用户名: 密码: 验证码:
加载磁絮凝技术处理洗铜废水中铜离子的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是一切生命赖以生存的物质基础,近年来,随着城市现代化和工业生产活动的不断发展,大量的生活污水和工业废水不断地被排入湖泊、江河和土壤中,尤其是重金属废水,不仅严重危害了生态环境,还在动植物体内富集,威胁人类健康,有效治理重金属废水的污染已成为我国面临的挑战之一。如今,重金属废水的处理方法有很多种(如化学法、物理化学法、微生物法等等),这些方法在实际应用中也比较广泛,为了探索更有效的处理方法,本文主要就加载磁絮凝技术处理洗铜废水中的铜离子进行了实验研究,为此技术在以后废水处理的工程应用中提供技术参考。
     研究的主要内容为:利用静态烧杯实验研究聚合氯化铝、聚合硫酸铁、粉煤灰对洗铜废水中铜离子去除效果的影响因素及其最适宜投加条件,然后经技术经济比选,选出最优絮凝剂,再与磁粉结合,研究磁粉的最佳投加条件,随后进行正交实验,根据正交实验得出的结果和洗铜厂的实际情况进行工艺设计,最后估算该工程投资并进行成本分析。
     研究的结果表明:(1)聚合氯化铝去除洗铜废水中铜离子的最佳实验条件为:投加量为60mg/L,静沉时间为25min,pH值为8,温度影响不大,取室温即可。(2)聚合硫酸铁去除洗铜废水中铜离子的最佳实验条件为:投加量为100mg/L,静沉时间为30min,pH值为8,最适宜温度25℃。(3)粉煤灰去除洗铜废水中铜离子的最佳实验条件为:投加量为15g/L,pH值为8,反应时间为2.5h,最适宜温度30℃。(4)经技术经济比选,得出聚合氯化铝为最优混凝剂,聚合氯化铝与磁粉结合,磁粉的最佳实验条件为:投加量为500mg/L,静沉时间为15min。(5)由正交实验得出最佳运行条件为:磁粉投加量为500mg/L,PAC投加量为60mg/L,pH值为7.5,静沉时间为10min。(6)对设计的工艺进行投资估算,处理废水量为8000m3/d,总投资为468.05万元,其中:Ⅰ类费用323.29万元;Ⅱ类费用90.91万元;工程预备费用41.42万元;铺底流动资金12.43万元。(7)最后对该处理技术进行了成本分析,分析结果为:全年废水处理总成本为103.60万元,其中固定成本29.35万元,可变成本74.25万元,经营成本85.86万元,单位废水处理成本为0.53元。
Water is all the material basis of life and survival.In recent years, with the city's modernization and the development of industrial production activities,a large number of domestic sewage and industrial wastewater are continuously discharged into lakes, rivers and soil.Especially the heavy metal waste water, not only seriously damage the ecological environment,but also enrichment in the animals and plants and threaten human health.Effective management of heavy metal waste water pollution has become one of the challenges facing our country.Nowadays,there are a variety of heavy metal wastewater treatment methods (such as chemical,physical chemistry,microbiological method, etc.). These methods are more widely in practical applications.In order to explore a more effective approach,in this paper,the Loading magnetic flocculation techni-cal for treatment of heavy metal in wastewater of copper ions were studied exp-erimentally, to provide technical reference about this technology applications of wastewater treatment works in future.
     Main contents of the study:experimental of static beaker PAC,ferric sulfate, fly ash on the removal of copper ion in washed copper wastewater impact factors and the most appropriate dosing conditions.And then select the best flocculant by technical and economic comparison.Optimal flocculant and magn-etic powder are combined,and study the optimum dosage of magnetic condition-s,followed by orthogonal experiment.According to the results of orthogonal test and the actual situation of Tongchang washing design process,finally estimate the project investment and cost analysis.
