用户名: 密码: 验证码:
复杂生物性状局部基因网络构建方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题的研究目的是构建出复杂生物性状的局部基因网络模式,并且运用构建的局部基因网络模式作为分析复杂生物性状分子机制的手段。选取高血压、长寿和胚胎干细胞的敏感基因作为研究对象,搜集并整合大量生物信号通路等基因相关信息,使用KEGG数据库提供的KGML图解基因网络编辑器和Osprey软件,对这四种复杂生物性状的敏感基因之间的关联性做了初步分析,得到以下结论:
     1构建的高血压局部基因网络模式,包含22条信号通路作为连线,15个基因作为节点,建立了64种连接方式的局部基因网络模式。随机选择其中的一种连接方式,构画出了一张包含47个基因、9条信号转导通路的高血压局部基因网络图,其中,MAPK signaling pathway,Purine metabolism,Calcium signaling pathway和Adipocytokine signaling pathway分别控制多糖代谢、葡萄糖代谢和游离脂肪酸的代谢。
     2应用基因芯片技术分析得出,LEPR、PLC、NCX基因表达值上调与GLUT1、VEGF、GPCR、GS、PKG、RAP1A、AKT、PRKAR2B、ADA、AMPK、AGT、GUCY基因的表达值下调。
     3构建出人类长寿局部基因网络模式包含2~(23)种连接方式,19条信号通路,8个人类长寿基因,5个连接基因和一个化合物(c00097),以一种连接方式为依据得到人类长寿局部基因网络图,包含17个基因和2个化合物。
     4建立了线虫长寿基因网络,包含38个基因,6条信号通路,运用芯片数据分析,发现有六个基因age-1,cyc-1,aak-2,let-363,cst-1/MST和akt-1表达值的下调有助于延长寿命。
     5建立了胚胎干细胞基因网络图,包含23个蛋白质和20个基因。利用芯片数据分析,得出SOX2、OCT-4基因表达值上调,IGF-2、OCT-4基因表达值下调。
The purpose of the study was to set up a protocol to construct the local gene network pattern of several complex biological phenotypes,and analyze the molecular mechanism of complex biological phenotypes by using the LGNPs.Hypertension,longevity and maintenance or transformation of embryonic stem cell were selected for studying the molecular mechanism of the three complex biological phenotypes.We collected lots of gene-related information such as signaling pathway from biological databases by the internet in the way of the bioinformatics methods.KGML Editor gene network diagrams from KEGG database and the software Osprey visualizing the network between gene and protein were employed in this study.The Local gene network pattern of the four complex biological traits were successfully constructed through analyzing the relevance among the susceptibility genes.Five conclusions were obtained:
     Firstly the local gene network patterns of hypertension included 22 signal transduction pathways,and 15 genes.We set up a hypertension genes network through selecting connections of the 64 kinds of the LGNPs.This network contained 47 genes,9 signal pathways,four of which control the Polysaccharide metabolism、glucose metabolism and fatty acid metabolism.
     Secondly there are fifteen genes changed significantly in microarray expression.The gene expression level of LEPR,PLC,NCX increased and the gene expression level of GLUT1,VEGF,GPCR,GS,PKG,RAP1A,AKT,PRKAR2B,ADA,AMPK,AGT,GUCY went down in microarray.The new sensitive gene of complex biological phenotype could be predicted by the application of gene chip technology.
     Thirdly the local gene network of human longevity contained 19 signaling pathways, 17 genes and the two compounds.We set up the LGN through selecting connections of the two to the power of twenty-three(2~(23)) kinds of the LGNPs.
     Fourthly the LGN of the worm longevity contained 6 signaling pathways,38 genes,of which 24 genes were already reported as nematode longevity genes.The gene expression levels of six genes age-1,cyc-1,aak-2,let-363,cst-1/MST and akt-1 went down in the consumption of low-fat and low-protein culture medium.
     Fifthly the LGN of embryonic stem cell contained 23 proteins and 20 genes.The gene expression levels of the two genes SOX2 and OCT-4 increased and the gene expression levels of IGF-2 and OCT-4 decreased in the microarray data.
引文
[1]蔡立羽.国内外医学生物学工程分册[M].1998,21(4):44-47.
    [2]内斯托尔 V 托雷斯,埃伯哈德 O 沃伊特.代谢工程的途径分析与优化[M].北京:化学工业出版社,2005,(2):52-56.
