用户名: 密码: 验证码:
天然属性抗氧化低密度脂蛋白IgM亚类抗体在动脉粥样硬化中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     动脉粥样硬化是慢性炎症性疾病。高脂血症时,血浆低密度脂蛋白(LDL)进入动脉壁氧化成为氧化低密度脂蛋白(oxLDL),被巨噬细胞吞噬后转化为泡沫细胞,发生动脉粥样硬化。既往研究证实,天然属性IgM亚类抗体通过封闭oxLDL与巨噬细胞结合的表位,抑制巨噬细胞对oxLDL的吞噬,从而降低泡沫细胞与动脉粥样硬化斑块的形成。临床研究发现血清高浓度脂多糖/LPS与动脉粥样硬化发病密切相关,但机理尚不十分明确。
     目前还没有关于高脂饮食饲养的正常小鼠是否能够诱导产生天然属性抗氧化低密度脂蛋白IgM亚类抗体,从而能影响动脉粥样硬化发生发展;体内或者体外应用这些天然抗体是否有保护作用;以及在LPS血清浓度升高提高动脉粥样硬化的发病过程中,这些天然抗体是否参与尚未见报道。基于以上,我们设计并完成了相关实验。
     目的:
     1.制备并鉴定天然属性的抗LDL及抗oxLDL IgM亚类抗体,为研究LDL和oxLDL及其天然抗体在动脉粥样硬化发生发展中的作用奠定基础。
     2.探讨天然属性的抗oxLDL IgM亚类抗体对巨噬细胞与oxLDL结合的影响,了解其在动脉粥样硬化发病机制中的作用。
     3.以apoE基因敲除小鼠为研究对象,复制动脉粥样硬化模型,研究天然属性抗oxLDL IgM亚类抗体对apoE基因敲除小鼠血脂、血oxLDL和主动脉粥样硬化斑块形成的影响。
     4.探讨脂多糖活化对巨噬细胞与oxLDL结合的影响,了解脂多糖活化对天然IgM亚类抗体在动脉粥样硬化中的保护作用的破坏机理,进一步了解天然抗体在动脉粥样硬化中的作用。
     方法:
     1.给予饲养在无特殊病原体条件下Babl/c小鼠高胆固醇饮食,4周后取脾细胞直接与SP2/0细胞融合,以纯化的LDL及oxLDL为抗原对阳性杂交瘤细胞生长孔进行间接ELISA筛选。鉴定杂交瘤上清的免疫球蛋白亚类、亚型,进而采用免疫印迹、免疫沉淀法和ELISA法对获得的抗体进行免疫学反应性鉴定。
     2.体外培养小鼠巨噬细胞系;纯化IgM抗体3A6并将其与Na125I标记的oxLDL作用形成免疫复合物。通过油红O染色及细胞结合同位素标记oxLDL,以观察3A6对巨噬细胞对oxLDL吞噬的封闭作用。
     3. 18只8周龄apoE基因敲除小鼠随机分为对照组(腹腔注射PBS/2ml/周);5G8组:(腹腔注射天然属性抗低密度脂蛋白IgM亚类抗体5G8/10μg/g体重,2ml/周)和3A6组(腹腔注射天然属性抗氧化低密度脂蛋白IgM抗体3A6/10μg/g体重,2ml/周)。高脂饲料饲养16周后行处死,分离血清,测定血清脂质含量及血浆oxLDL含量,小鼠原位灌注固定,石蜡包埋,连续切片,HE染色,对各个切面的动脉粥样斑块面积进行分析。
     4. LPS刺激巨噬细胞后,通过油红O染色及细胞结合同位素标记oxLDL,观察IgM抗体3A6在LPS活化巨噬细胞情况下对oxLDL吞噬地影响。分别利用TLR4的中和性单抗, p38MAPK阻抑剂SB203580和NF-κB阻抑剂PDTC作用及Fcα/μ受体进行RNA干扰后,利用实时定量RT-PCR和流式细胞术观察Fcα/μ受体mRNA转录及蛋白表达情况。
     结果:
     1.杂交瘤细胞分泌的抗LDL及抗oxLDL的天然抗体通过ELISA法被筛选出来,可以与LDL或oxLDL发生高亲和力结合,经过4次克隆化,最终获得2株稳定分泌天然属性抗LDL抗体,命名为5G8和2H7,及1株稳定分泌天然属性抗oxLDL抗体,命名为3A6,3株抗体均属于IgM亚类,无交叉反应,可以满足免疫印迹、免疫沉淀、ELISA等实验要求。
     2.天然属性抗oxLDL IgM亚类抗体3A6,在体外试验中能够抑制巨噬细胞与铜氧化的LDL的结合,从而降低泡沫细胞的形成。
     3. apoE基因敲除小鼠高脂饲料喂养16周后,三组之间的各项血脂及oxLDL含量无明显差异;HE染色结果显示:三组均出现动脉粥样硬化斑块,但3A6组可显著降低胸主动脉斑块面积和校正面积,与对照组和5G8组比较差异有显著性。
     4. 3A6不能抑制脂多糖活化的巨噬细胞对铜氧化的LDL的结合,并且促进铜氧化的LDL介导的泡沫细胞的生成。我们分别利用3A6 F(ab′)2、Fcα/μ受体RNA干扰或者利用不识别oxLDL的IgM抑制了oxLDL-IgM与脂多糖活化的巨噬细胞的结合,意味着Fcα/μ受体对这个过程是起作用的。同时,脂多糖促进Fcα/μ受体的表达有时间和剂量的依赖性,TLR4特异性中和抗体的封闭作用可减少LPS的作用。另外,脂多糖诱导的p38MAPK磷酸化和NF-κB 65的转位促进了Fcα/μ受体表达的上调。当使用p38MAPK阻抑剂SB203580和NF-κB阻抑剂PDTC,可降低了Fcα/μ受体表达的上调。
     结论:
     1.抗LDL及抗oxLDL IgM亚类单抗的制备为研究天然抗体在体内脂质代谢和相关心脑血管疾病如动脉粥样硬化等发生发展中的作用提供了重要的研究工具。
     2.天然属性抗oxLDL IgM亚类抗体3A6降低了泡沫细胞的形成,可能对动脉粥样硬化形成有预防作用。
     3.天然属性抗oxLDL IgM亚类抗体3A6对apoE基因敲除小鼠血脂及血浆oxLDL含量无明显影响;但对apoE基因敲除小鼠胸主动脉粥样硬化斑块形成有抑制作用。
     4. 3A6不能抑制脂多糖活化的巨噬细胞对oxLDL的摄取,并且通过其Fc段与巨噬细胞的结合而促进了oxLDL介导的泡沫细胞的生成。脂多糖通过TLR-4受体活化了p38MAPK和NF-κB通路,并且上调了Fcα/μ受体在巨噬细胞表面的表达。
     5.我们的研究结果证实了LPS浓度升高加重动脉粥样硬化形成的内在机制。
Background
     Atherosclerosis is now widely recognized as a chronic inflammatory disease. In condition of high blood lipids, plasma Low-density lipoprotein (LDL) infiltrates into the artery wall and becomes oxidized LDL (oxLDL); oxLDL is uptaken by macrophages and macrophages transform into foam cells, which can cause dramatic atherosclerotic effect. A number of in vitro studies have suggested that these IgM antibodies blocked the uptake of oxLDL by macrophages and thus could prevent foam cells formation in vivo. Clinic researches proved that chronic infection (serum high level lipopolysaccharide) had close relationship with atherosclerosis pathogenesis, but the mechanisms were not clear.
