用户名: 密码: 验证码:
中国主要地方马群体遗传多样性及系统进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国拥有丰富的马种资源,长期以来与我国农业生产息息相关,但对中国马种遗传多样性和起源进化的研究还不够系统和深入。
     本文采用基因组微卫星标记、线粒体D-loop高变区序列和Y染色体DNA三类DNA分子标记分别从全基因组、母系及父系三个方面对中国地方马群体的遗传多样性和起源驯化进行系统的分析,从而为马种遗传资源的保护和开发利用提供科学依据。
     1.应用世界粮农组织(FAO)和国际动物遗传学会(ISAG)推荐的27对微卫星引物,对26个中国地方马群体和2个引进品种,共1273份样品进行了遗传多态性检测。通过统计各种遗传多样性参数、分析群体遗传分化程度和系统聚类,研究了中国地方马群体遗传多样性和群体间遗传关系。
     结果显示:中国地方马群体具有较高的等位基因数、多态信息含量和遗传杂合度等遗传参数,表明中国地方马群体具有丰富的遗传多样性。其中,平均观察杂合度(Ho)为0.743,各群体的平均PIC都在0.69以上。中国地方马群体遗传多样性参数明显高于纯血马。中国地方马群体遗传多样性存在着一定的群体间差异。部分马群体具有较多的特有等位基因(NPA)。但总体遗传分化程度较低,群体间的遗传变异仅占2.4%。
     系统发育树将中国地方马种分成五个主要类群。这五大类群基本上与中国马种的五大地理区域分布相一致,包括长江流域及以南类群;青藏高原类群;西北类群;东北类群和内蒙古类群。主成分分析和Structure分析进一步支持了系统聚类结果。
     2.通过测序所获得659条家马和28条普氏野马mtDNA D-loop区序列。统计显示,共发现82个变异位点,定义出178个家马单倍型。在普氏野马序列中仅发现了2种单倍型。中国地方马群体的单倍型多样度和核苷酸多样度都表明中国家马群体mtDNA具有较丰富的遗传多样性。
     178个家马单倍型定义了9个支系(A-I),新定义H和I两个支系。中国地方马群体的单倍型在A、D和F三大支系中占有明显的优势。NETWORK网络关系分析支持中国家马群体存在9个主要进化分枝(A-I)。中国家马9个支系分布存在着地理偏倚性。F支系个体在长江以北地区含量比较高,在长江以南地区比较低。G支系在长江以南的大部分地方马群体中所占比例比其它地区地方马群体的比例明显要高。中国家马具有丰富的遗传多样性和广泛的支系分布表明,中国很有可能是家马驯化中心之一,并支持中国家马具有多个母系起源。
     联合GenBank中家马序列(增加334条序列,共1021条序列)分析发现,来自欧洲、中东、亚洲各个区域家马群体mtDNA,支系分布存在比较明显的差异性。远东地区马mtDNA类型与F支系具有显著的相关性,新定义的I支系马在亚洲地区分布具有明显的优势,这两个支系很有可能与中国马种最早的驯化事件相关。
     3.六个Y-DNA微卫星标记,在家马、普氏野马及家驴雄性样本中得到很好的扩增,形成明显的微卫星峰图,并在家马、普氏野马及家驴之间显示出等位基因差异。总体上,家马的Y-DNA遗传变异非常有限。本研究在家马的Y染色体非重组区首次发现的遗传变异信息——在Eca.YA16位点上,发现了一种新的单倍型(单倍型B),通过两种测序方法获得变异序列并证实其可靠性。统计发现单倍型B个体主要分布在中国的西南及长江流域以南区域。
There are numerous domestic horse breeds in China, but there has been no extensive study on genetic diversity, population demographic history and origin of Chinese horses.
     In this study, three kinds of molecular genetic markers including autosomal microsatellites, mitochondrial DNA and Y–DNA, were used to analyze the genetic diversity, and origin of Chinese domestic horse, and results of this study further provide scientific basis for its conservation and utilization.
     1. Genetic variation at 27 microsatellite loci was investigated for 1,273 individuals from 26 Chinese indigenous horse populations and two introduced horse populations. Genetic variation parameter statistics, population differentiation analysis and clustering analysis were carried out to determine the genetic diversity and evolutionary relationships among Chinese horse populations. The number of alleles, PIC and heterozygosity in this reseach showed that there was abundant genetic variation in Chinese indigenous horses. The mean Observed heterozygosity (Ho) was 0.743, and the mean Polymorphism information content (PIC) was above 0.69 in each Chinese horse population. Genetic diversity of Chinese horses was higher than Thoroughbred horse based on most genetic diversity estimators. However, the genetic differentiation in Chinese native horses was low and only 2.4% of the total genetic variance existed among populations.