     Studies suggest that:(1)the best experimental conditions of PAC remove the copper wash wastewater containing copper ions:dosage is 60mg/L,Jing Shen time is 25min,pH is 8,the temperature has little effect which can be obtained at room temperature.(2)the best experimental conditions of PFS remove the copper wash wastewater containing copper ions:dosage is 100mg/L, Jing Shen time is 30min,pH is 8,the optimum temperature is 25℃.(3)the best experimental condi-tions of Fly Ash remove the copper wash wastewater containing copper ions:dosage is 15g/L, pH is 8, the reaction time is 2.5h,the optimum temperature is 30℃.(4)by the technical and economic comparison,PAC is the optimum coagulant.PAC and magnetic are combined,the best experimental conditions of magnetic powder:dosage of 500mg/L,Jing Shen time is 15min. (5) The optimal run by the orthogonal experimental conditions:powder dosage is 500mg/L, PAC dosage is 60mg/L, pH is 7.5, Jing Shen time is 10min. (6) the estimate of the nvestment of the design process,processing wastewater is 8000m3/d, the total investment is 4.6805 million yuan,its including:class I costs is 3.2329 million yuan; class II costs is 909,100 yuan;project preparation cost is 414,200 yuan;initial working capital is 12.43 Million. (7) Finally,the processing techn-ology cost analysis and the results are as follows:annual wastewater treatment the total cost is 1.036 million yuan, including fixed costs 293,500 yuan,the variable cost of 742,500 yuan,operating costs 858,600 yuan,the unit wastewater treatment cost 0.53 yuan.
引文
[1]王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社,1993,1015.
    [2]谢峻铭.含铅废水的处理工艺研究[J].江西:江西化工,2010,3,35-37.
    [3]常学秀,文传浩,王焕校.重金属污染与人体健康[J].云南环境科学,2000,19(1):59.
    [4]蒋清民.工业废水处理技术进展[J].河南化工,2003,(1):8-10.
    [5]徐承水.环境中有害微量元素对人体健康的影响[J].广东微量元素科学,1999,6(10):1.
    [6]张建梅.重金属废水处理技术研究进展[J].西安联合大学学报,2003,6(2):55-59.
    [7]胡文玉,梅光隶.化工工人体内微量元素积累与健康的关系[J].广东微量元素科学,1998,5(7):6.
    [8]张永峰,许振良.重金属废水处理最新进展[J].工业水处理,2003,23(6):1.
    [9]扬洁,顾海红,赵浩,等.含砷废水处理技术研究进展[J].工业水处理,2003,23(6):14.
    [10]胡文玉,梅光泉.微量元素在人体内的化学行为[J].广东微量元素科学,1998,5(11):17.
    [11]胡文玉,梅光采.矿泉水中微量元素对人体健康的影响[J].微量元素与健康研究,1997,14(3):41.
    [12]胡文玉,梅光采.动物营养用微量元素的化学性质及其功能[J].微量元素与健康研究,1998,15(3):63.
    [13]郭仁东,吴吴,张晓颖.高浓度含铜废水处理方法的研究[J].当代化工,2004,33(5):280-282.
    [14]徐新阳,尚·阿嘎布(赞比亚).矿山酸性含铜废水的处理研究[J].金属矿山,2006(11):76-78.
    [15]王绍文.重金属废水的危害及防治[J].金属世界,1997,(5):12-13.
    [16]弁树森,等.农业环境保护.1992,11(2):57.
    [17]欧阳柬,刘德绍,青长乐.山地土壤-植物系统中汞污染问题的初步调查.四川环境,1998,17(3):59-62.
    [18]费云芸,刘代成.低浓度汞元素的毒性作用机理[J].山东师范大学学报:自然科学版,2003,18(1):88-90.
    [19]王宏,徐智.汞在环境中的污染和迁移转化[J].内蒙古环境保护,2000,12(1):46-47.
    [20]王维岗,哑库甫江·吐尔逊.环境的重金属污染物来源和毒理作用[J].生态环保,2004(2):39-40.
