approach for modeling[J],International Journal of Crashworthiness,2005,10(2):137-150
    [64]尤炳良,对摩托车铝合金车轮强度性能指标标准的几点修改意见[J],摩托车技术,2007,(01):42-45
    [65]张子才,摩托车铝合金车轮冲击试验研究[J],摩托车技术,2006,(11):24-28
    [66]陆仕平,段军,周峰,摩托车铝合金车轮的有限元分析[J],摩托车技术,2006,(11):30-32
    [67]R.Shang,N.Li,W.Altenhof,H.Hu,Dynamic side impact simulation of aluminum wheels incorporating material property variations[C].Charlotte,NC,United States:Minerals,Metals and Materials Society,Warrendale,PA 15086,United States,2004.pp.73-83
    [68]姜风春,刘瑞堂,刘殿魁,动应力强度因子响应特性的理论分析[J],振动工程学报,2000,13(4):650-654
    [69]贾莉,王林,冲击载荷下桥梁损伤有限元仿真[J],江苏科技大学学报(自然科学版),2008,22(1):26-29
    [70]李伟森,张冬冬,王丹丹等,冲击响应谱分析[J],绿色质量工程,2008,(05):57-59
    [71]罗艾民,林大能,潘国斌,建筑物塌落体触地冲击力计算方法研究[J],西安科技学院学报,2002,22(3):268-271
    [72]杨立军,吴晓,重物撞击圆板时的冲击力计算研究[J],动力学与控制学报,2005,3(2):71-75
    [73]韩学平,芮筱亭,洪俊等,引信惯性部件坠落动力学试验分析及数值仿真[J],系统仿真学报,2008,20(8):1990-1993
    [74]苗同臣,张艳艳,赖永星,石油钻机井架的冲击响应分析[J],石油机械,2008,36(5):8-10
    [75]符朝兴,王秀伦,螺旋弹簧悬架车辆振动的波动理论建模及频响分析[J],机械工程学报,2005,41(5):54-59
    [76]许文才,向明,连续冲击载荷对包装产品的影响[J],振动与冲击,2001,20(3):26-28
    [77]王延斌,魏雪英,俞茂宏,简支圆板在冲击荷载作用下的塑性动力响应分析[J],振动工程学报,2003,16(4):435-441
    [78]孟宗,刘彬,时培明,基于EMD和HT的轧机瞬态振动信号时频分析[J],燕山大学学报,2008,32(2):110-114
    [79]张鹏,周德源,基于ANSYS/LS-DYNA的护栏冲击模拟分析精度研究[J],振动与冲击,2008,27(4):147-152,163
    [80]管迪华,吴卫东,轮胎动特性试验模态分析[J],汽车工程,1995,17(06):328-333
    [81]管迪华,刘德文,轮胎结构动特性的试验模态分析[J],振动与冲击,1996,15(1):60-67
    [82]赵文奇,陈顺雄,李万琼,轮胎振动模态研究[J],工程力学,1998,15(3):105-109
    [83]安晓卫,马星国,汽车车架的有限元模态分析[J],沈阳工业学院学报,1999,18(4):8-12
    [84]杨学贵,赵树高,子午线轮胎振动模态的有限元分析[J],振动与冲击,2000,19(1):29-31
    [85]王文静,刘志明,基于实验模态的结构应变模态分析[J],北方交通大学学报,2000,24(4):20-23,28
    [86]白秀荣,王卫防,利用有限元进行轮胎模态分析的新方法[J],轮胎工业,2001,21(7):401-404
    [87]管迪华,孙永伶,利用模态分析技术获取轮胎的模态参数[J],汽车工程,2001,23(3):148-151
    [88]管迪华,董培蕾,轮胎自由与约束悬置的模态试验与综合分析[J],汽车工程,2003,25(4):353-359
    [89]朱剑月,沈培德,B2型地铁车辆铝合金车体模态分析[J],城市轨道交通研究,2005,(1):35-37
    [90]李曙生,CL250T摩托车车架动态特性的试验模态分析[J],机械设计与制造,2005,(11):38-40
    [91]陶柯,毕树国,基于模态分析法的汽车告诉轮胎试验机机架研究[J],机械研究与应用,2005,18(5):36-37
    [92]孙永鹏,KZ4A型机车车轮强度计算和轮对模态分析[J],电力机车与城轨车辆,2005,28(5):27-30
    [93]许岚,龚曙光,基于有限元风机轮毂结构形状优化与模态分析[J],现代制造工程,2005,(12):3
    [94]Zang,M.Imregun.Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection[J],Journal of Sound and Vibration,2001,5(242):813-827
    [95]Lee.Joon-Ho,Lee.Young-Hwan,Kim.Dong-Hun,Lee.Ki-Sik,Park.Ⅱ-Han,Dynamic vibration analysis of switched reluctance motor using magnetic charge force density and mechanical analysis[J],17th Annual Conference on Magnet Technology,Geneva,2002,12(1):1511-1514