     Dendrogram analysis showed that the genetic differentiation and genetic relationships between Chinese horse populations were almost consistent with their geographic distribution, and five groups were recognized: Yangtze River group, Qinghai-Tibet Plateau group, Northwest group, Northeast group and Inner Mongolia group. Cluster analysis was performed by the Multivariate Statistical Packsge (MVSP) and Structure analysis.
     2. 659 domestic horse and 28 Przewalskii’horse D-loop sequences were sequenced. Statistics showed that there were 82 variation sites and 178 haplotypes in domestic horses. There were only two haplotypes in Przewalskii’horses. Haplotype diversity (Hd) and Nucleotide diversity (Pi) showed abundant genetic variation in Chinese domestic horses. Phylogenetic analysis showed nine haplogroups (A-I) in Chinese domestic horses based on 178 haplotypes of domestic horse. The two haplogroups of new definition were Haplogroup H and Haplogroup I. There was high sample proportion in A, D and F haplogroups of Chinese domestic horses. NETWORK analysis supported the results of phylogenetic analysis. There was geographical bias of the distribution of the nine haplogroups in Chinese domestic horses. The samples of F haplogroup in north of the Yangtze River were more than the samples in the south of the Yangtze River. The samples of G haplogroup in south of the Yangtze River were more than the samples in other area. Abundant genetic diversity and wide haplogroup distribution of mtDNA showed that China is likely to be one of the horse domestication centers, and supported there were wide maternal origin of the domestic horses in China.
     Added 334 sequences from GenBank, a total of 1021 sequences from Europe, the Middle East, and Asian were analysed. Results of analysis showed that there was different distribution of haplogroups in different area. This concordance of haplogroup F with the Far Eastern population origin was highly significant. Samples of Haplogroup I in Asian were more than other aera. These results indicated the F and I haplogroups maybe correlated with domestication of Chinese horses.
     3. Genetic variations of the six equine Y-DNA microsatellites were assessed in the male domestic horses, male Przewalski horses and male domestic donkeys. And there were obvious allele differences between domestic horse, Przewalski's horse and donkey. Though the six Y-specific microsatellites displayed limited genetic variation in the domestic horse breeds, this was the first time polymorphism was found in non-recombinant horse Y-DNA. Moreover, Chinese domestic horse breeds carrying two alleles were only in the southern area of the Yangtze River, mainly in the southwest of China. Horse breeds in these regions have distinct appearances from those in the North of China.
引文
1.安丽萍,李正先,于景文.从细胞色素b基因序列探讨普氏野马与蒙古马的遗传多样性.甘肃农业大学学报, 2006, 41(5): 10~13.
    2.晁玉庆,国向东,赖双英.蒙古马染色体核型初步分析.内蒙古农牧学院学报, 1992, 13(1): 104~107.
    3.蔡大伟,韩璐,谢承志.内蒙古赤峰地区青铜器时代古马线粒体DNA分析.自然科学进展, 2007, 3 (17): 385~390.
    4.陈宏, Leibenguth,丘怀.德国骑乘马线粒体DNA的限制性酶分析.西北农业大学学报, 1999, 27(4): 23~27.
    5.狄冉.中国产绒山羊微卫星和单核苷酸多态性研究[博士学位论文].北京:中国农业科学院,2008.
    6.耿社民,刘小林.中国家畜品种资源纲要.北京:中国农业出版社, 2003.
    7.侯文通,李相运,李勤荣.应用血清LDH同工酶对宁强矮马亲缘关系的分析.西北农林科技大学学报, 1993, 2(4): 94~98.
    8.侯文通.东南亚小型马来源的遗传学和历史学研究.西北农业大学学报, 1994, 22(1): 7~12.
    9.侯文通,李湘运.西南马的遗传分化及若干地方类型亲缘关系的研究.西北农业学报, 1993, 4: 98~102.
    10.侯文通.试论马种遗传资源的管理.第四界全国马匹育种委员会学术讨论会材料, 1997.
    11.侯文通,孙超.蒙古马东西两大类型群体遗传变异分析.畜牧兽医杂志, 1995, (2): 5~7.
    12.黄百渠,曾庆华,尹东.遗传多样性研究中的分子生物学方法.东北师范大学报(自然科学版), 1996, (3): 90~92.
    13.雷初朝,陈宏,杨公社.中国部分黄牛品种mtDNA遗传多态性研究.遗传学报, 2004, 31(1): 57~62.
    14.李金莲,石有斐,布仁其其格.三大不同品种马mtDNA Cytb基因的PCR-RFLP分析遗传.遗传, 2006, 28(8): 933~938.
    15.李金莲,芒来,石有斐.利用微卫星标记对蒙古马和纯血马遗传多样性的研究.畜牧兽医学报, 2005, 63(1): 6~9.