    [3]Joseph DeRisi,Lolita Penland,Patrick O Brown,et al.Use of a cDNA microarray to analyse gene expression patterns in human cancer[J].Nat Genet,1996,14(4):457-460.
    [4]Soinov LA,Krestyaninova MA,Brazma A.Towards reconstruction of gene networks from expression data by supervised learning[J].Genome Biol,2003,4(1):R6.
    [5]Herbert A,Gerry NP,McQueen MB,et al.A common genetic variant is associated with adult and childhood obesity[J].Science,2006,312(5771):279-283.
    [6]Rosskopf D,Bornhorst A,Rimmbach C et al.Comment on "A common genetic variant is as-sociated with adult and childhood obesity"[J].Science,2007,315(5809):187.
    [7]Frayling TM,Timpson NJ,Weedon MN et al.A common variant in the FTO gene is associated with body mass index and predis-poses to childhood and adult obesity[J].Science,2007,316(5826):889-894.
    [8]景志忠,才学鹏.模式生物基因组研究进展[J].生物医学工程学杂志,2004,21(3):506-511.
    [9]Ellsworth C,Dougherty Hermione Grant.Possible Significance of Free-living Nematodes in Genetic Research[J].Nature,1948,161,29.
    [10]赵国屏.生物信息学[M].北京:科学出版社,2002:220-250.
    [11]姚微佳.生物信息学方法和生物基因芯片进行癌症诊断方面的研究[D].上海:同济大学.2006.
    [12]Altm(u|¨)ller J,Palmer L,Fischer G et al.Genome wide scans of complex human diseases true linkage is hard to find[J].The American Journal of Human Genetics,69(5):936-950.
    [13]Klein RJ,Zeiss C,Chew EY et al.Complement factor H polymorphism in age-related macular degeneration[J].Science,2005,308(5720):385-389.
    [14]Tomita M et al.E-Cell:software environment for whole-cell simulation[J].Bioinformatics,1999,15(1):1-4.
    [15]Weng.G,Bhalla U S,Iyengar R.Complexity in biological signaling systems[J].Science,1999,284(5411):92-96.
    [16]G,Bhalla U S,Iyengar R.Emergent properties of network of biological signaling pathway[J].Science,1999,283(5400):381-387.
    [17]雷耀山,史定华,王翼飞.基因调控网络的生物信息学研究[J].自然杂志,2004,26(1):7-10.
    [18]Nicholas,Geard,Janet Wiles.A Gene Network Model for Developing Cell Lineages[EB/OL].2005,9(3):249-268.
    [19]史忠植.知识发现[M].北京:清华大学出版社,2002.
    [20]FodorS P,ReadJ L,PirrungM C,et al.Light-direct spatially addressable Parallel ehemical synthesis[J].Seienee,1991,251:767-773.
    [21]邢婉丽,程京.生物芯片技术[M].北京:清华大学出版社,2002:100-105.
    [22]马立人,蒋中华.生物芯片[M].北京:化学工业出版社,2002:110-125.
    [23]Vercelli D.Genetics,epigenetics,and the environment:switching,buffering,releasing[J].Allergy Clin Immunol,2004,113(3):381-386.
    [24]Mills J,Gordon J.A new approach for filtering noise from high-density oligonucleotide Microarray datasets[J].Nucleic Acids Research,2001,29-72.
    [25]Hall M.Correlation-based Feature Selection of Machine Learning[D].Hmailton:University of Waikato,1998.
    [26]Blum A,Langley P.Selection of relevant features and examples in machine learning[J].Artificial Intelligence,1997,97:245-271.
    [27]华琳,郑卫英,刘红.等.特征代谢通路上的基因表达相关性及共调控表达模式[J].生物工程学报,2008,24(9):1643-1648.
    [28]张红卫.发育生物学[M].北京:高等教育出版社,2006:7-15.
    [29]秦峰松,杨崇林.小线虫,大发现:Caenorhabditis elegans在生命科学研究中的重要贡献[M].生命科学.2006.18:419-424.
    [30]李衍达.复杂系统与复杂性科学[N].2004,1(1):6-8.
    [31]Zeng XM,Cai JL,Chen JC,et al.Dopaminergic differentiation of human embryonic stem cells[J].Stem Cells,2004,22(6):925-940.
    [32]Mei Q,Yu Y,Li T,et al.Derivation of human embryonic stem cell lines from parthenoEenetic blastocysts[J].Cell Res,2007,17(12):1008-1019.