    [21]关铭,张立,张贵荣.不同孕周胎儿5种脏器中甲基汞含量的测定与研究[J].中国公共卫生学报,1997,16(2):87-89.
    [22]Shen Xiaoming, Yan Chonghuai, Guo Di, etc. Low-level prenatal lead exposure and neurobehavioral development of children in the first year of life:a prospective study in Shanghai [J]. Envimnmental Research,1998,79(1):1-8.
    [23]阮迪云,汪惠丽.铅对儿童健康的影响,血铅检测及综合防治[C]全国铅污染监测与控制治理技术交流研讨会论文集.上海:中国环境科学学会,2007:413-420.
    [24]O. S. Thironavukkarasu, T. Viraragbavan, K. S. Subramanian. Removal Of Arsenic in drinking water by ironoxide-coated sand and ferrihy dritebatch studies[J]. Water QuaL Res. J. Canada,2001,36:55-70.
    [25]O. S. Thironavukkarasu, T. Viraragbavan, K. S. Subramanian, S. Tanjore. Organic arsenic removal fromdrinking water[J]. Urban Water,2002,4:415-421.
    [26]Pravin Nemade, Avinash M. Kadam.Hariharan S. Shankar Arsenic and iron removal from water using constructed soil filtera novel approach [J]. Chem. Eng.2008,3: 497-502.
    [27]杨晓蓉,柯春英,邓华.微量元素与健康[J].黑龙江环境通报,2002,26(2):107-109.
    [28]邓丽芳.锌对人体生理方面的影响[J].西安联合大学学报,2001,4(2):91-93.
    [29]张淑媛,李自法.含锌废水处理研究[J].离子交换与吸附,1994,10(6):528-532.
    [30]廖自基.环境中金属元素的污染危害与迁移化学[J].北京科学出版社,1989.
    [31]涂锦宝.电镀废水治理手册[M].北京:机械工业出版社,1989.
    [32]孟祥和,胡国飞.重金属废水处理.化学工业出版社,环境科学与出版中心,2001,2,14-15.
    [33]张殿印.环保知识400问.冶金工业出版社,2001,2,102-103.
    [34]常学秀,文传浩,王焕校.重金属污染与人体健康[J].云南环境科学,2000,19(1):59.
    [35]蒋清民.工业废水处理技术进展[J].河南化工,2003,(1):8-10.
    [36]张建梅.重金属废水处理技术研究进展[J].西安联合大学学报,2003,6(2):55-59.
    [37]上海巩固提高钡盐法综合利用小组.钡盐的综合利用[J].低压电器技术情报,1982, 1:43-47.
    [38]宋世林,等.化学法处理含铬废水试验[J].电镀与环保,1984,4(2):31-34.
    [39]Klancko Robert J, etc. Iron filing and iron chipp ings and shavings[J]. Adv Instrum, 1995,30(2):659-663.
    [40]黄海涛,等.电镀废水治理[J].材料保护,1996,1:11-13.
    [41]顾雪斤,等.槽边循环电解法从酸性镀铜废水中回收铜[J].电镀与环保,1984,4(2):26-28.
    [42]蒋继穆.“八五”期间重有色金属冶炼技术进展概述[J].世界有色金属,1997,12:1-5.
    [43]张一先,等.废铁粉的应用研究[J].北京师范大学学报,1984,2:45-48.
    [44]周定,等.新型螯合树脂-木梢柠檬酸酯的合成及其应用[J].环境化学,1984,3(6):30-35.
    [45]Bozic D, Stankovic V, Gorgievski M, etc. Adsorption of heavy metal ions by sawdust of deciduous trees [J]. J. Hazard. Mater.,2009,171(1-3):684-692.
    [46]Ucurum M. A study of removal of Pb heavy metal ions from aqueous solution using lign-ite and a new cheap adsorbent (lignite washing plant tailings)[J]. Fuel,2009,88(8): 1460-1465.