     No data were released of whether the normal mice fed with high fat diet produced natural antibodies against oxLDL to influence development of atherosclerosis and whether these natural antibodies played protective roles when applied in vitro or in vivo, and whether these auto-antibodies were involved during course of increased mortality of atherosclerosis induced by increased infection. Based on the above, we designed and fulfilled the following experiments.
     Objective:
     1. To Generate and identify the production of natural mouse IgM monoclonal antibodies(mAbs) against LDL and oxLDL with high specificity and activity and establish foundation for the research on LDL and oxidized oxLDL and natural antibody in atherosclerosis progression.
     2. To explore the role and the exact molecular mechanisms of natural anti-oxLDL IgM monoclonal antibody played and involved in pathogenesis of atherosclerosis underlying the action of IgM antibody in the binding of oxLDL to macrophages.
     3. By applying apoE gene knock-out mice as the animal model ,artherosclerosis was induced by high fat food.Experiments were executed on purpose to study the effects of natural anti-oxLDL antibody 3A6 on serum lipids, blood plasma oxLDL and lesion of apoE gene knock-out mice.
     4. To explore the role and the exact molecular mechanisms of natural anti-oxLDL IgM monoclonal antibody on pathogenesis of atherosclerosis underlying the action of bacterial lipopolysaccharide (LPS) activation in the binding of oxLDL to macrophages.
     Methods:
     1. BALB/c mice were breed in specific pathogen free conditions and fed with high cholesterol diet; the splenocytes from these mice were directly fused with Sp2/0 myeloma cells by using standard hybridoma production techniques. Hybridomas were selected on the basis of the supernatant’s ability to bind with native LDL and oxLDL in ELISA. Selected hybridomas were identified by Western blot, Immunoblotting and ELISA.
     2. Murine macrophage cell line RAW-264.7 was cultured in vitro. OxLDL specific monoclonal antibody 3A6 with IgM isotype was purified and utilized to form complex with Na125I-conjugated oxLDL. Influence of 3A6 on formation of foam cells was observed by Oil Red O staining and the affinity of Na125I-conjugated oxLDL.
     3. 18 apoE gene knock-out mice at the age of 8 weeks were randomly divided into 3 groups:the control group (PBS was intraperitoneal injected 2ml once per-week); 5G8 group(5G8 was intraperitoneal injected 10μg/g weight,2ml per-week) and 3A6 group(3A6 was intraperitoneal injected 10μg/g weight,2ml per-week),then all of the animal were euthanized after fed by high fat food for 16 weeks. Blood was sampled from the eye.The serum lipids and blood plasma oxLDL was detected.Tissue was fixed by in situ liquid flow.Thoracic aorta harvested and fixed in 10% formalin,followed by paraffin imbedding,serial sections,and HE staining. The area of aortic AS plaque in every sectioned was analyzed.
     4. After LPS stimulation on macrophages, anti-TLR4 neutralizing mAb, p38MAPK specific inhibitor SB203580,NF-κB specific inhibitor PDTC or RNAi targeting Fcα/μreceptor were applied, respectively. The mRNA transcription and protein expression of Fcα/μreceptor in macrophages were studied by real-time RT-PCR and flow cytometry. Similarly, influence of 3A6 on formation of foam cells was observed by Oil Red O staining and the affinity of Na125I-conjugated oxLDL.
     Results:
     1. Resulting hybridomas producing anti-LDL and anti-oxLDL antibodies were screened by enzyme-linked immunosorbent assay (ELISA) and isotyped. As a result, two hybridoma cell lines, named 5G8 and 2H7 were developed, which could screte anti-LDL MAbs stably, and one hybridoma cell lines, named 3A6 was developed, which could screte anti-oxLDL MAbs stably. All of them belonged to IgM subclass, no cross reactions were found between these MAbs. The specificity of MAb was determined based on its activity in Western blot, Immunoblotting and ELISA analysis.
     2. Natural anti-oxLDL IgM monoclonal antibody 3A6 specifically inhibited the binding of CuoxLDL to na?ve macrophages in vitro.
     3. After the apoE gene knock-out mice being fed with high fat diet for 16 weeks,there was no significant difference in serum lipids and blood plasma oxLDL among 3 groups, but obvious atherosclerotic lesion was found in their aortic root. The HE staining indicated that the thoracic aorta plaque area and correct area of the apoE-/-+3A6 group were significant reduced than the apoE-/-+PBS group and the apoE-/-+5G8 group.
     4. 3A6 failed to inhibit the binding of CuoxLDL to LPS-activated macrophages and promoted the formation of CuoxLDL-mediated foam macrophages. Furthermore, 3A6 F (ab′) 2 or pre-incubation with un-related IgM inhibited the binding of 3A6/CuoxLDL complex to LPS-activated macrophages, suggesting that the Fcα/μreceptor may be responsible for the binding of 3A6/CuoxLDL complex to LPS-activated macrophages. Indeed, LPS up-regulated the expression of Fcα/μreceptor in macrophages in a dose- and time-dependent manner, which was diminished by treatment with anti-TLR4 neutralizing mAb. In addition, LPS induced the phosphorylation of p38MAPK and translocation of NF-κB p65, contributing to the up-regulated expression of Fcα/μreceptor in macrophages as treatment with specific inhibitor for p38MAPK (SB203580) or NF-κB (PDTC) attenuated the up-regulation of Fcα/μreceptor expression induced by LPS in macrophages.
     Conclusions:
     1. The production of natural mouse IgM monoclonal antibodies (MAbs) anti-LDL and anti-oxLDL with high specificity and activity were generated by using standard hybridoma production techniques, which could provide a potential value for the research on lipid metabolisms and atherosclerosis progression.
     2. Natural anti-oxLDL IgM monoclonal antibody 3A6 specifically inhibited the binding of CuoxLDL to na?ve macrophages and foam cell formation in vitro.
     3. Natural anti-oxLDL antibody 3A6 has no effect on serum lipids and blood plasma oxLDL of apoE gene knock-out mice, but inhibits formation of the thoracic aorta atherosclerosisas plaque.
     4. LPS, through the TLR4 receptor, activated the p38MAPK and NF-κB pathways and up-regulated the expression of Fcα/μreceptor in macrophages, which promoted the binding of 3A6/CuoxLDL complex to macrophages through binding with Fc fragments and the formation of foam macrophages.
     5. Our findings provide a new explanation why increased LPS concentration deteriorates the pathogenesis of atherosclerosis.
引文
1. Wong LK. Global burden of intracranial atherosclerosis. Int J Stroke. 2006; 1(3):158-9.
    2. Park YM, Febbraio M, Silverstein RL. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest. 2009;119(1):136-45.
    3. Lamon BD, Hajjar DP. Inflammation at the molecular interface of atherogenesis: an anthropological journey. Am J Pathol. 2008; 173(5):1253-64.
    4. Loppnow H, Werdan K, Buerke M. Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate Immun. 2008; 14(2):63-87.
    5. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl.J. Med. 1999 (340):115–126.