    [33]Park CH,Minn YK,Lee J,et al.In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons[J].Journal of Neurochemistry,2005,92(5):1265-1276.
    [34]Perrier AL,Tabar V,Barberi T,et al.Derivation of midbrain dopamine neurons from human embryonic stem cells[C].Proc Natl Acad Sci,2004;101(34):12543-12548.
    [35]Cambell K,Wilmut A.Totipotency or multipotentiality of cultured cells:Application and progress[J].Theriogenology,1997,47(1):63-67.
    [36]张军强,李红霞.胚胎干细胞研究进展[J].国外医学:妇产科学分册.2004,31(5):277-280.
    [37]Chen H,Qian K,Zhang SM,et al.Shengzhi Yixue Zazhi.2004;13(6):373-376.
    陈红,钱坤,张苏明等.人胚胎干细胞建系及体外诱导分化的研究进展[J].生殖医 学杂志,2004,13(6):373-376.
    [38]王芸,李澎鹏,王津倩,等.影响长寿的局部基因网络模型及其与营养代谢模块的相关性[J].现代食品科技,2009,2.
    [39]Gollub J.The Stanford microarray database:data access and quality assessment tools[J].Nucleic Acids Res,2003,31:94-96.
    [40]Nakajima T,Jorde L.Nucleotide diversity and haplotype structure of the human gene in two populations[J].Am Hum Genet,2002,70(1):108-123.
    [41]朱鼎良.高血压基因研究及应用前景[J].临床内科杂志,2004,(21):1.
    [42]Halushka K,Fan B,Bentley K,et al.Patterns of single—nucleotide polymorphisms in candidate genes for blood-pressure homeostasis[J].Nat Genet,1999,22:239-247.
    [43]张其鹏,张丹,刘贝,等.高血压相关基因和蛋白质数据库的初构[J].北京大学学报(医学版),2002,34(2):4.
    [44]Hatta S,Sakamoto J,Horio Y.Ion channels and diseases[J].Med Electron Micros,2002,35:117-126.
    [45]Belloni FN,Carney DH.Organ-derived microvessel endotheliail cells exhibit differential responsiveness to thrombin and other growth factors[J].Microvasc Res,1992,43(1):20-45.
    [46]宋冬林,李玉明.α-内收蛋白基因多态性与原发性高血压研究进展.武警医学院学报,2006,5(15-3):273-276.
    [47]Tripodi G,Florio M,Ferrandi M,et al.Effect of Addl gene transfer on blood pressure in reciprocal congenic strains of Milan rats[J].Biochem Biophys Res Commun,2004,324(2):562-568.
    [48]Hummel KP,Dickie MM,Coleman DL.Diabetes,a new mutation in the mouse[J].Science,1966,153(740):1127-1128.
    [49]Ng CJ,Wadleigh DJ,Gangopadhyay A,et al.Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein[J].Biol Chem,2001,276(48):444-449.
    [50]Horke S,Witte I,Willgenbus P,et al.Paraoxonase-2 Reduces Oxidative Stress in Vascular Cells and Decreases Endoplasmic Reticulum Stress-Induced Caspase Activation[J].Circulation,2007,115(15):2055-2064.
    [51]Kario,Kazuomi MD,Ken MD PhD,et al.Ischemic Stroke and the Gene for Angiotensin-Converting Enzyme in Japanese Hypertensives[J].Circulation,1996,93(9):1630-1633.
    [52]Tiret-L,Blanc-H,Ruidavets-JB,et al.Gene polymorphisms of the Renninangiotensin system in relation to hypertension and parental history of myocardial infarction and stroke: the PEGASE study[J]. J-Hypertens, 1998,16(1): 37-44.
    [53] Zhan Cheng-ye, Tao Xiu-liang, Han Shao-jie. Inhibition of Tanshinone II A on cardiac aldosterone synthesis and relevant genic expression in hypertension[J]. Rehabiltation of Traditional Chinese Medicine. 2005, 9(23): 243-247.
    [54] Woods D, Sanders J, Jones A, et al. The serum angiotensin-converting enzyme and angiotensinII response to altered posture and acute exercise, and the influence of ACE genotype[J]. Eur J Appi Physiol, 2004, 91(2-3): 342-348.
    [55] Pereira AC, Mota GF, Cunha RS, et al. Angitensinogen 235T allele"dosage"is associated with blood pressure phenotype[J]. Hypertension, 2003,41: 25-30.