    16.凌英会,成月娇,王艳萍,关伟军,韩建林,傅宝玲,赵倩君,何晓红,浦亚斌,马月辉.应用微卫星标记分析23个中国地方马品种的遗传多样性.生物多样性, 2009, 17(3): 240~247.
    17.李荣岭,张桂香,王志刚,王慧,韩旭,王冬蕾,王均辉.微卫星标记对12个中外牛品种群体遗传结构的研究.遗传, 2007, 12: 1463~1470.
    18.罗永发,王志刚,李加琪.采用微卫星标记分析13个中外牛品种的遗传变异和品种间的遗传关系.生物多样性, 2006, 14: 498~507.
    19.马月辉,吴常信.畜禽遗传资源受威胁程度评价.家畜生态, 2001, 22(2): 8~13.
    20.马月辉,陈幼春,冯维祺.中国家养动物种质资源及其保护.中国农业科技导报, 2002, 4(3): 37~42.
    21.芒来,李金莲,孙玉江.不同品种马ELA-DQA*exon2的多态性分析.畜牧兽医学报, 2006, 37(10): 951~955.
    22.芒来.蒙古人与马.内蒙古:内蒙古科学技术出版社, 2002: 3~31.
    23.孟青龙,李金莲,芒来,张物.中国蒙古马mtDNA D-Loop高变区序列分析.畜牧与饲料科学. 2004, (5): 35~37.
    24.齐景发.中国畜禽遗传资源状况.北京:中国农业出版社, 2004.
    25.钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社, 1994.
    26.宿兵,刘爱华,林世英,王文,兰宏,施立明.云南普通马矮型马蛋白多态性及其品种分化关系.动物学研究, 1995 16: 126~131.
    27.苏锐.中国家马遗传多样性与母系遗传研究[硕士学位论文].陕西:西北农林科技大学, 2008.
    28.《世界粮食与动物遗传资源状况》编委,《世界粮食与动物遗传资源状况》,中国农业出版社,2007
    29.王墨清.普氏野马染色体核型分析.畜牧与兽医, 1995, 2: 12~20.
    30.王振山,郭永新,李建成.三河马血液遗传标记的研究.内蒙古畜牧科学, 2001, 2, 1~3.
    31.王振山,李建成,郭永新.中国矮马运铁蛋白遗传多态性的初步研究.黑龙江畜牧兽医, 2001, 10, 3~5.
    32.王振山,李建成.中国矮马血红蛋白多态性的初步研究.畜牧与兽医, 2002, 34(2): 8~10.
    33.谢庆英.柴达木马血清白蛋白多态性的研究.青海畜牧兽医杂志, 1996, 5: 19~20.
    34.谢成侠.中国马驴品种志.上海:上海科学技术出版社, 1986.
    35.谢成侠.中国养马史(修订版).中国农业出版社, 1991.
    36.于汝梁,辛彩云,陈琳.中国黄牛Y染色体多态性及品种起源演变的探讨.中国农业科学, 1993, 26(5): 61~67.
    37.张玉静.分子遗传学.科学出版社, 2000.
    38.张才骏,俞秉印,汪永贵,陈福,孙瑛.湟中马血清酯酶多态性的研究.青海畜牧兽医杂志, 1995, 4: 19~21.
    39.张亚平,施立明.动物线粒体DNA多态性的研究概况.动物学研究, 1992, 13(3): 289 ~ 298.
    40.赵春江,韩国才,秦应和.应用核基因和线粒体基因多态性联合分析法鉴定马和驴及其杂种后代.见:中国马业论文集.北京中国农业科学技术出版社, 2005, 1: 133~139.
    41.张毅.中国水牛分子遗传多样性及其起源分化的研究[博士学位论文].北京:中国农业大学,2006.
    42.张沅.家畜育种学.北京:中国农业出版社, 2001.
    43.中国现代养马编写组.中国现代养马.新疆人民出版社, 1981.
    44.仲涛.中国部分绵羊品种的遗传多样性研究[硕士学位论文].北京:中国农业科学院,2007.
    45. Aberle K.S., Hamann H., Dr?gemüller C., Distl O. Phylogenetic relationships of German heavy draught horse breeds inferred from mitochondrial DNA D-loop variation. Journal of Animal Breeding and Genetics, 2007, 124(2): 94~100.
    46. Achmann R., Curik I., Dovc P. Microsatellite diversity, population subdivision and gene flow in the Lipizzan horse. Animal Genetics, 2004, 35(4): 285~292.
    47. Alvarez L., Royo J., Fernandez I. Genetic relationships and admixture among sheep breeds from Northern Spain assessed using microsatellites. Journal of Animal Science, 2004, 82: 2246~2252.