    6. Getz, G. S. Thematic review series. The immune system and atherogenesis: immune function in atherogenesis. J. Lipid Res. 2005(46):1–10.
    7. Binder, C. J., M. K. Chang, P. X. Shaw, Y. I. Miller, K. Hartvigsen, A. Dewan, and J. L. Witztum. Innate and acquired immunity in atherogenesis. Nat. Med. 2002(8): 1218–1226.
    8. Hansson, G. K., P. Libby, U. Schonbeck, and Z. Q. Yan. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ. Res。2002(91):281–291.
    9. Wick, G., M. Knoflach, and Q. Xu. Autoimmune and inflammatory mechanisms in atherosclerosis. Annu. Rev. Immunol . 2004(22):361–403.
    10. Ochsenbein, A. F., and R. M. Zinkernagel. Natural antibodies and complement link innate and acquired immunity. Immunol.Today. 2000(21):624–630.
    11. Binder, C. J., and G. J. Silverman. Natural antibodies and the autoimmunity of atherosclerosis. Springer Semin. Immunopathol. 2005(26):385–404.
    12. Janeway, C. A., Jr., and R. Medzhitov. Innate immune recognition.Annu. Rev. Immunol. 2002(20):197–216.
    13. Ochsenbein, A. F., T. Fehr, C. Lutz, M. Suter, F. Brombacher, H.Hengartner, and R. M. Zinkernagel. Control of early viraland bacterial distribution and disease by natural antibodies. Science. 1999(286):2156–2159.
    14. Macpherson, A. J., D. Gatto, E. Sainsbury, G. R. Harriman, H. Hengartner, and R. M. Zinkernagel. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria.Science. 2000(288):2222–2226.
    15. Baumgarth, N., O. C. Herman, G. C. Jager, L. E. Brown, L. A. Herzenberg, and J. Chen. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 2000(192):271–280.
    16. Shaw, P. X., S. H?rkk?, M. K. Chang, L. K. Curtiss, W. Palinski, G. J. Silverman, and J. L. Witztum. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity.J. Clin. Invest. 2000(105):1731–1740.
    17. Greaves, D. R., and S. Gordon. Thematic review series. The immune system and atherogenesis: recent insights into the biology of macrophage scavenger receptors. J. Lipid Res. 2005 (46):11–20.
    18. Medzhitov, R. Toll-like receptors and innate immunity. Nat.Rev. Immunol. 2001(1):135–145.
    19. Miller, Y. I., S. Viriyakosol, C. J. Binder, J. R. Feramisco, T. N. Kirkland, and J. L. Witztum. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem. 2002(278):1561–1568.
    20. Miller, Y. I., S. Viriyakosol, D. S. Worrall, A. Boullier, S. Butler, and J. L. Witztum. Toll-like receptor 4-dependent and independent cytokine secretion induced by minimally oxidized low-density lipoprotein inmacrophages. Arterioscler. Thromb. Vasc. Biol. Epub ahead of print. February 17, 2005; doi:10.1161/01.ATV.0000159891.73193.31
    21. Baumgarth, N., J. W. Tung, and L. A. Herzenberg. Inherentspecificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol. 2005 (26):347–362.
    22. Bos, N. A., C. G. Meeuwsen, H. Hooijkaas, R. Benner, B. S. Wostmann, and J. R. Pleasants. Early development of Ig-secreting cells in young of germ-free BALB/c mice fed a chemically defined ultrafiltered diet. Cell. Immunol. 1987(105):235–245.
    23. Thurnheer, M. C., A. W. Zuercher, J. J. Cebra, and N. A. Bos. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice.J. Immunol. 2003(170):4564–4571.
    24. Haury, M., A. Sundblad, A. Grandien, C. Barreau, A. Coutinho, and A. Nobrega. The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur. J. Immunol. 1997(27):1557–1563.
    25. Hashimoto, K., H. Handa, K. Umehara, and S. Sasaki. Germfree mice reared on an“antigen-free”diet. Lab. Anim. Sci. 1978(28):38–45.
    26. Herzenberg, L. A., and L. A. Herzenberg. Toward a layered immune system.Cell. 1989(59):953–954.
    27. Griendling, K. K., and G. A. FitzGerald. Oxidative stress and cardiovascular injury. Part II. Animal and human studies. Circulation. 2003(108):2034–2040.
    28. Griendling, K. K., and G. A. FitzGerald. Oxidative stress and cardiovascular injury. Part I. Basic mechanisms and in vivo monitoring of ROS. Circulation. 2003(108):1912–1916.
    29. Lalor, P. A., and G. Morahan. The peritoneal Ly-1 (CD5) Bcell repertoire is unique among murine B cell repertoires. Eur. J.Immunol. 1990(20): 485–492.
    30. Herzenberg, L. A., and A. B. Kantor. B-cell lineages exist in the mouse. Immunol. Today. 1993(14): 79–83.
    31. Baumgarth, N., O. C. Herman, G. C. Jager, L. Brown, L. A.Herzenberg, and L. A. Herzenberg. Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc. Natl. Acad. Sci. USA. 1999; 96: 2250–2255.
    32. Berland, R., and H. H. Wortis. Origins and functions of B-1cells with notes on the role of CD5. Annu. Rev. Immunol. 2002(20): 253–300.
    33. Solvason, N., X. Chen, F. Shu, and J. F. Kearney. The fetal omentum in mice and humans. A site enriched for precursors of CD5 B cells early in development. Ann. N. Y. Acad. Sci. 1992 (651): 10–20.
    34. Seidl, K. J., J. D. MacKenzie, D. Wang, A. B. Kantor, E. A. Kabat,L. A. Herzenberg, and L. A. Herzenberg. Frequent occurrence of identical heavy and light chain Ig rearrangements. Int. Immunol. 1997( 9): 689–702.
    35. Kantor, A. B., C. E. Merrill, L. A. Herzenberg, and J. L. Hillson. An unbiased analysis of V(H)-D-J(H) sequences from B-1a, B-1b, and conventional B cells. J. Immunol. 1997(158): 1175–1186.
    36. Seidl, K. J., J. A. Wilshire, J. D. MacKenzie, A. B. Kantor, L. A. Herzenberg, and L. A. Herzenberg. Predominant VH genes expressed in innate antibodies are associated with distinctive antigen-binding sites. Proc. Natl. Acad. Sci. USA. 1999 96: 2262–2267.
    37. Casali, P., and E. W. Schettino. Structure and function of natural antibodies. Curr. Top. Microbiol. Immunol. 1996(210): 167–179.
    38. Hayakawa, K., M. Asano, S. A. Shinton, M. Gui, D. Allman, C. L. Stewart, J. Silver, and R. R. Hardy. Positive selection of natural autoreactive B cells. Science. 1999(285): 113–116.
    39. Hayakawa, K., M. Asano, S. A. Shinton, M. Gui, L. J. Wen, J.Dashoff, and R. R. Hardy. Positive selection of anti-thy-1 autoreactive B-1 cells and natural serum autoantibody production independent from bone marrow B cell development. J. Exp. Med. 2003(197): 87–99.