    [47]Mohan S, Gandhimathi R. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent [J]. J. Hazard. Mater.,2009,169(1-3): 351-359.
    [48]Vazquez G, Calvo M, Freire M S, Gonzalez-Alvarez J, Antorrena G. Chestnut shell as heavy metal adsorbent:Optimization study of lead, copper and zinc cations remov-al[J]. J. Hazard. Mater.,2009,172(2-3):1402-1414.
    [49]Aroua M K, Zuki F M, Sulaiman N M. Removal of chromium ions from aqueous solut-ions by polymer-enhanced ultrafiltration [J]. J. Hazard. Mater.,2007,147(3):752-758.
    [59]Li X, Zeng G M, Huang J H, et al. Recovery and reuse of surfactant SDS from a MEUF retentate containing Cd2+ or Zn2+ by ultrafiltration[J]. J. Membr. Sci.,2009,337(1-2): 92-97.
    [51]Mohsen-Ni M, Montazeri P, Modarress H. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes [J]. Desalination,2007,217(1-3): 276-281.
    [52]Beolchini F, Pagnanelli F, De Michelis I, Veglio F. Micellar enhanced ultrafiltration for Arsenic(V) removal:effect of main operating conditions and dynamic modelling [J]. Environ. Sci. Technol.,2006,40(8):2746-2752.
    [53]Diallo M S, Christie S, Swaminathan P, Johnson J H Jr, Goddard W A III. Dendrimer enhanced ultrafiltration.1. Recovery of Cu(Ⅱ) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups[J].Environ. Sci. Techn-ol.,2005,39(5):1366-1377.
    [54]Islamoglu S, Yilmaz L. Effect of ionic strength on the complexation of poly ethyl ene-imine (PEI) with Cd2+ and Ni2+ in polymer enhanced ultrafiltration (PEUF)[J]. Desali-nation,2006,200(1-3):288-289.
    [55]Panayotova T, Dimova-Todorova M, Dobrevsky I. Purification and reuse of heavy met-als containing wastewaters from electroplating plants [J]. Desalination,2007,206(1-3): 135-140.
    [56]Alyuz B, Veli S. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins [J]. J. Hazard. Mater.,2009,167(1-3): 482-488.
    [57]姚美莲,等.TBP萃取处理含铬废水的研究[J].环境科学,1980,1(2):55-60.
    [58]包昌年,等.胺盐的研制与应用[J].环境科学丛书,1983,25:57-63.
    [59]G Kyuchoukov, etc. Oleic acid and inferior oleic acid[J]. Chem Commun,1982,17: 219-223.
    [60]王国惠.一株生物絮凝剂产生菌的筛选及絮凝活性研究[J].微生物学通报,2006,33(5):107-111.
    [61]康建雄,吴磊,朱杰,等.生物絮凝剂Pullulan絮凝Pb2+的性能研究[J].中国给水排水,2006,22(19):62-64.
    [62]Prasad M. N. V., Freitas H. Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environmental Pollution,2000,110(2): 277-283.
    [63]Mench M., Vangronsveld J., Lepp N. w., etc. Physicochemical aspects and efficiency of trace element immobillization by soil amendments.In:Vangronsveld J., Cuningham S., eds. Metal contaminated Soils:In Situ Inactivat ion and phytoremediation. New York:Landes Biosciences, Springer,2000.
    [64]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,17(6):833-839.
    [65]Lasat M. M. Phytoextract ion of toxic metals:A review of biological mechanisms [J]. Journal of Environmental Quality,2002,31:109-120.
    [66]Kuroda K, Shibasaki S, Ueda M. Cell surface-engineered yeast displaying a histidine oligopeptide has enhanced adsorption of and tolerance to heavy metal ions[J]. Applied Microbiology and Biotechnology,2001,57(5-6):697-701.