    48. Aranguren-Méndez J., Jordana J., Gomez M. Genetic diversity in Spanish donkey breeds using microsatellite DNA markers. Genetics Selection Evolution, 2001, 33: 433~442.
    49. Arranz J.J., Bayón Y., San Primitivo F. Differentiation among Spanish sheep breeds using microsatellites. Genetics Selection Evolution, 2001, 33, 529~542.
    50. Attardi I.G. Animal mitochondrial DNA: an extreme example of genetic economy. International Review of Cytology, 1985, 93: 93~145.
    51. Balloux F., Lugon-Moulin N. The estimation of population differentiation with microsatellite markers. Molecular Ecology, 2002, 11: 155~165.
    52. Bandelt H.J., Forster P., R?hl A. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 1999, 16: 37~48.
    53. Bj?rnstad G., R?ed K.H. Evaluation of factors affecting individual assignment precision using microsatellite data from horse breeds and simulated breed crosses. Animal Genetics, 2002, 33: 264~270.
    54. Botstein D., White R.L., Skolnick M. Construction of a genetic linkage map in man using restriction fragment length poplymorphism. American Journal of Human Genetics, 1980, 32(3): 314~331.
    55. Cai D.W., Han L., Xie C.Z., Li S.N., Zhou H., Zhu H. Mitochondrial DNA analysis of Bronge age horses recovered from Chifeng region, Inner Mongolia, China. Progress in Natural Science, 2007a, 17: 544~550.
    56. Cai D.W., Han L., Zhang X.L., Zhou H., Zhu H. DNA analysis of archaeological sheep remains from China. Journal of Archaeoloical Science, 2007b, 34: 1347~1355.
    57. Ca?on J., Checa M.L., Carleos C. The genetic structure of Spanish Celtic horse breeds inferred from microsatellite data. Animal Genetics, 2000, 31: 39~48.
    58. Curik I., Zechner P., S?lkner J. Inbreeding, microsatellite heterozygosity, and morphological traits in Lipizzan horses. Journal of Heredity, 2003, 94(2): 125~132.
    59. Chiou-Peng T.H. Horsemen in the Dian Culture of Yunnan. (in): Linduff K.M., Sun Y., (eds). Gender and Chinese Archaeology. Walnut Creek, CA: Altamira Press, 2004, 289~314.
    60. Chamberlain J.S., Gibbs R.A., Ranier J.E. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Research, 1988, 16(23): 11141~11156.
    61. Cordaux R., Weiss G., Saha N., Stoneking M. The northeast Indian passageway: a barrier or corridor for human migrations? Molecular Biology and Evolution, 2004, 21: 1525~1533.
    62. Cozzi M.C., Strillacci M.G., Valiati P., Bighignoli B., Cancedda M., Zanotti M. Mitochondrial D-loop sequence variation among Italian horse breeds. Genetics Selection and Evolution, 2004, 36: 663~672.
    63. Crow I.F., Kimura M. Introduction to Theoretical Population Genetics. New York Harper & Row, 1970.
    64. Cavalli-Sforza L.L., Edwards S.V. Phylogenetic Analysis: Models and Estimation Procedures. Evolution, 196721(3): 550-570.
    65. Crawley M.J. (1993) GLIM for Ecologists. Blackwell Scientific Publications, Oxford, UK.
    66. Dubrovskaia R.M., Starodumov I.M., Bannikova L.V. Genetic differentiation between breeds of horses by polymorphic blood protein loci. Genetika, 1992, 28: 152~165.
    67. Diaz S., Dulout F.N., Peral-Garcia P. Greater genetic variability in Argentine Creole than in Thoroughbred horses based on serum protein polymorphisms. Genetics and Molecular Research, 2002, 30: 261-265.
    68. Diamond J. Evolution, consequences and future of plant and animal domestication. Nature, 2002, 418: 700~707.
    69. Diamond J., Bellwood P. Farmers and their languages: the first expansions. Science, 2003, 300: 597~603.
    70. Edwards C.J., Bollongino R., Scheu A., Chamberlain A., Tresset A., Vigne J.D., Baird J.F., Larson G., Ho S.Y., Heupink T.H., Shapiro B., Freeman A.R., Thomas M.G., Arbogast R.M., Arndt B., Bartosiewicz L., Benecke N., Budja M., Chaix L., Choyke A.M., Coqueugniot E., D?hle H.J., G?ldner H., Hartz S., Helmer D., Herzig B., Hongo H., Mashkour M., Ozdogan M., Pucher E., Roth G., Schade-Lindig S., Schm?lcke U., Schulting R.J., Stephan E., Uerpmann H.P., V?r?s I., Voytek B., Bradley D.G., Burger J. Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proceedings of the Royal Society of London, Series B, Biological Sciences, 2007, 274: 1377~1385.