    [96]Cai.Wei,Pillay.Pragasen,Tang.Zhangjun,Impact of stator windings and end-bells on resonant frequencies and mode shapes of switched reluctance motors[J],IEEE Transactions on Industry Applications,2002,38(4):1027-1036
    [97]Fleischer.Michael,Modal state control in the frequency domain for active damping of mechanical vibrations in traction drive-trains[J],8th IEEE International Workshop on Advanced Motion Control(AMC04),Kawasaki(Japan),2004:171-176
    [98]K.N.Srinivas,R.Arumugam,Static and dynamic vibration analyses of switched reluctance motors including bearings,housing,rotor dynamics,and applied loads[J],IEEE Transactions on Magnetics,2004,40(41):1911-1919
    [99]B.Schulte-Werning,M.Beier,K.G.Degen,Research on noise and vibration reduction at DB to improve the environmental friendliness of railway traffic[J],Journal of Sound and Vibration,2006,3(293):1058-1069
    [100]Bowe,T.P.Mullarkey,Wheel-rail contact elements incorporating irregularities[J],Advances in Engineering Software,2005,11(36):827-837
    [101]X.S.Jin,Z.F.Wen,K.Y.Wang,Three-dimensional train-track model for study of rail corrugation[J],Journal of Sound and Vibration,2006,3(293):830-855
    [102]Alfredo C igada,Stefano Manzoni,Marcello Vanali,Vibro-acoustic characterization of railway wheels[J],Science direct,2007,(10):1-16
    [103]P.Li,D.M.Maijer,T.C.Lindley,P.D.Lee,A through process model of the impact in-service loading,residual stress,and the microstructure on the final fatigue life of an A356 automotive wheel[J],Materials science and Engineering A 460-461(2007) 20-30
    [104]任山,朱其文,杜天强,车车轮性能试验方法及标准[J],天津汽车,2003,(2):21-25
    [105]吴诰珪,汽车结构计算的有限元法[M],广州:华南理工大学出版社,1993
    [106]张洪武,关振群,李云鹏,顾元宪,有限元分析与CAE技术基础[M],北京:清华大学出版社,2004
    [107]高卫民,王宏燕,洪善桃,汽车结构力学与有限元计算[M],上海:同济大学出版社,2002
    [108]ISO 3006,Road vehicles-Passenger car wheels for road use-Test methods[S],2005
    [109]SAE J1099,Technical report on low cycle fatigue properties ferrous and non-ferrous materials[S],1998
    [110]GB-T 5334,乘用车车轮性能要求和试验方法[S],2005
    [111]吴晓宇,吴清文,杨洪波等,对有限元分析结果判定方法的探讨[J],机械设计与研究, 2003,(6):13-15
    [112]闫胜昝,童水光,朱训明,轮胎充气压力对摩托车车轮应力分布的影响[J],摩托车技术,2006,(11):20-22
    [113]钟翠霞,铝合金车轮设计及结构分析,硕士学位论文,浙江大学,2006
    [114]王波,管迪华,汽车钢圈多轴疲劳寿命预计[J],汽车工程,2002,24(2):119-121,129
    [115]马晓青,冲击动力学[M],北京:北京理工大学出版社,1992梨刚果,张锡恩,王磊,刘于端,导弹起竖臂的静动态有限元分析[J],先进制造技术,2006,25(2):35-37
    [117]金晓娜,赵斌,基于有限元技术的推靠臂的静力与模态分析[J],辽宁石油化工大学学报,2008,28(2):39-43
    [118]翁运忠,张小格,载货车车轮轮辐结构优化分析[J],汽车科技,2002,(1):18-20
    [119]崔胜民,杨占春,基于有限元分析的汽车车轮结构优化设计[J],机械设计,2001,(9)
    [120]Riesner M,De Vries R I,Finite element analysis and structural optimization of vehicle wheels,SAE technical paper 830133.Warrendale,Pennsylvania,U.S.A.:Society of Automotive Engineer,Inc.,1983.1-18