    40. Su, I., and A. Tarakhovsky. B-1 cells: orthodox or conformist? Curr. Opin. Immunol. 2000(12): 191–194.
    41. Hardy, R. R., Y. S. Li, D. Allman, M. Asano, M. Gui, and K. Hayakawa. B-cell commitment, development and selection. Immunol. Rev. 2000(175): 23–32.
    42. Clarke, S. H., and L. W. Arnold. B-1 cell development: evidence for an uncommitted immunoglobulin (Ig)M B cell precursor in B-1 cell differentiation. J. Exp. Med. 1998.(87): 1325–1334.
    43. Tatu, C., J. Ye, L. W. Arnold, and S. H. Clarke. Selection at multiple checkpoints focuses V(H)12 B cell differentiation toward a single B-1 cell specificity. J. Exp. Med. 1999(190): 903–914.
    44. Masmoudi, H., T. Mota-Santos, F. Huetz, A. Coutinho, and P. A. Cazenave. All T15 Id-positive antibod ies (but not the majority of VHT15 antibodies) are produced by peritoneal CD5 B lymphocytes. Int. Immunol. 1990(2): 515–520.
    45. Casali, P., S. E. Burastero, M. Nakamura, G. Inghirami, and A. L. Notkins. Human lymphocytes making rheumatoid factor and antibody to ssDNA belong to Leu-1 B-cell subset. Science. 1987(236): 77–81.
    46. Bos, N. A., J. J. Cebra, and F. G. Kroese. B-1 cells and the intestinal microflora. Curr. Top. Microbiol. Immunol. 2000(252): 211–220.
    47. Bendelac, A., M. Bonneville, and J. F. Kearney. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 2001(1):177–186.
    48. Manson, J. J., C. Mauri, and M. R. Ehrenstein. Natural serum IgM maintains immunological homeostasis and prevents autoimmunity. Springer Semin. Immunopathol. 2005(26): 425–432.
    49. Boes, M., A. P. Prodeus, T. Schmidt, M. C. Carroll, and J. Chen. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med. 1998(188):2381–2386.
    50. Boes, M., T. Schmidt, K. Linkemann, B. C. Beaudette, A. Marshak-Rothstein, and J. Chen. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc. Natl. Acad. Sci. USA. 2000(97): 1184–1189.
    51. Ehrenstein, M. R., H. T. Cook, and M. S. Neuberger. Deficiency in serum immunoglobulin (Ig)M predisposes to development of IgG autoantibodies. J. Exp. Med. 2000(191): 1253–1258.
    52. Lutz, H. U., F. Bussolino, R. Flepp, S. Fasler, P. Stammler, M. D. Kazatchkine, and P. Arese. Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes. Proc. Natl. Acad. Sci. USA. 1987(84): 7368–7372.
    53. Cox, K. O., and S. J. Hardy. Autoantibodies against mouse bromelain-modified RBC are specifically inhibited by a common membrane phospholipid, phosphatidylcholine. Immunology. 1985(55):263–269.
    54. Mercolino, T. J., L. W. Arnold, and G. Haughton. Phosphatidyl choline is recognized by a series of Ly-1 murine B cell lymphomas specific for erythrocyte membranes. J. Exp. Med. 1986(163):155–165.
    55. Kim, S. J., D. Gershov, X. Ma, N. Brot, and K. B. Elkon. I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J. Exp. Med. 2002(196): 655–665.
    56. Palinski, W., R. K. Tangirala, E. Miller, S. G. Young, and J. L. Witztum. Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice withincreased atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 1995(15): 1569–1576.
    57. Palinski, W., V. A. Ord, A. S. Plump, J. L. Breslow, D. Steinberg, and J. L. Witztum. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidationspecific epitopes in lesions and high titers of autoantibodies tomalondialdehyde-lysine in serum. Arterioscler. Thromb. 1994(14): 605–616.
    58. Freigang, S., S. H?rkk?, E. Miller, J. L. Witztum, and W. Palinski. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol. 1998(18): 1972–1982.
    59. Esterbauer, H., R. J. Schaur, and H. Zollner. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991(11): 81–128.
    60. Watson, A. D., N. Leitinger, M. Navab, K. F. Faull, S. H?rkk?, J. L. Witztum, W. Palinski, D. Schwenke, R. G. Salomon, W. Sha, et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 1997(272): 13597–13607.
    61. Gillotte, K. L., S. H?rkk?, J. L. Witztum, and D. Steinberg. Oxidized phospholipids, linked to apolipoprotein B of oxidized LDL, are ligands for macrophage scavenger receptors. J. Lipid Res. 2000(41): 824–833.
    62. Mond, J. J., Q. Vos, A. Lees, and C. M. Snapper. T cell independent antigens. Curr. Opin. Immunol. 1995(7): 349–354.
    63. Palinski, W., S. Yl?-Herttuala, M. E. Rosenfeld, S. W. Butler, S. A. Socher, S. Parthasarathy, L. K. Curtiss, and J. L. Witztum. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis. 1990(10): 325–335.
    64. Chang, M. K., C. J. Binder, Y. I. Miller, G. Subbanagounder, G. J. Silverman, J. A. Berliner, and J. L. Witztum. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J. Exp. Med. 2004(200): 1359–1370.
    65. Palinski, W., S. H?rkk?, E. Miller, U. P. Steinbrecher, H. C. Powell, L. K. Curtiss, and J. L. Witztum. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J. Clin. Invest. 1996(98):800–814.
    66. Salonen, J. T., S. Yl?-Herttuala, R. Yamamoto, S. Butler, H. Korpela, R. Salonen, K. Nyysseonen, W. Palinski, and J. L. Witztum. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet. 1992(339): 883–887.
    67. Steinbrecher, U. P., M. Fisher, J. L. Witztum, and L. K. Curtiss. Immunogenicity of homologous low density lipoprotein after methylation, ethylation, acetylation, orcarbamylation: generation of antibodies specific for derivatized lysine. J. Lipid Res. 1984(25):1109–1116.
    68. Witztum, J. L., U. P. Steinbrecher, Y. A. Kesaniemi, and M. Fisher. Autoantibodies to glucosylated proteins in the plasma of patients with diabetes mellitus. Proc. Natl. Acad. Sci. USA. 1984(81):3204–3208.
    69. H?rkk?, S., D. A. Bird, E. Miller, H. Itabe, N. Leitinger, G. Subbanagounder, J. A. Berliner, P. Friedman, E. A. Dennis, L. K. Curtiss. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J. Clin. Invest. 1999(103): 117–128.
    70. Friedman, P., S. H?rkk?, D. Steinberg, J. L. Witztum, and E. A. Dennis. Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol concentration. J. Biol. Chem. 2002(277): 7010–7020.
    71. Boullier, A., K. L. Gillotte, S. H?rkk?, S. R. Green, P. Friedman, E. A. Dennis, J. L. Witztum, D. Steinberg, and O. Quehenberger. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J. Biol. Chem. 2000(275): 9163–9169.
    72. Gillotte-Taylor, K., A. Boullier, J. L. Witztum, D. Steinberg, and O. Quehenberger. Scavenger receptor class B type I as a receptor for oxidized low density lipoprotein. J. Lipid Res. 2001(42): 1474–1482.
    73. Boullier, A., P. Friedman, R. Harkewicz, K. Hartvigsen, S. R. Green, F. Almazan, E. A. Dennis, D. Steinberg, J. L. Witztum, andO. Quehenberger. Phosphocholine as a pattern recognition ligand for CD36. J. Lipid Res. 2005(46): 969–976.