    71. Falush D., Stephens M., Pritchard J.K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164: 1567~1587.
    72. FAO (2007) The State of the World’s Animal Genetic Resources for Food and Agriculture http://dad.fao.org/
    73. Flad R., Yuan J., Li S. Zooarcheological evidence of animal domestication in northwest China. (in): Madsen D.B., Chen F.H., Gao X., (eds). Late Quaternary Climate Change and Human Adaptation in Arid China. Amsterdam, Holland: Elsevier, 2007, 167~203.
    74. Forbis J. (1980) Das klassische arabische Pferd. Parey, Berlin und Hamburg.
    75. Goudet J. (2001) FSTAT, A Program to Estimate and Test Gene Diversities and Fixation (Version 2.9.3.2). Available at: http://www2.unil.ch/popgen/softwares/fstat.htm
    76. Glazewska I., Wysocka A., Gralak B. A new view on dam lines in Polish Arabian horses based on mtDNA analysis. Genetics Selection Evolution, 2007, 39: 609~619.
    77. Georges J.M., Lequarr A.S., Cadtelli M., Hannet R., Vassart G. DNA fingerprinting in domestic animals using four different minisatellite probes. Cytogenet Cell Genet, 1988, 47: 127~132.
    78. Glowatzki M.L., Muntwyler J., Pfister W., Marti E., Rieder S., Poncet P.A., Gaillard C. Genetic diversity among horse populations with a special focus on the Franches-Montagnes breed. Animal Genetics, 2005, 37: 33~39.
    79. Gu W., Aguirre G.D., Ray K. Detection of single-nucleotide polymorphism. Biotechniques, 1998,24(5): 836~837.
    80. Hanotte o., Bradley D.G., Ochieng J., Verjee Y., Hill E.W., Rege J.E.O. African pastoralism genetic imprints of origins and migrations. Science, 2002, 295: 336~339.
    81. Hedrick P.W. Highly variable loci and their interpretation in evolution and conservation. Evolution, 1999, 53: 313~318.
    82. Hellborg L., Ellegren H. Low levels of nucleotide diversity in mammalian Y chromosomes. Molecular Biology and Evolution, 2004, 21: 158~163.
    83. Hill E.W., Bradley D.G., Al-Barody M., Ertugrul O., Splan R.K., Zakharov I., Cunningham E.P. History and integrity of thoroughbred dam lines revealed in equine mtDNA variation. Animal Genetics, 2002, 33: 287~294.
    84. Hoffmann I., Marsan P.A., Barker S.F., Cothran E.G., Hanotte O., Lenstra J.A., Milan D., Weigend S., Simianer H. New MoDAD marker sets to be used in diversity studies for the major farm animal species: recommendations of a joint ISAG/FAO working group. (in): 29th International Conference on Animal 12 Genetics. Meiji University, Tokyo, Japan: FAO, 2004.
    85. Hsu C.Y., Linduff K. Western Chou Civilization. New Haven, CT: Yale University Press, 1988.
    86. Hurles M.E., Jobling M. Haploid chromosomes in molecular ecology: lessons from the human Y. Molecular Ecology, 2001, 10: 1599~1613.
    87. Hutchison C.A, Newbold J.E., Potter S.S. Maternal inheritance of mammalian mitochondrial DNA. Nature, 1974, 251: 536~538.
    88. Ishida N., Hasegawa T., Oyunsuren T. PCR-RFLP analysis of the cytochrome b gene in horse mitochondrial DNA. Animal Genetics, 1996, 27(5): 359~363.
    89. Inner Mongolia Team, Institute of Archaeology CASS (1975) Ningcheng Nanshangen yizhi fajue baogao (Report of excavation at Nanshangen in Ningcheng). Kaogu Xuebao, 117-40 .
    90. Jansen T., Forster P., Levine M.A. Mitochondrial DNA and the origins of the domestic horse. Proceeding of the National Academy of Sciences, 2002, 99(16): 10905~10910.
    91. Jeffreys A.J., Wilson V., Thein S.L. Individual-specific fingerprints' of human DNA. Nature, 1985, 316: 76~79.
    92. Jobling M.A., Barbujani G. Y-chromosome. mismatch distributions in Europe. Molecular. Ecology, 2001, 8: 2089~20103.
    93. Jobling M.A., Tyler-Smith C. The human Y chromosome: an evolutionary marker comes of age. Nature Review Genetics, 2003, 598~612.
    94. Kelly L., Postiglioni A., De Andres D.F., Vega-Pla J.L., Gagliardi R., Biagetti R., Franco J. Genetic characterisation of the Uruguayan Creole horse and analysis of relationships among horse breeds. Research in Veterinary Science, 2002, 72: 69~73.