    [56] Kato N, Sugiyama T, Morita H, et al. Angitensinogen gene and essential hypertension in the Japanese: extensive association study and meta-analysis on six reported studies [J]. J Hypertens, 1999,17(6): 757-763.
    [57] Golmbiowska K, White TD, Sawynok J. Modulation of adenosine release from rat spinal cord by adenosine deaminase and adenosine kinase inhibitors [J]. Brain Res, 1995, 20(2): 315-320.
    [58] Zhizhou Zhang, Yun Wang, Xiujin Wang, Xiao Han. Local gene network pattern (LGNP) approach to tackle mechanisms of complicated phenotypes[A]. iCBBE 2008, 2008, shanghai.
    [59] Weston AD, Hood L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine[J]. J Proteome Res, 2004, 3(2): 179-196
    [60] Heath JR, Phelps ME, Hood L. NanoSystems biology[J]. Mol Imaging Biol, 2003, 5(5): 312-325.
    [61] Ideker T, Galitski T, Hood T. ANEW APPROACH TO DECODING LIFE: Systems Biology[J]. Annu Rev Genomics Hum Genet, 2001, 2: 343-372.
    [62] Haper S J, LoGrasso P. Signalling for survival and death in neurones: the role of stress-activated kinase, JNK and p38[ J ]. Cell Signal, 2001,13(5): 299-310.
    [63] Srinivasan S, Bernal-Mizrachi E , Ohsugi M, et al. Glucose promotes pancreatic islet β -cell survival through a PI 3-kinase/Akt-signaling pathway[J]. AmJ Physiol Endocrinol Metab, 2002, 283: 784-793.
    [64] Wrede CE, Dickson LM, Lingohr MK, et al . Protein kinase B/ Akt prevents fatty acid-induced apoptosis in pancreaticβ-cells (INS-1)[J]. J Biol Chem, 2002, 277 : 49676-49684.
    [65] Berggren PO, Yang SN, Murakami M, et al . Removal of Ca~(2+) channel 3 subunit enhances Ca~(2+) oscillation frequency and insulin exocytosis[J]. Cell, 2004, 119 : 273-284.
    [66]Lee I,Date V,Marcotte E.A probabilistic functional network of yeast genes[J].Science,2004,306:1555-1558.
    [67]Mering C.STRING:a database of predicted functional associations between proteins[J].Nucleic Acids Res,2003(31),258-261.
    [68]Chen Y,Xu D.Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae[J].Nucleic Acids Res,2004,32:6414-6424.
    [69]Li S.A map of the interactome network of the metazoan C.elegans[J].Science,2004,303:540-543.
    [70]Chen N.WormBase:a comprehensive data resource for Caenorhabditis biology and genomics[J].Nucleic Acids Res,2005,33:D383-D389.
    [71]Giot,L.A protein interaction map of Drosophila melanogaster[J].Science,2003,302:1727-1736.
    [72]张敏,梅元武,魏桂荣.酵母双杂交系统在中枢神经系统疾病研究中的应用[J].国外医学神经病学神经外科学,2003,30(6):545-548.
    [73]Lee I,Lehner B,Crombie C.A single gene network accurately predicts phenotypic effects of gene perturbation in C.elegans[J].Nat Genet,2008,40(2):181-188.
    [74]Castelein N,Hoogewijs D,De Vreese A.Dietary restriction by growth in axenic medium induces discrete changes in the transcriptional output of genes involved in energy metabolism in Caenorhabditis elegans[J].Biotechnol J,2008,3(6):803-812.
    [75]Gonos ES.Genetics of aging:lessons from centenarians[C].Exp Gerontol.2000,35(1):15-21.
    [76]Li Y,Rowland C,Xiromerisiou G,et al.Neither replication nor simulation supports a role for the axon guidance pathway in the genetics of Parkinson's disease[C].PLoS ONE,2008,16(7):2707.
    [77]Erdogan M,Pozzi A,Bhowmick N.Signaling pathways regulating TC21-induced tumorigensis[J].J Biol Chem,2007,282(38):27713-27720.
    [78]Wang J,Wan W,Sun R,et al.Reduction of Akt2 expression inhibits chemotaxis signal transduction in human breast cancer cells[J].Cell Signal,2008,20(6):1025-1034.