    74. Sambrano, G. R., S. Parthasarathy, and D. Steinberg. Recognition of oxidatively damaged erythrocytes by a macrophage receptor with specificity for oxidized low density lipoprotein.Proc. Natl. Acad. Sci. USA. 1994(91): 3265–3269.
    75. Bird, D. A., K. L. Gillotte, S. H?rkk?, P. Friedman, E. A. Dennis, J. L. Witztum, and D. Steinberg. Receptors for oxidized lowdensity lipoprotein on elicited mouse peritoneal macrophages can recognize both the modified lipid moieties and the modifiedprotein moieties: implications with respect to macrophage recognition of apoptotic cells. Proc. Natl. Acad. Sci. USA. 1999(96): 6347–6352.
    76. Chang, M. K., C. Bergmark, A. Laurila, S. H?rkk?, K. H. Han, P. Friedman, E. A. Dennis, and J. L. Witztum. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages:E vidence that oxidation-specific epitopes mediate macrophage recognition. Proc. Natl. Acad. Sci. USA. 1999 (96): 6353–6358.
    77. Snapper, C. M., Y. Shen, A. Q. Khan, J. Colino, P. Zelazowski, J. J.Mond, W. C. Gause, and Z. Q. Wu. Distinct types of T-cell help for the induction of a humoral immuneresponse to Streptococcus pneumoniae. Trends Immunol. 2001(22): 308–311.
    78. Briles, D. E., C. Forman, S. Hudak, and J. L. Claflin. Antiphosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J. Exp. Med. (1982)156: 1177–1185.
    79. Binder, C. J., S. H?rkk?, A. Dewan, M. K. Chang, E. K. Kieu, C. S. Goodyear, P. X. Shaw, W. Palinski, J. L. Witztum, and G. Silverman. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 2003(9): 736–743.
    80. Hulthe, J., L. Bokemark, and B. Fagerberg. Antibodies to oxidized LDL in relation to intima-media thickness in carotid and femoral arteries in 58-year-old subjectively clinically healthy men. Arterioscler. Thromb. Vasc. Biol. 2001(21): 101–107.
    81. Karvonen, J., M. Paivansalo, Y. A. Kesaniemi, and S. H?rkk?. Immunoglobulin M type of autoantibodies to oxidized lowdensity lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation. 2003(108): 2107–2112.
    82. Palinski, W., E. Miller, and J. L. Witztum. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl. Acad. Sci. USA. 1995(92): 821–825.
    83. Ameli, S., A. Hultgeardh-Nilsson, J. Regnstrom, F. Calara, J. Yano, B. Cercek, P. K. Shah, and J. Nilsson. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 1996(16): 1074–1079.
    84. Nilsson, J., F. Calara, J. Regnstrom, A. Hultgardh-Nilsson, S. Ameli, B. Cercek, and P. K. Shah. Immunization with homologous oxidized low density lipoprotein reduces neointimal formation after balloon injury in hypercholesterolemic rabbits. J. Am. Coll. Cardiol. 1997(30): 1886–1891.
    85. George, J., A. Afek, B. Gilburd, H. Levkovitz, A. Shaish, I. Goldberg, Y. Kopolovic, G. Wick, Y. Shoenfeld, and D. Harats. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis. 1998(138): 147–152.
    86. Zhou, X., G. Caligiuri, A. Hamsten, A. K. Lefvert, and G. K. Hansson. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2001(21): 108–114.
    87. Binder, C. J., K. Hartvigsen, M. K. Chang, M. Miller, D. Broide, W. Palinski, L. K. Curtiss, M. Corr, and J. L. Witztum. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 2004(114): 427–437.
    88. Zhou, X., A. K. Robertson, M. Rudling, P. Parini, and G. K. Hansson. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ. Res. 2005(96):427–434.
    89. Kopf, M., F. Brombacher, P. D. Hodgkin, A. J. Ramsay, E. A. Milbourne, W. J. Dai, K. S. Ovington, C. A. Behm, G. Kohler, I. G. Young, et al. IL-5-deficient mice have a developmental defect in CD5 B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity. 1996(4): 15–24.
    90. Yoshida, T., K. Ikuta, H. Sugaya, K. Maki, M. Takagi, H. Kanazawa, S. Sunaga, T. Kinashi, K. Yoshimura, J. Miyazaki, et al. Defective B-1 cell development and impaired immunity against Angiostrongylus Angiostrongylus cantonensis in IL-5R alpha-deficient mice. Immunity. 1996(4): 483–494.
    91. Takatsu, K. Interleukin 5 and B cell differentiation. Cytokine Growth Factor Rev. 1998(9): 25–35.
    92. Moon, B. G., S. Takaki, K. Miyake, and K. Takatsu. The role of IL-5 for mature B-1 cells in homeostatic proliferation, cell survival, and Ig production. J. Immunol. 2004(172): 6020–6029.
    93. Buono, C., C. J. Binder, G. Stavrakis, J. L. Witztum, L. H. Glimcher,and A. H. Lichtman. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses.Proc. Natl. Acad. Sci. USA. 2005(102): 1596–1601.
    94. Vink, A., G. Warnier, F. Brombacher, and J. C. Renauld. Interleukin 9-induced in vivo expansion of the B-1 lymphocyte population. J. Exp. Med. 1999(189): 1413–1423.
    95. Ishida, H., R. Hastings, J. Kearney, and M. Howard. Continuous anti-interleu- kin 10 antibody administration depletes mice of Ly-1 B cells but not conventional B cells. J. Exp. Med. 1992(175):1213–1220.
    96. Nisitani, S., T. Tsubata, M. Murakami, and T. Honjo. Administration of interleukin-5 or -10 activates peritoneal B-1 cells and induces autoimmune hemolytic anemia in anti-erythrocyte autoantibody-transgenic mice. Eur. J. Immunol. 1995(25): 3047–3052.
    97. O’Garra, A., R. Chang, N. Go, R. Hastings, G. Haughton, and M. Howard. Ly-1 B (B-1) cells are the main source of B cellderived interleukin 10. Eur. J. Immunol. 1992(22): 711–717.
    98. Campos, R. A., M. Szczepanik, A. Itakura, M. Akahira-Azuma, S. Sidobre, M. Kronenberg, and P. W. Askenase. Cutaneous immunization rapidly activates liver invariant Valpha14 NKT cells stimulating B-1 B cells to initiate T cell recruitment for elicitation of contact sensitivity. J. Exp. Med. 2003(198): 1785–1796.
    99. Mallat, Z., S. Besnard, M. Duriez, V. Deleuze, F. Emmanuel, M. F. Bureau, F. Soubrier, B. Esposito, H. Duez, C. Fievet, et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 1999(85):e17–e24.
    100. Pinderski, L. J., M. P. Fischbein, G. Subbanagounder, M. C. Fishbein, N. Kubo, H. Cheroutre, L. K. Curtiss, J. A. Berliner, and W. A. Boisvert. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ. Res. 2002(90): 1064–1071.
    101. Reardon, C. A., E. R. Miller, L. Blachowicz, J. Lukens, C. J.Binder, J. L. Witztum, and G. S. Getz. Autoantibodies to OxLDL fail to alter the clearance of injected OxLDL in apolipoprotein E-deficient mice. J. Lipid Res. 2004(45): 1347–1354.