    95. Keyser-Tracqui C., Blandin-Frappin P., Francfort H.P. Mitochondrial DNA analysis of horses recovered from a frozen tomb (Berel site, Kazakhstan, 3rd Century BC). Animal Genetics, 2005, 36 (3): 203~209.
    96. Kim K.I., Yang Y.H., Lee S.S., Park C., Ma R., Bouzat J.L., Lewin H.A. Phylogenetic relationshipsof Cheju horses to other horse breeds as determined by mtDNA D-loop sequence polymorphism. Animal Genetics, 1999, 30: 102~108.
    97. Laval G.M., SanCristobal., Chevalet C. Measuring genetic distances between breeds: use of some distances in various short term evolution models. Genetics Selection Evolution, 2002, 34: 13481~13507.
    98. Lei C.Z., Su R., Bower M.A., Edwards C.J., Wang X.B., Weining S., Liu L., Xie W.M., Li F., Liu R.Y., Zhang Y.S., Zhang C.M., Chen H. Multiple maternal origins of native modern and ancient horse populations in China. Animal Genetics, 2009, 40 (6): 933~944.
    99. Levine M., Renfrew C., Boyle K. (2003) Prehistoric Steppe Adaptation and the Horse. McDonald Institute for Archaeological Research, Cabridge, UK.
    100. Leroy G., Verrier E., Callèle L., Mériaux J.C., Ricard A., Rognon X. Genetic diversity of a large set of horse breeds raised in France assessed by microsatellite polymorphism. Genetics Selection Evolution, 2009, 41: 1~12.
    101. Lindgren G., Backstrom N., Swinburne J. Limited number of patrilines in horse domestication. Nature Genetics, 2004, 36: 335~336.
    102. Linduff K.M. A walk on the wild side: late Shang appropriation of horses in China. (in): Levine M., Renfrew C., Boyle K, (eds). Prehistoric Steppe Adaptation and the Horse. Cambridge, UK: McDonald Institute for Archaeological Research, 2003, 139~162.
    103. Lister A.M., Vila C., Ellegren H., G?therstr?m A., Leonard J.A., Wayne R.K. Tales from the DNA of domestic horses. Science, 2001, 292, 218~219.
    104. Lopes M.S., Mendonca D., Cymbron T., Valera M., Costa-Ferreira J., Machado Ada C. The Lusitano horse maternal lineage based on mitochondrial D-loop sequence variation. Animal Genetics, 2005, 36(3): 196~202.
    105. Luís C., Juras R., Oom M.M., Cothran E.G. Genetic diversity and relationships of Portuguese and other horse breeds based on protein and microsatellite loci variation. Animal Genetics, 2007, 38, 20~27.
    106. Luís C., Bastos-Silveira C., Cothran E.G., do Mar Oom M. Iberian origins of New World horse breeds. Journal of Heredity, 2006, 97, 107~113.
    107. MacHugh D.E., Loftus R.T., Cunningham P., Bradley D.G. Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers. Animal Genetics, 1998, 29: 333~340.
    108. MacHugh D.E., Bradley D.G. Livestock genetic origins: Goats buck the trend. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 5382~5384.
    109. Mair V. (2003) The horse in late Prehistoric China: wresting culture and control from the Barbarians1. (in): Levine M., Renfrew C., Boyle K., (eds). Prehistoric Steppe Adaptation and the Horse. Cambridge, UK, McDonald Institute for Archaeological Research: 163~187.
    110. Marletta D., Tupac-Yupanqui I., Bordonaro S. Analysis of genetic diversity and the determination of relationships among western Mediterranean horse breeds using microsatellite markers. Journal of Animal Breeding and Genetics, 2007, 123 (5): 315~325.
    111. Mashkour M. (2006) Equids in Time and Space: Papers in Honour of Ve′ra Eisenmann. Oxbow, Oxford, UK.
    112. Mburu D.N., Ochieng J.W., Kuria S.G., Jianlin H., Kaufmann B., Rege J.E., Hanotte O. Genetic diversity and relationships of indigenous Kenyan camel (Camelus dromedarius) populations: implications for their classification. Animal Genetics, 2003, 34: 26~32.
    113. Mateus J.C., Penedo M.C.T., Alves V.C., Ramos M., Rangel-Figueiredo T. Genetic diversity and differentiation in Portuguese cattle breeds using microsatellites. Animal Genetics, 2004, 35: 106~113.
    114. Meadows J.R.S., Hawken R.J., Kijas J.W. Nucleotide diversity of the ovine Y chromosome. Animal Genetics, 2004, 5: 379~385.
    115. Meadows J.R.S., Hanotte O., Dr?gemüller C. Globally dispersed Y chromosomal haplotypes in wild and domestic sheep. Animal Genetics, 2006, 37: 444~453.