    [79]Ventura A,Luzi L,Pacini S,et al.The p66Shc longevity gene is silenced through epigenetic modifications of an alternative promoter[J].J Biol Chem,2002,277(25):22370-22376.
    [80]Bonafe M,Barbieri M,Marchegiani F,et al.Polymorphic variants of insulin-like growth factor Ⅰ(IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity:cues for an evolutionarily conserved mechanism of life span control[J].J Clin Endocrinol Metab,2003,88(7):3299-3304.
    [81] Rincon M, Muzumdar R, Atzmon G, Barzilai N. The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech Ageing Dev, 2004, 125(6): 397-403.
    [82] Kulminski A, Ukraintseva SV, Arbeev KG, et al. Association between APOE epsilon 2/epsilon 3/epsilon 4 polymorphism and disability severity in a national long-term care survey sample[J]. Age Ageing, 2008,37(3): 288-293.
    [83] Dato S, Carotenuto L, De Benedictis G. Genes and longevity: a genetic-demographic approach reveals sex and age-specific gene effects not shown by the case-control approach (APOE and HSP70. 1 loci)[J]. Biogerontology, 2007, 8(1): 31-41.
    [84] Love S, Nicoll JA, Hughes A. APOE and cerebral amyloid angiopathy in the elderly[J]. Neuroreport, 2003, 14(11): 1535-1536.
    [85] Kaeberlein M, Kirkland K.T, Fields S. Sir2-independent life span extension by calorie restriction in yeast[C]. PLoS Biol, 2004,2(9): E296.
    [86] Shabalin AV, Maksimov VN, Dolgikh MM, et al. Polymorphism of the gene of angiotensin-converting enzyme and apolipoprotein E gene in long-livers of Novosibirsk city[J]. Adv Gerontol, 2003, 12: 77-81.
    [87] Venkataraman K, Riebeling C, Bodennec J, et al. Upstream of growth and differentiation factor 1(uogl), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro) ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells[J]. J Biol Chem, 2002, 277(38): 35642-35649.
    [88] Koybasi S, Senkal CE, Sundararaj K, et al. Defects in cell growth regulation by C18: 0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas[J]. J Biol Chem, 2004,279(43): 44311-44319.
    [89] Candia P, Blekhman R, Chabot AE. A combination of genomic approaches reveals the role of FOXOla in regulating an oxidative stress response pathway[C]. PLoS ONE, 2008, 3(2):e1670.
    [90] Fujiyama A, Tamanoi F. Processing and fatty acid acylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae[J]. Proc Natl Acad Sci U S A, 1986, 83(5): 1266-1270.
    [91] Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M. Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins[J]. Cell, 1985, 41(3): 763-769.
    [92] Kataoka T, Powers S, McGill C, Fasano O, Strathern J, Broach J, Wigler M. Genetic analysis of yeast RAS1 and RAS2 genes[J]. Cell, 1984, 37(2): 437-445.
    [93] Chan AM, Miki T, Meyers KA, Aaronson SA. A human oncogene of the RAS superfamily unmasked by expression cDNA cloning[J]. Proc Natl Acad Sci U S A. 1994, 91(16): 7558-7562.
    [94] Drivas GT, Shih A, Coutavas E, et al. Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line[J]. Mol Cell Biol, 1990, 10(4): 1793-1798.
    
    [95] Manning G. Genomic overview of protein kinases[EB/OL]. WormBook, 2005.
    [96] Ewbank JJ. Signaling in the immune response[EB/OL]. WormBook. 2006.
    [97] Rhoads RE, Dinkova TD, Korneeva NL. Mechanism and regulation of translation in C. elegans[EB/OL]. WormBook. 2006.
    [98] Brooks DR, Appleford PJ, Murray L. An essential role in molting and morphogenesis of Caenorhabditis elegans for ACN-1, a novel member of the angiotensin-converting enzyme family that lacks a metallopeptidase active site[J]. J Biol Chem, 2003, 278(52): 52340-52346.
    [99] Dietrich FS, Voegeli S, Brachat S, et al. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome[J]. Science, 2004, 304(5668): 304-307.
    [100] Ham TJ, Thijssen KL, Breitling R, et al. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging[EB/OL]. www.PLoSGenetics.org, 2008.
    [101] Ono B. Purification and properties of Saccharomyces cerevisiae cystathionine beta-synthase[J]. Yeast, 1994, 10(3): 333-339.