    102. Zhang, M., W. G. Austen, Jr., I. Chiu, E. M. Alicot, R. Hung, M.Ma, N. Verna, M. Xu, H. B. Hechtman, F. D. Moore, Jr., et al. Identification of a specific self-reactive IgM antibody that initiates intestinal ischemia/reperfusion injury. Proc. Natl. Acad. Sci. USA. 2004(101): 3886–3891.
    103. Alving CR. Antibodies to lipids and liposomes: immunology and safety. J Liposome Res. 2006 (3): 157-166.
    104. Freigang S, H?rkk? S, Miller E, Witztum JL, Palinski W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol. 1998 (12): 1972-1982.
    105. Shaw PX, H?rkk? S, Chang MK, Curtiss LK, Palinski W, Silverman GJ, Witztum JL. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest. 2000 (12): 1731-1740.
    106. Li W, Fu M, Xing Y, An JG, Zhang P, Zhang X, Wang YC, Li CX, Tian R, Su WJ, Guan HH, Wang G, Gao TW, Han H, Liu YF. Host defense against C. albicans infections in IgH transgenic mice with VH derived from a natural anti-keratin antibody. Cell Microbiol. 2007 (2): 306-315..
    107.冯旭阳,李巍,王海昌,付萌邢影.抗胆固醇天然抗体的检测与分析.心脏杂志. 2007 (2):173-175.
    108. Alving CR, Wassef NM. Naturally occurring antibodies to cholesterol: a new theory of LDL cholesterol metabolism. Immunol Today. 1999(8): 362-366.
    109. Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest. 2002 (6): 745-753.
    110. Freudenberg MA, Tchaptchet S, Keck S, Fejer G, Huber M, Schütze N, Beutler B, Galanos C. Lipopolysaccharide sensing an important factor in the innate immune response to Gram-negative bacterial infections: benefits and hazards of LPS hypersensitivity. Immunobiology. 2008;213(3-4):193-203.
    111. Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Invest. 2006; 86(1):9-22.
    112. Li H, Sun B. Toll-like receptor 4 in atherosclerosis. J Cell Mol Med. 2007;11(1):88-95.
    113. Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, Willeit J, Schwartz DA. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med. 2002; 347(3):185-92.
    114. Sawayama Y, Hamada M, Otaguro S, Maeda S, Ohnishi H, Fujimoto Y, Taira Y,Hayashi J. Chronic Helicobacter pylori infection is associated with peripheral arterial disease. J Infect Chemother. 2008; 14(3):250-4.
    115. Satoh M, Ishikawa Y, Minami Y, Takahashi Y, Nakamura M. Role of Toll like receptor signaling pathway in ischemic coronary artery disease. Front Biosci. 2008; 13:6708-15.
    116. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation. 2002; 105(10):1158-61.
    117. Vink A, Bender MH, Schep G, van Wichen DF, de Weger RA, Pasterkamp G, Moll FL. Histopathological comparison between endofibrosis of the high-performance cyclist and atherosclerosis in the external iliac artery. J Vasc Surg. 2008; 48(6):1458-63.
    118. Sambrano, G. R., and D. Steinberg. Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc. Natl. Acad. Sci. USA. 1995( 92):1396–1400.
    119. Kagan, V. E., G. G. Borisenko, Y. Y. Tyurina, V. A. Tyurin, J. Jiang, A. I. Potapovich, V. Kini, A. A. Amoscato, and Y. Fujii. Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic. Biol. Med. 2004(37): 1963–1985.
    120. Chait, A., C. Y. Han, J. F. Oram, and J. W. Heinecke. Thematic review series. The immune system and atherogenesis: lipoprotein-associated inflammatory proteins. Markers or mediators of cardiovascular disease? J. Lipid Res. 2005(46): 389–403.
    121. Zhang M, Austen WG Jr, Chiu I, Alicot EM, Hung R, Ma M, Verna N, Xu M, Hechtman HB, Moore FD Jr, Carroll MC. Identification of a specific self-reactive IgM antibody that initiates intestinal ischemia/reperfusion injury.Proc Natl Acad Sci U S A. 2004 (11):3886-91.
    122. Chang, M. K., C. J. Binder, M. Torzewski, and J. L. Witztum. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids. Proc. Natl. Acad. Sci. USA. 2002(99):13043–13048.
    1. Baumgarth NJ, Tung W, Herzenberg LA. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol 2005(4): 347-362.
    2. Binder CJ, Chang MK, Shaw PX, Miller YI, Hartvigsen K, Dewan A, Witztum JL. Innate and acquired immunity in atherogenesis. Nat Med 2002 (11): 1218-1226.
    3. Glass CK, Witztum JL. Atherogenesis. The road ahead. Cell 2001(4):503-516.
    4. Wick G, Knoflach M, Xu Q. Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol. 2004; 22: 361-403.
    5. Steinberg D. Thematic review series: the pathogenesis of atherosclerosis: an interpretive history of the cholesterol controversy, part III: mechanistically defining the role of hyperlipidemia. J Lipid Res. 2005 (10): 2037-2051.
    6. H?rkk? S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G, Berliner JA, Friedman P, Dennis EA, Curtiss LK, Palinski W, Witztum JL. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest.1999 (1): 117-128.
    7. Han SH, Quon MJ, Kim JA, Koh KK. Adiponectin and cardiovascular disease: response to therapeutic interventions. J Am Coll Cardiol. 2007 (5): 531-538.
    8. Belcher JD, Eqan JO, Bridgman G, Baker R, and Flack JM: A micro-enzymatic method to measure cholesterol and triglyceride in lipoprotein ubfractions separated by density gradient ultracentrifugation from 200 microliters of plasma or serum. Journal of Lipid Research. 1991 (2): 359-370.
    9. Havel RJ, Eder HA, Bragdon JM. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. Journal of Clinical Investigation. 1955 (9):1345–1353.
    10. Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, Rigoni A, Pastorino AM, Lo Cascio V, Sawamura T. Oxidized low density lipoproteins (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species. Journal of Biological Chemistry. 2000 (17):12633–12638.
    11. Cheung NK, Guo HF, Modak S, Cheung IY. Anti-idiotypic antibody as the surrogate antigen for cloning scFv and its fusion proteins.Hybrid Hybridomics. 2002 (6):433-43.
    12. Steed J, Gilliam LK, Harris RA, Lernmark A, Hampe CS. Antigen presentation of detergent-free glutamate decarboxylase (GAD65) is affected by human serum albumin as carrier protein.J Immunol Methods. 2008 (1-2): 114-21.
    13. Ed Harlow, D.L. Using Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press. 1999.
    14. McCarthy E, Vella G, Mhatre R, Lim YP. Rapid purification and monitoring of immunoglobulin M from ascites by perfusion ion-exchange chromatography. J Chromatogr A 1996(743):163-70.
    15. Boes, M. Role of natural and immune IgM antibodies in immune responses. Mol Immunol. 2000 (18): 1141-1149.
    16. Alving CR. Antibodies to lipids and liposomes: immunology and safety. J Liposome Res. 2006 (3): 157-166.
    17. Haury M, S. A., Grandien A: The repertoir of serum IgM in normal mice is largely independent of external antigenic contact. Eur J Immunol 1997; 27(6): 1557-1563.