    116. McGahern A.M. Bower M.A.M., Edwards C.J. Evidence for biogeographic patterning of mitochondrial DNA sequences in Eastern horse populations. Animal Genetics, 2006b, 37(5): 494~497.
    117. McGahern A.M., Edwards C.J., Bower M.A., Heffernan A., Park S.D.E., Brophy P.O., Bradley D.G., MacHugh D.E., Hill E.W. Mitochondrial DNA sequence diversity in extant Irish horse populations and in ancient horses. Animal Genetics, 2006a, 37: 498~502.
    118. Mirol P.M., Peral Garcia P., Vega-Pla J.L., Dulout F.N. Phylogenetic relationships of Argentinean Creole horses and other South American and Spanish breeds inferred from mitochondrial DNA sequences. Animal Genetics, 2002, 33: 356~363.
    119. Mukherjee N., Nebel A., Oppenheim A., Majumder P.P. High-resolution analysis of Y-chromosomal polymorphisms reveals signatures of population movements from Central Asia and West Asia into India. Journal of Genetics, 2001, 80: 125~135.
    120. Myka J.L., Lear T.L., Houck M.L. FISH analysis comparing genome organization in the domestic horse (Equus caballus) to that of the Mongolian wild horse (E.przewa1skii ). Cytogenet and Genome Research, 2003, 102(1-4): 222~225.
    121. Nei M. Genetic distance between populations. The American Naturalist, 1975, 106: 283~292.
    122. Nei M., Tajima F., Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution, 1983, 19: 153~170.
    123. Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press, 1987.
    124. Oakenfull A., Lim A., Ryder O. A survey of equid mitochondrial DNA: implications for the evolution, genetic diversity and conservation of Equus. Conservation Genetics, 2000, 1: 341~355.
    125. Olsen S.J. The horse in ancient China and its cultural influence in some other areas. Proceedings of the Academy of Natural Sciences of Philadelphia, 1988, 140: 151~189.
    126. Okubo K., Hori N., Matoba R., Niiyama T., Fukushima A., Kojima Y., Matsubara K. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nature Genetics, 1992, 2(3): 173~179.
    127. Paran I., Michelmore R.W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics, 1993, 85: 985~993.
    128. Prichard J.K., Stephens M., Donnelly P. Inference structure using multilocus genotype data. Genetics, 2000, 155(2): 945~959.
    129. Pérez-Gutiérrez L.M., Pe?a A.D., Arana P. Genetic analysis of the Hispano-Breton heavy horse. Animal Genetics, 2008, 39: 506~514.
    130. Randi E., Bernard-Laurent A. Population genetic of a hybrid zone between the red-legged partridge and rock partridge. Auk(the), 1999, 116(2): 324~337.
    131. Raymond M., Rousset F. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 1995, 86: 248~249.
    132. Royo L.J.,álvarez I., Beja-Pereira A., Molina A., Fernandez I., Jordana J., Gomez E., Gutierrez J.P., Goyache F. The origins of Iberian horses assessed via mitochondrial DNA. Journal of Heredity, 2005, 96: 663~669.
    133. Rozas J., Sánchez-DelBarrio J.C., Messegyer X., Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19: 2496~2497.
    134. Saha A., Udhayasuriyan P.T., Bhat K.V., Bamezai R. Analysis of Indian population based on Y-STRs reveals existence of male gene flow across different language groups. DNA and Cell Biology, 2003, 22: 707~719.
    135. Sambrook J., Russell D.W. Molecular Cloning: A Laboratory Manual. 3rd edn. NY: Cold Spring Harbor Laboratory Press, 2001.
    136. Shen P., Wang F., Underhill P.A., Franco C., Yang W.H., Roxas A., Sung R., Lin A.A., Hyman R.W., Vollrath D., Davis R.W., Cavalli-Sforza L.L., Oefner P.J. Population genetic implications from sequence variation in four Y chromosome genes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 7354~7359.
    137. Shin J.A., Yang Y.H., Kim H.S., Yun Y.M., Lee K.K. Genetic polymorphism of the serum proteins of horses in Jeju. Journal of Veterinary Science, 2002, 3: 255~263.
    138. Skaletsky H., Kuroda-Kawaguchi T., Minx P.J. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature, 2003, 423: 825~837.
    139. Solis A., Jugo B.M., Mériaux J.C., Iriondo M., Mazón L.I., Aguirre A.I., Vicario A, Estomba A. Genetic diversity within and among four South European native horse breeds based on microsatellite DNA analysis: implications for conservation. Journal of Heredity, 2005, 96(6): 670~678.
    140. Stumpf M.P., Goldstein D.B. Genealogical and evolutionary inference with the human Y chromosome. Science, 2001, 291: 1738~1742.
    141. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 1989, 17: 6664~6671.