    [67]Bae W, Mehra R K, Mulchandani A. Genetic engineering of escherichia coli for enhanc-ed uptake and bioaccumulation of mercury[J]. Applied and Environmental Microbiolog-y, 2001,67(11):5335-5338.
    [68]Kotrba Pavel, Doleckova Lucie, DeLorenzo Victor. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides[J]. A-pplied and Environmental Microbiology,1999,65(3):1092-1098.
    [69]马国正,刘聪,南俊民.AI-MCM-41介孔分子筛对镉离子吸附性能的研究[J].华南师范大学学报:自然科学版,2008,3:77-81.
    [70]Liu A M, Hidajat K, Zhan D Y. A new class of hybrid mesoporous materials with funct-ionalized organic monolayers for selective adsorptionof heavy metal ions[J]. Chemical Commonications,2000(13):1145-1146.
    [71]柴诚敬,贾绍义,李宗堂,等.磁化技术在化工分离领域中的应用[J].化学工艺与工程,1999,16(4):245-248.
    [72]赵明慧,周集体,邵冬梅.磁化学技术在水处理中的应用[J].环境污染治理技术与设备,2003,4(4):80.
    [73]陈凤冈,等.高梯度磁分离在给水处理中应用研究[J].给水排水,1991,17(2):2-7.
    [74]雷国元.磁种和磁处理技术在废水处理中的应用[J].上海环境科学,1997,16(11):24-27.
    [75]Iannicelli J. New Development in magnetic separation[J]. ZEEE Trans on Mag,1976, 12(5):436-441.
    [76]Lofthouse C M. The beneficiation of kaolin using a commercial high intensity magnetic separator[J]. ZEEE Trans on Mag,1981,17(6):3302-3303.
    [77]Oberteuffer T A. High gradient magnetic of steel mill process and waster[J]. ZEEE Trans on Mag,1975(5):1591-1593.
    [78]Arvidson B R. New inexpensive high gradient magnetic separatiors[C]. Proceedings of XV Int Min Proc Congress,1985:317-329.
    [79]Cibulka J. A new conception of high gradient magnetic separatiors[C]. Proceedings of XV Int Min Proc Congress,1985:363-370.
    [80]Zezulke V. Continous HGMS for kaolin treatment[C]. Proceedings of XV Int Min PrOc Congress,1988:214-226.
    [81]熊大和.新型工业立环脉动高梯度磁选机的研制[D].长沙:中南工业大学,1988.
    [82]熊大和.SLON-1500立环脉动高梯度磁选机的研制[J].金属矿山,1990(7):43-46.
    [83]徐红梅,严红革.机械合金化技术在功能材料中制备的应用[J].材料导报,2004,18(10专辑Ⅲ):189-191.
    [84]Khelifati G, LeBreton J M, Aymard L, etc. Recombination of the Nd2 Fe14B phase after reactive milling under hydrogen of Nd-Fe-B powde[J]. Journal of Magnetism and Magn-etic Materials,2000,218(1):42-48.
    [85]Wasmuth H D. Pemos-a new medium intensity drum type permament magnetic separ-ator with special structure of Nd-Fe-B magnets[J]. Les Techniques,1992(12):68.
    [86]李彪.永磁高梯度磁选几初探[J].金属矿山,1995(5):37-40.
    [87]李明德.CRIMM-750-300-1.5型高梯度磁分离(HGMS)设备的研制[J].矿冶工程,1996(4):32-35.
    [88]Nakajima H, Kaneko H, Oizumi M, etc. Separation characteristics of open gradient magnetic separation using hjgh temperature superconducting magnet[J]. Physica C:Sup-er conductivity,2003(392-396):1214-1218.
    [89]Botsh M,Schonert K. Continuous hish intensity magnetic separation with a rotating spira-1[C]. Proceeding of XIX international mineral processing congress,1995(2):185-188.
    [90]梅光泉.重金属废水的危害及治理[J].微量元素与健康研究,2004,21(4):54-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700