    [102] Derkatch IL, et al. Prions affect the appearance of other prions: the story of[PIN(+)][J]. Cell, 2001, 106(2): 171-182.
    [103] Gary Ruvkun, Sean Curran. Lifespan Regulation by Evolutionarily Conserved Genes Essential for Viability[EB/OL]. www.PLoSGenetics.org: e56, 2007.
    [104] Sentinelli F, Romeo S, Barbetti F, et al. Search for genetic variants in the p66Shc longevity gene by PCR-single strand conformational polymorphism in patients with early-onset cardiovascular disease[J]. BMC Genet, 2006, (3)6: 7-14.
    [105] Rietveld I, Janssen JA, Hofman A. A polymorphism in the IGF-I gene influences the age-related decline in circulating total IGF-I levels[J]. Eur J Endocrinol. 2003, 148(2):171-175.
    [106] Jackson AU. Mouse loci associated with life span exhibit sex-specific and epistatic effects[J]. J Gerontol A Biol Sci Med Sci, 2002, 57(1): B9-B15.
    [107] Sachdev D, Hartell JS, Lee AV, et al. A dominant negative type I insulin-like growth factor receptor inhibits metastasis of human cancer cells[C]. J Biol Chem, 2004, 279(6):5017-5024.
    [108] Bonafe M, Barbieri M, Marchegiani F, et al. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control[J]. J Clin Endocrinol Metab, 2003, 88(7): 3299-3304.
    [109] Pandithage R, Lilischkis R, Harting K, Wolf A, Jedamzik B, Luscher-Firzlaff J, Vervoorts J, Lasonder E, Kremmer E, Knoll B, Luscher B. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility[J]. J Cell Biol, 2008, 180(5): 915-929.
    [110] Dryden SC, Nahhas FA, Nowak JE, et al. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle[J]. Mol Cell Biol, 2003, 23(9): 3173-3185.
    [111] Luo B, Huang F, Liu Q, et al. Identification of apolipoprotein E Guangzhou (arginine 150 proline), a new variant associated with lipoprotein glomerulopathy[C]. Am J Nephrol, 2008, 28(2): 347-53.
    [112] Ozturk A, DeKosky ST, Kamboh MI. Genetic variation in the choline acetyltransferase (CHAT) gene may be associated with the risk of Alzheimer's disease[C]. Neurobiol Aging, 2006, 27(10): 1440-4.
    [113] Singh PP, Naz I, Gilmour A, et al. Association of APOE (Hhal) and ACE (I/D) gene polymorphisms with type 2 diabetes mellitus in North West India[C]. Diabetes Res Clin Pract, 2006, 74(1): 95-102.
    [114] Senkal CE, Ponnusamy S, Rossi MJ, et al. Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas [J]. Mol Cancer Ther, 2007, 6(2): 712-722.
    [115] Yuan Z, Becker EB, Merlo P, et al. Activation of FOXO1 by Cdkl in cycling cells and postmitotic neurons[J]. Science, 2008, 319(5870): 1665-1668.
    [116] Huang H, Regan KM, Lou Z, et al. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage[J]. Science, 2006, 314(5797): 294-297.
    [117] Eric L. Greer. Signaling networks in aging[C]. Journal of Cell Science, 121:407-412.
    [118] Nathaniel J, Szewczyk. Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction[C]. The Journal of Experimental Biology, 209:4129-4139.
    [119] Dillin A, Hsu A. Rates of behavior and aging specified by mitochondrial function during development[J]. Science, 2002, (298); 2398-2401.
    [120] Lee S S, Lee R Y, Fraser A G, et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity[J]. Nat Genet, 2003, (33): 40-48.
    [121] Ralf Baumeister, Elke Schaffitzel. Endocrine signaling in Caenorhabditis elegans controls stress response and longevity[J]. Journal of Endocrinology, 2006, (190): 191-202.
    [122 ] Paradis S, Ruvkun G . Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor[J]. Genes and Development, 1998, (12): 2488-2498.
    [123] Paradis S, Ailion M, Toker A. A PDK.1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans [J].Genes and Development, 1999, (13 ): 1438-1452.
    [124] Ogg S & Ruvkun G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway [J]. Molecular Cell, 1998, (2): 887-893.
    [125] Meissner B, BollM, Daniel H, Baumeister R. Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans. Journal of Biological Chemistry, 2004, (279): 36739-36745.
    [126] Vellai T, Takacs-Vellai K, Zhang Y, et al. Influence of TOR kinase on lifespan in C. elegans[J]. Nature, 2003, (43): 426-620.