    142. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL-X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools.Nucleic Acids Research, 1997, 25, 4876~4882.
    143. Tkaezkai N., Nei M. Genetic distances and restruction or phylogenetic trees from microsatellite DNA. Genetic, 1996, 144: 386~399.
    144. Trommershausen Bowling A., Clark R.S. Blood group and protein polymorphism gene frequencies for seven breeds of horses in the United States. Animal Blood Groups and Biochemical Genetics, 1985, 16: 93~108.
    145. Tozaki T., Takezaki N., Hasegawa T., Ishida N., Kurosawa M., Tomita M., Saitou N., Mukoyama H. Microsatellite variation in Japanese and Asian horses and their phylogenetic relationship using a European horse outgroup. Journal of Heredity, 2003, 94: 374~380.
    146. Uzun M., Karkhan A., Kopar A. Eight polymorphic blood protein systems in Arab horses from Turkey. Genetika, 2001, 37: 1667~1672.
    147. VilàC., Leonard J.A., G?therstr?m A., Marklund S., Sandberg K., Lidén K., Wayne R.K., Ellegren H. Widespread Origins of Domestic Horse Lineages. Science, 2001, 291(19): 474~477.
    148. Wang W., Liu A.H., Liu S Y. Multiple genotypes of mitochondrial DNA within a horse population from a small region in Yunnan province of China. Biochemical Genetics, 1994, 32: 371~378.
    149. Wallner B., Brem G., Muller M. Fixed nucleotide differences on the Y chromosome indicate clear divergence between Equus Przewalskii and Equus caballus .Animal Genetics, 2003, 34(6): 453~456.
    150. Wallner B., Piumi F., Brem G., Muller M., Achmann R. Isolation of Y chromosome-specific microsatellites in the horse and cross-species amplification in the genus Equus. Journal of Heredity. 2004, 95: 158~164.
    151. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38: 1358~1370.
    152. Whitfield L.S., Sulston J.E., Goodfellow P.N. Sequence variation of the human Y chromosome. Nature, 1995, 378: 379~380.
    153. Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990, 18: 6531~6535.
    154. Wright S. Evolution and the Genetics of Populations, Volume 3: Experimental Results and Evolutionary Deductions. Chicago: University of Chicago Press, 1977.
    155. Wyckoff G.J., Li J., Wu C.I. Molecular evolution of functional genes on the Mammalian y chromosome. Molecular Biology and Evolution, 2002, 19: 1633~1636.
    156. Xu S., Luosang J., Hua S., He J., Ciren A., Wang W., Tong X., Liang Y., Wang J., Zheng X. High altitude adaptation and phylogenetic analysis of Tibetan horse based on the mitochondrial genome. Journal of Genetics and Genomics, 2007, 34: 720~729.
    157. Xu X., Arnason U. The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene, 1994, 148: 357~362.
    158. Yang Y.H., Kim K.I., Cothran E.G. Genetic Diversity of Cheju Horses (Equus caballus)Determined by Using Mitochondrial DNA D-loop Polymorphism. Biochemical Genetics, 2002, 40(6): 175~186.
    159. Yuan J., Flad R. Two issues concerning ancient domesticated horses in China. Bulletin of the Museum of Far Eastern Antiquities, 2003, 75: 110~126.
    160. Yuan J., Flad R. New zooarchaeological evidence for changes in Shang dynasty animal sacrifice. Journal of Anthropological Archaeology, 2005, 24: 252~270.
    161. Yuan J., Flad R. Research on early horse domestication in China. (in): Mashkour M., (eds). Equids in Time and Space. Oxford, UK: Oxbow Books, 2006, 124~131.
    162. Zeder M.A., Emshwiller E., Smith B.D., Bradley D.G. Documenting domestication: the intersection of genetics and archaeology. Trends in Genetics, 2006, 22(3): 139~155.
    163. Zeng S., Wu L.C., Lehmann P.F. Random amplified polymorphic DNA analysis of culture collection strains of Candida species. Medical Mycology, 1996, 34: 293~297.
    164. Zabeau M., Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application, 1993, 92402629, 7: publication No. 0534858 AI.
    165. Zhang Y., Sun D., Yu Y., Zhang Y. Genetic diversity and differentiation of Chinese domestic buffalo based on 30 microsatellite markers. Animal Genetics, 2007, 38: 569~575.
    166. Zabek T., Nogaj A., Radko A., Nogaj J., Slota E. Genetic variation of Polish endangered Bilgoraj horses and two common horse breeds in microsatellite loci. Journal of Applied Genetics, 2005, 46: 299~305.
    167. Zhang D.X., Hewitt G.M. Highly conserved nuclear copies of the mitochondrial control region in the desert locust Schistocerca gregaria: some implications for population studies. Molecular ecology, 1996, 5(2): 295~300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700