    18. Alving CR. Antibodies to lipids and liposomes: immunology and safety. J Liposome Res. 2006; 16(3): 157-166.
    19. Freigang S, H?rkk? S, Miller E, Witztum JL, Palinski W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol. 1998 (12): 1972-1982.
    20. Shaw PX, H?rkk? S, Chang MK, Curtiss LK, Palinski W, Silverman GJ, Witztum JL.Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest. 2000 (12): 1731-1740.
    21.冯旭阳,李巍,王海昌,付萌,形影。抗胆固醇天然抗体的检测与分析.心脏杂志,2007 ;19(2): 173-175.
    22. Gounopoulos P, Merki E, Hansen LF, Choi SH, Tsimikas S. Antibodies to oxidized low density lipoprotein: epidemiological studies and potential clinical applications in cardiovascular disease. Minerva Cardioangiol. 2007 (6):821-837.
    23. Binder CJ, H?rkk? S, Dewan A, Chang MK, Kieu EP, Goodyear CS, Shaw PX, Palinski W, Witztum JL, Silverman GJ. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL.Nat Med. 2003 (6):736-43.
    1. Naito M. Macrophage differentiation and function in health and disease. Pathol Int. 2008(58):143-55.
    2. Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron. 2006(37):208-22.
    3. Hansson GK, Robertson AK, S?derberg-Nauclér C. Inflammation and atherosclerosis. Annu Rev Pathol. 2006(1):297-329.
    4. Webb NR, Moore KJ. Macrophage-derived foam cells in atherosclerosis: lessons from murine models and implications for therapy. Curr Drug Targets. 2007(8):1249-63.
    5. Kobayashi K, Tada K, Itabe H, Ueno T, Liu PH, Tsutsumi A, Kuwana M, Yasuda T, Shoenfeld Y, de Groot PG, Matsuura E.. Distinguished effects of antiphospholipid antibodies and anti-oxidized LDL antibodies on oxidized LDL uptake by macrophages. Lupus 2007(16):929-38.
    6. Binder CJ, H?rkk? S, Dewan A, Chang MK, Kieu EP, Goodyear CS, Shaw PX, Palinski W, Witztum JL, Silverman GJ. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med. 2003(9): 736-43.
    7. H?rkk? S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G, Berliner JA, Friedman P, Dennis EA, Curtiss LK, Palinski W, Witztum JL. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest1999(103):117-28.
    8. Salacinski PR, McLean C, Sykes JE, Clement-Jones VV, Lowry PJ. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem 1981(117):136-46.
    9. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 2000(165):618-22.
    10. Qi HY, Shelhamer JH. Toll-like receptor 4 signaling regulates cytosolic phospholipase A2 activation and lipid generation in lipopolysaccharide-stimulated macrophages. J Biol Chem 2005(280):38969-75.
    11. Lee CK, Lee HM, Kim HJ, Park HJ, Won KJ, Roh HY, Choi WS, Jeon BH, Park TK, Kim B. Syk contributes to PDGF-BB-mediated migration of rat aortic smooth muscle cells via MAPK pathways. Cardiovasc Res 2007(74):159-68.
    12. Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR. Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 2006(72):384-93.
    13. Alain T, Ziad M. Cytokines in atherosclerosis: pathogenic andregulatory pathways. Physiol Rev 2006; 86: 515-581.
    14. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999; 340: 115-126.
    15. Steinberg D. Thematic review series: the pathogenesis of atherosclerosis: an interpretive history of the cholesterol controversy, part III: mechanistically defining the role of hyperlipidemia. J Lipid Res. 2005; 46(10): 2037-2051.
    16. Binder CJ, Shaw PX, Chang MK, Boullier A, Hartvigsen K, H?rkk? S, Miller YI, Woelkers DA, Corr M, Witztum JL. The role of natural antibodies in atherogenesis. J Lipid Res. 2005; 46(7):1353-1363.
    17. Gounopoulos P, Merki E, Hansen LF, Choi SH, Tsimikas S. Antibodies to oxidized low density lipoprotein: epidemiological studies and potential clinical applications in cardiovascular disease. Minerva Cardioangiol. 2007; 55(6):821-837.
    18. Binder CJ, Horkko S, Dewan A. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med. 2003;9(6):736-43.
    19. Horkko S, Bird DA, Miller E. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins.J Clin Invest. 1999;103(1):117-28.
    20. Gounopoulos P, Merki E, Hansen LF, et al. Antibodies to oxidized low density lipoprotein: epidemiological studies and potential clinical applications in cardiovascular disease. Minerva Cardioangiol. 2007; 55(6):821-837.
    21. H?rkk? S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G, Berliner JA,Friedman P, Dennis EA, Curtiss LK, Palinski W, Witztum JL. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 1999(103):117-28.
    
    1. Park YM, Febbraio M, Silverstein RL. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest. 2009; 119(1):136-45.
    2. Wong LK. Global burden of intracranial atherosclerosis. Int J Stroke. 2006; 1(3):158-9.
    3. Baumgarth, N., J. W. Tung, and L. A. Herzenberg. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol. 2005 (26):347–362.
    4. Kobayashi K, Tada K, Itabe H, Ueno T, Liu PH, Tsutsumi A, Kuwana M, Yasuda T, Shoenfeld Y, de Groot PG, Matsuura E.. Distinguished effects of antiphospholipid antibodies and anti-oxidized LDL antibodies on oxidized LDL uptake by macrophages. Lupus 2007(16):929-38.
    5. Binder CJ, H?rkk? S, Dewan A, Chang MK, Kieu EP, Goodyear CS, Shaw PX, Palinski W, Witztum JL, Silverman GJ. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med. 2003(9): 736-43.
    6. H?rkk? S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G, Berliner JA, Friedman P, Dennis EA, Curtiss LK, Palinski W, Witztum JL. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 1999(103):117-28.
    7. Feng, X., R. Xu, Y. Gao, Z. He, C. Li, H. Wang. Generation and identification of natural monoclonal antibodies against low-density lipoprotein. 2008; Hybridoma (Larchmt) 27(1):54-8.
    8. Shimano H, Yamada N, Katsuki M, Shimada M, Gotoda T, Harada K, Murase T, Fukazawa C, Takaku F, Yazaki Y.Overexpression of apolipoprotein E in transgenic mice: marked reduction in plasma lipoproteins except high density lipoprotein and resistance against diet-induced hypercholesterolemia.Proc Natl Acad Sci U S A. 1992;89(5):1750-4.
    9. Naito M. Macrophage differentiation and function in health and disease. Pathol Int. 2008( 58):143-55.
    10. Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron. 2006(37):208-22.
    11. Pereira IA, Borba EF. The role of inflammation, humoral and cell mediated autoimmunity in the pathogenesis of atherosclerosis. Swiss Med Wkly. 2008; 138(37-38):534-9.
    12. Wick G, Knoflach M, Xu Q. Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol. 2004; 22: 361-403.
    13. Steinberg D. Thematic review series: the pathogenesis of atherosclerosis: an interpretive history of the cholesterol controversy, part III: mechanistically defining the role of hyperlipidemia. J Lipid Res. 2005 (10): 2037-2051.