    [127] Matthew T, Pankratza b, Xue-Jun c, Timothy M. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage[J]. Stem Cells, 2007,6(25): 1511-1520.
    [128] Zangrossi S, Marabese M, Broggini M, et al. Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker[J]. Stem Cells, 2008, 26(1): 290-291.
    [129] Samson T, Smyth N, Janetzky S, et al. The LIM-only proteins FHL2 and FHL3 interact with alpha- and beta-subunits of the muscle alpha7betal integrin receptor [J]. J Biol Chem, 2004, 279(27): 28641-28652.
    [130] Govoni KE, Amaar YG, Kramer A, et al. Regulation of insulin-like growth factor binding protein-5, four and a half lim-2, and a disintegrin and metalloprotease-9 expression in osteoblasts[R]. Growth Horm IGF Res, 2006, 16(1): 49-56.
    [131] Morimoto LM, Newcomb PA, White E. Variation in plasma insulin-like growth factor-1 and insulin-like growth factor binding protein-3: genetic factors[J]. Cancer Epidemiol Biomarkers Prev, 2005, 14(6): 1394-1401.
    [132] Johansson M, McKay JD, Wiklund F, et al. Implications for prostate cancer of insulin-like growth factor-I (IGF-I) genetic variation and circulating IGF-I levels. J Clin Endocrinol Metab[C], 2007, 92(12): 4820-4826.
    [133] di Bernardo D, Thompson MJ, Gardner TS, et al. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks[J]. Nat Biotechnol, 2005, 23(3): 377-383.
    [134] Gardner TS, di Bernardo D, Lorenz D, Collins JJ. Inferring genetic networks and identifying compound mode of action via expression profiling[J]. Science, 2003, 301(5629): 102-105.
    [135] Segal E, Friedman N, Kaminski N, Regev A, Koller D, From signatures to models: understanding cancer using microarrays[R]. Nat Genet, 2005, 37: S38-45.
    [136] Li X, Rao SQ, Jiang W, et al. Discovery of Time-Delayed Gene Regulatory Networks based on temporal gene expression profiling[P]. BMC Bioinformatics, 2006:7-26.
    [137] Strogatz SH. Exploring complex networks[J]. Nature, 2001, 410(6825): 268-276.
    [138] Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization[J]. Nat Rev Genet, 2004, 5(2): 101-113.
    [139] Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways[J]. Nat Biotechnol, 2004,22(1): 62-69.
    [140] Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks[C]. Proc Natl Acad Sci USA, 2000, 97(22): 12182-12186.
    [141] Steuer R, Kurths J, Fiehn O, Weckwerth W. Observing and interpreting correlations inmetabolomicnetworks[]. Bioinformatics, 2003, 19(8): 1019-1026.
    [142] Liang S, Fuhrman S, Somogyi R. Reveal, a general reverse engineering algorithm for inference of genetic network architectures [J]. Pac Symp Biocomput, 1998: 18-29.
    [143]Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model [J]. Pac Symp Biocomput, 1999: 17-28.
    [144]Chen X, Chen M, Ning K. BNArray: an R package for constructing gene regulatory networks from microarray data by using Bayesian network[J]. Bioinformatics, 2006, 22(23): 2952-2954.
    [145] Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks[J]. Bioinformatics, 2006, 22(20): 2523-2531.
    [146] Chen KC, Wang TY, Tseng HH, Huang CYF, Kao CY. A stochastic differential equation model for qu antifying transcriptional regulatory network in Saccharomyces cerevisiae[J]. Bioinformatics, 2005, 21(12): 2883-2890.
    [147] Chen T, He HL, Church GM. Modeling gene expression with differential equations[C]. Pac Symp Biocomput, 1999: 29-40.
    [148] Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data[J]. Nat Genet, 2003, 34(2): 166-176.
    [149] Kelley R, Ideker T. Systematic interpretation of genetic interactions using protein networks[J]. Nat Biotechnol, 2005, 23(5): 561-566.
    [150] Tamada Y, Kim SY, Bannai H, Imoto S, Tashiro K, Kuhara S, Miyano S. Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection[J]. Bioinformatics, 2003, 19: 227-236.
    [151] MacCarthy T, Pomiankowski A, Seymour R. Using large-scale perturbations in gene network reconstruction[J]. BMC Bioinformatics, 2005, 6-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700