    [121]Ridha R A,Finite element stress analysis of automotive wheels,SAE technical paper 760085.Warrendale,Pennsylvania,U.S.A.:Society of Automotive Engineer,Inc.,1976.1-8
    [122]邱新桥,熊燕,汽车车轮失效判据的研究[J],汽车研究与开发,1998(2):27-29
    [123]王勖成,邵敏,有限单元法基本原理和数值分析[M],北京:清华大学出版社,1997
    [124]R courant,Varaiational Methods for the Solution of Problems of Equilibrium and Vibrations[J],Bulletin of the American Mathematical Society,1943,49
    [125]M J Turner,R W Clough,C Martin,et.Stiffness and Deflection Analysis of Complex Structures[J],JaeraS,1956,23(9)
    [126]R W Clough,The Finite Element Method in Plane Stress Analysis[J].Proceedings of the Second Conference on Electronic Computation,American society of Civil Engineers,New York,1960
    [127]费庆国,张令弥,李爱群,郭勤涛,基于统计分析技术的有限元模型修正研究[J],振动与冲击,2005,24(03):23-25
    [128]唐照千,黄文虎,振动与冲击手册(第一卷)[M],北京:国防工业出版社,1988
    [129]王霄锋,梁昭,张小格,基于动态弯曲疲劳试验的汽车车轮有限元分析[J],拖拉机与农用运输车,2007,34(01):45-47
    [130]曹妍妍,赵登峰,有限元模态分析理论及其应用[J],2007,(1):73-74
    [131]管迪华,模态分析技术[M],北京:清华大学出版社,1999
    [132]张先刚,朱平等,摩托车车架的动态特性分析及其减振优化研究[J],2004年MSC.Software 中国用户论文集
    [133]邓丽梅,邓亚东,赵宁等,轻型货车车身有限元模态分析与优化设计[J],机械制造,2008,46(523):8-9
    [134]岳译新,林文君,雷挺,地铁铝合金车体模态和稳定性有限元分析[J],机械,2008,35(4):20-22
    [135]傅志方,振动模态分析与参数识别[M],北京:机械工业出版社,1990:417-430
    [136]李小雷,机械振动基础[M],北京:北京理工大学出版社,1996
    [137]傅志方,模态分析理论与应用[M],上海:上海交通大学出版社,2000
    [138]赵少汴,王忠保,疲劳设计[M],北京:机械工业出版社,1992
    [139]姚卫星,结构疲劳寿命分析[M],北京:国防工业出版社,2003
    [140]Conle F A,Chu C C.Fatigue analysis and the local stress-strain approach in complex vehicular structures[J],International Journal of Fatigue,1997,19(1):317-323
    [141]C.Berger,K.-G.Eulitz,P.Heuler,K.-L.Kotte,H.Naundorf,W.Schuetz,C.M.Sonsino,A.Wimmer,H.Zenner,Betriebsfestigkeit in Germany-an overview[J],International Journal of Fatigue,2002,24(6):603-625
    [142]JIS D4103,Automobile parts-Disc wheels-Performance requirements and making[S],1998
    [143]G.Sines,G.Ohgi,Fatigue criteria under combined stresses or stains[J],Journal of Engineering Materials and Technology,1981,103(2):82-90
    [144]李惠彬,振动理论与工程应用[M],北京:北京理工大学出版社,2006
    [145]Zefeng Wen,Xuesong Jin,Weihua Zhang,Contact-impact stress analysis of rail joint region using the dynamic finite element method[J],Wear 258(2005) 1301-1309
    [146]Wu Cai,Zefeng Wen,Xuesong Jin,Wanming Zhai,Dynamic stress analysis of rail joint with height differenc defect using finite element method[J],Engineering failure analysis 14(2007)1488-1499
    [147]T.X.Wu,On initial condition of transformation for response calculation using modal analysis method with application to wheel/rail impact[J],Journal of sound and vibration 274(2004)1093-1102