    14. Binder CJ, Chou MY, Fogelstrand L, Hartvigsen K, Shaw PX, Boullier A, Witztum JL. Natural antibodies in murine atherosclerosis. Curr Drug Targets. 2008; 9(3):190-5.
    15. Thurnheer MC, Zuercher AW, Cebra JJ, Bos NA. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J. Immunol. 2003(170):4564–4571.
    16. Griendling, K. K., and G. A. FitzGerald. Oxidative stress and cardiovascular injury.Part II. Animal and human studies. Circulation. 2003(108):2034–2040.
    17. Griendling, K. K., and G. A. FitzGerald. Oxidative stress and cardiovascular injury. Part I. Basic mechanisms and in vivo monitoring of ROS. Circulation. 2003(108):1912–1916.
    18. Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest. 2002; 109(6): 745-753.
    19. Binder CJ, Shaw PX, Chang MK, Boullier A, Hartvigsen K, H?rkk? S, Miller YI, Woelkers DA, Corr M, Witztum JL.The role of natural antibodies in atherogenesis.J Lipid Res. 2005 Jul;46(7):1353-63.
    1. Kavai M, Szegedi G. Immune complex clearance by monocytes and macrophages in systemic lupus erythematosus. Autoimmun Rev 2007(6):497-502.
    2. Seimon TA, Obstfeld A, Moore KJ, Golenbock DT, Tabas I. Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc Natl Acad Sci U S A 2006(103):19794-9.
    3. Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J Pathol 2008(214):161-78.
    4. Wang X, Greilberger J, Ratschek M, Jürgens G. Oxidative modifications of LDL increase its binding to extracellular matrix from human aortic intima: influence of lesion development, lipoprotein lipase and calcium. J Pathol 2001(195):244-50.
    5. Zouaoui Boudjeltia K, Moguilevsky N, Legssyer I, Babar S, Guillaume M, Delree P, Vanhaeverbeek M, Brohee D, Ducobu J, Remacle C.. Oxidation of low density lipoproteins by myeloperoxidase at the surface of endothelial cells: an additional mechanism to subendothelium oxidation. Biochem Biophys Res Commun. 2004(325):434-8.
    6. Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 2006(26):1702-11.
    7. Kajiwara T, Yasuda T, Matsuura E. Intracellular trafficking of beta2-glycoprotein I complexes with lipid vesicles in macrophages: implications on the development of antiphospholipid syndrome. J Autoimmun 2007(29):164-73.
    8. Matsuura E, Kobayashi K, Tabuchi M, Lopez LR. Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis. Prog Lipid Res 2006;(45):466-86.
    9. Kobayashi K, Tada K, Itabe H, Ueno T, Liu PH, Tsutsumi A, Kuwana M, Yasuda T, Shoenfeld Y, de Groot PG, Matsuura E.. Distinguished effects of antiphospholipid antibodies and anti-oxidized LDL antibodies on oxidized LDL uptake by macrophages. Lupus 2007(16):929-38.
    10. Binder CJ, H?rkk? S, Dewan A, Chang MK, Kieu EP, Goodyear CS, Shaw PX, Palinski W, Witztum JL, Silverman GJ. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med. 2003(9): 736-43.
    11. H?rkk? S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G, Berliner JA, Friedman P, Dennis EA, Curtiss LK, Palinski W, Witztum JL. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 1999(103):117-28.
    12. Parker LC, Prince LR, Sabroe I. Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol. 2007(147):199-207.
    13. Pasterkamp G, Van Keulen JK, De Kleijn DP. Role of Toll-like receptor 4 in the initiation and progression of atherosclerotic disease. Eur J Clin Invest. 2004(34):328-34.
    14. Michelsen KS, Doherty TM, Shah PK, Arditi M.TLR signaling: an emerging bridge from innate immunity to atherogenesis. J Immunol. 2004(173):5901-7.
    15. Stoll LL, Denning GM, Weintraub NL. Potential role of endotoxin as a proinflammatory mediator of atherosclerosis. Arterioscler Thromb Vasc Biol. 2004(24):2227-36.
    16. Wiedermann CJ, Kiechl S, Dunzendorfer S, Schratzberger P, Egger G, Oberhollenzer F, Willeit J.Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J Am Coll Cardiol. 1999(34):1975-81.
    17. Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, Willeit J, Schwartz DA.Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med. 2002(347):185-92.
    18. Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB, Arditi M. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A. 2004(101):10679-84.
    19. Kalay N, Kutukoglu I, Ozdogru I, Kilic H, Cetinkaya Y, Eryol NK, Karakaya E, Oguzhan A. The relationship between Chlamydophila pneumoniae IgG titer and coronary atherosclerosis. Cardiol J. 2008(15):245-51.
    20. Sawayama Y, Hamada M, Otaguro S, Maeda S, Ohnishi H, Fujimoto Y, Taira Y, HayashiJ. Chronic Helicobacter pylori infection is associated with peripheral arterial disease. J Infect Chemother. 2008(14):250-4.
    21. Gibson FC 3rd, Genco CA. Porphyromonas gingivalis mediated periodontal disease and atherosclerosis: disparate diseases with commonalities in pathogenesis through TLRs. Curr Pharm Des. 2007(13):3665-75.
    22. Salacinski PR, McLean C, Sykes JE, Clement-Jones VV, Lowry PJ. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem 1981(117):136-46.
    23. McCarthy E, Vella G, Mhatre R, Lim YP. Rapid purification and monitoring of immunoglobulin M from ascites by perfusion ion-exchange chromatography. J Chromatogr A 1996(743):163-70.
    24. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 2000(165):618-22.
    25. Qi HY, Shelhamer JH. Toll-like receptor 4 signaling regulates cytosolic phospholipase A2 activation and lipid generation in lipopolysaccharide-stimulated macrophages. J Biol Chem 2005(280):38969-75.
    26. Lee CK, Lee HM, Kim HJ, Park HJ, Won KJ, Roh HY, Choi WS, Jeon BH, Park TK, Kim B. Syk contributes to PDGF-BB-mediated migration of rat aortic smooth muscle cells via MAPK pathways. Cardiovasc Res 2007(74):159-68.
    27. Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR. Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 2006(72):384-93.
    28. Naito M. Macrophage differentiation and function in health and disease. Pathol Int. 2008( 58):143-55.
    29. Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron. 2006(37):208-22.
    30. Hansson GK, Robertson AK, S?derberg-Nauclér C. Inflammation and atherosclerosis. Annu Rev Pathol. 2006(1):297-329.
    31. Webb NR, Moore KJ. Macrophage-derived foam cells in atherosclerosis: lessons from murine models and implications for therapy. Curr Drug Targets. 2007(8):1249-63.
    32. Baumgarth NJ, Tung W, Herzenberg LA. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol 2005(26): 347-62.
    33. Isaac L, Mariano M. The IgM receptor in mouse peritoneal macrophages. Clin Exp Immunol. 1988(72):516-20.
    34. Shibuya A, Sakamoto N, Shimizu Y, Shibuya K, Osawa M, Hiroyama T, Eyre HJ, Sutherland GR, Endo Y, Fujita T, Miyabayashi T, Sakano S, Tsuji T, Nakayama E,Phillips JH, Lanier LL, Nakauchi H.. Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat Immunol 2000(1):441-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700