    [148]廖伯瑜,周新民,尹志宏,现代机械动力学及其工程应用:建模、分析、仿真、修改、控制、优化[M],北京:机械工业出版社,2003
    [149]R.C.Juvinall,Engineering Considerations of Stress,Strain,and Strength[M],New York:McGraw-Hill,1967
    [150]王礼立,余同希,李永池,冲击动力学进展[M],合肥:中国科学技术大学出版社,1992
    [151]肖雁,王成,杜平安,瞬态冲击载荷作用下某装置失效分析及数值仿真[J],机械,2006,33(08):11-12,15
    [152]汽车工程手册:摩托车卷[M],北京:机械工业出版社,2000
    [153]杨明,张秀良,闰浩,模态分析理论在汽轮发电机试验中的应用[J],吉林电力,2004,6:48-50
    [154]曹树谦,张文德,振动结构模态分析:理论、实验与应用[M],天津:天津大学出版社,2001:3
    [155]K.S.Tan,S.V.Wong,R.S.Radin Umar,et al.An experimental study of deformation behavior of motorcycle front wheel-tyre assembly under frontal impact loading[J],International Joumal of Impact Engineering,2006,(32):1554-1572
    [156]王清远,材料力学实验[M],成都:四川大学出版社,2007
    [157](日)管野昭,杨秉宪翻,应力实验分析[M],北京:中国铁道出版社,1990
    [158]张如一,沈观林,潘真微,实验应力分析实验指导[M],北京:清华大学出版社,1982
    [159](美)达利,(美)赖利,实验应力分析[M],北京:海洋出版社,1987
    [160]刘鸿文,材料力学实验[M],北京:高等教育出版社,1992
    [161]G.Taguchi,System of experimental design[M],Kraus International Publications,NewYork,1987
    [162]吴贵生,试验设计与数据处理[M],北京:冶金工业出版社,1997
    [163]郭勤涛,张令弥,以冲击响应谱为响应特征的有限元模型确认[J],振动与冲击,2005,24(06):32-36
    [164]郝志勇,赵骞,跨骑式摩托车有限元动态特性分析[J],机械设计,2002,(1):45-49
    [165]马晓建等,机械装备中跌落物冲击信号的恢复[J],振动与冲击,2001,20(1):31-33
    [166]邢天虎等,力学环境试验技术[M],西安:西北工业大学出版社,2003
    [167]苏新宁等,数据仓库和数据挖掘[M],北京:清华大学出版社,2006,115-134
    [168]Jiawei Han Micheline Kamber著,范明,孟晓峰等译,数据挖掘概念与技术[M],北京:机械工业出版社,2001
    [169]Daniel T.Larose,Data Mining Methods and Models[M],John Wiley & Sons,Hoboken,New Jersey,2006
    [170]冯欢欣等,基于神经网络计算的数据挖掘方法研究[J],大众科技,2006,(08)
    [171]张青贵,人工神经网络导论[M],北京:中国水利水电出版社,2004
    [172]Mehmed Kantardzic著,闪四清等译,数据挖掘.概念、模型、方法和算法[M],北京:清华大学出版社,2001
    [173]单潮龙等,BP人工神经网络的应用及其实现技术[J],海军工程大学学报,2000,(04)
    [174]邵峰晶等,数据挖掘原理与算法[M],北京:中国水利水电出版社,2003
    [175]朱大奇等,人工神经网络原理及应用[M],北京:科学出版社,2006
    [176]高峰等,基于神经网络的数据挖掘综述[J],信息与控制,1999,Vol.28增刊(8月)
    [177]张德锋等,数据挖掘技术[J],航空计算技术,2005,35(03)
    [178]徐显胜,有限元法在铝合金车轮优化设计中的应用[J],摩托车技术,1996,(11):6-9
    [179]李海鸥,王立辉,铝合金汽车车轮的优化[J],CAD/CAM与制造业信息化,2003,(08)
    [180]刘敏,车轮加工工艺的优化[J],马钢科研,2001,(01):38-42
    [181]Y.H.Kim,T.K.Ryou,H.J.Choi,B.B.Hwang,An analysis of the forging processes for 6061aluminum-alloy wheels[J].Journal of Materials Processing Technology,2002,123(2):270-276
    [182]陈宗民,王卫国,莫德秀,铸造质量控制中的数理统计方法[J],山东理工大学学报(自然科学版),2004,18(02)
    [183]Hitoshi Kume,Statistical Methods for Quality Improvement[M],Tokyo:3A Corporation,2000
    [184]Yoshinobu Nayatani,Seven New QC Tools[M],Tokyo:3A Corporation,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700