用户名: 密码: 验证码:
测温式光纤电流互感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统容量的日益扩大和电网电压运行等级的不断提高,传统的电磁式互感器表现出越来越多的弱点,难以满足电网向自动化和数字化发展的需求,电子式高压电流互感器取代传统的电磁式互感器已成为发展的必然趋势。但迄今为止其研究领域依然充满难题,阻碍着电子式电流互感器的实用化进程。
     本文提出一种测温式光纤电流互感器方案,把电流的热效应和光纤测温技术结合起来,实现对电流的测量。光纤温度传感器是发展最早、技术最成熟的光纤传感器产品,而电流热效应技术的应用更普遍,因此新方案较之当前主要方案,存在明显技术优势。新方案还可用于直流测量,适应当前直流输电发展需要。
     论文中推导了被测电流瞬时值与温升的关系,得到光纤电流互感器的数学模型,利用这一模型,理论上证明了传感器温度输出能准确跟随电流瞬时幅值的变化,量值上有确定关系,能够用来测量电流瞬时值的绝对值。通过数学模型,得到了主要部件应满足的技术指标及性能要求,为部件的设计提供基础。仿真与实验证实了理论分析的正确性。
     分析了主要功能部件的技术现状。其中电流温度转换装置仿真计算其热力学特性,通过结构参数论证技术可行性;电流采样部件用罗氏线圈和标准电阻分流器,分析了设计要求和商品器件技术参数。
     测温装置采用已经商品化的荧光余辉测温方案,由于当前荧光测温性能与理论性能还有一定差距,通过理论与实验分析,提出了进一步提高性能的方法,包括:(1)分析导致荧光测温性能与理论性能有一定差距的主要原因,是实际的荧光余辉的非指数变化倾向。这一发现可用来开发高性能的荧光余辉测温装置;(2)提出截断归一化方法,通过图解和计算,得到荧光余辉非指数倾向程度的量化指标,用来优选荧光材料;(3)提出优化荧光余辉测温装置的设计概念,即物理现实、数学模型及数据处理方法要尽可能匹配,才能有效的提高装置测温性能;(4)仿真与实验验证了上述理论与方法的有效性。
     分析了新方案在交流电流和直流谐波等方面应用的可能性,研制成荧光余辉测温装置,组成电流互感器实验装置。实验结果证实理论分析的有效性。
As the capability and voltage level of transmission lines increasing,conventional inductive current transformers have several draws at extra-high voltage,and particularly ultra-high voltage grades.High voltage elecronic current transformers(ECT) replacing conventional transformers will be the certain developing tendency.However the unsolved problems are in the way to ECT's practicality up to the present time.
     A high voltage current transformer project based on current thermal effect was introduced,which combined the current thermal effects and the optical fiber thermometry technology.Fiber optic temperature sensor was the earlier and the mature product among fiber optic sensors in commercial,current thermal effects technology is more general applied,so the new project has the advantages over other current transformer projects which are now meeting the difficulties hardly to resolve.It can be used to measure direct current is another significance advantage.
     The relationship between the instantaneous value of measured current and the temperature rise was deduced,and the mathematical model of the current transformer was established.By use of the mathematical model,in theory,the amplitude of instantaneous current can be tracked by the temperature output of sensor accurately,so that it can be used to measure the absolute value of instantaneous current.The technical data and features required of the main devices and components can be provided by use of the mathematical model for technical design of the project,simulation method and experiment tests were used to prove the available.
     The realization of the main devices and components were analyzed.The thermodynamic properties of the current temperature conversion device were calculated by the ANSYS software,the mature Rogowsky's coil or ohmic shunt was used as the current sample device.The design requriements and commercial components's technical parameters were analyzed.
     Fluorescent decay temperature measurement principle was used to measure the temperature,for improving the performance of this kind of method as it has not yet reach the theoretical predict,an optimization method of enhancing the performance was brought forward,which including:(1) The trend of non-exponential variation of the actual fluorescent decay curve is the main factor leading to the result that the temperature measurement performance is not as good as describe by theoretical predict.This result can be used to promote the performance of the temperature measurement system.(2) A cutting and normalized method is given by graphic and caculating to get the numerical factor about the non-exponential degree of the fluorescent decay curve.It can be use to select the predominance fluorescent materials.(3) The concept of the matching of physical reality with mathematical models and data-processing methods can effectively raises the temperature measuring performance.(4) Experiments and simulations proved the effectiveness of the above theory and method.
     Applied possibility in AC、DC and harmonic wave by using this project were analyzed.The fluorescent decay temperature measurement device was developed,and was assembled into current transformer experimental equipment.The validity of theoretical analysis was proved by the experimental results.
引文
[1]Flores Nunez J.L.,Ortiz-Muro V.H.,Garcia-Torales G.A review on optical current transducers for power system metering,Proc.SPIE,2007,6770:41-47.
    [2]王海明.电子式电流互感器传感头的理论与工艺研究:(博士学位论文).秦皇岛:燕山大学,2006.
    [3]罗承沐,张贵新,王鹏.电子式互感器及其技术发展现状.电力设备,2007,8(1):20-24.
    [4]王奕.光学电流互感器的发展概况.宿州教育学院学报,2006,9(1):104-110.
    [5]张建,及洪泉,远镇海等.光学电流互感器及其应用评述.高电压技术,2007,33(5):32-36.
    [6]南书明.浅析光纤电流互感器.科技信息,2007,(6):64.
    [7]王政平,康崇,张雪原等.全光纤光学电流互感器研究进展.激光与光电子学进展.2005,42(3):36-40
    [8]方志,邱锍昌,李双.光纤电流互感器的发展.电力建设,2002,23(12):42-44.
    [9]Ning Y N,Jackson D A.Review of optical current sensors using bulk-glass sensing elements.Sensors and Actuators,1993,(39):219-224.
    [10]Ning Y N,Liu T Y,Jackson D A.Tow low-cost robust electro-optic hybrid current sensors capable of operation at extremely high potential.Rev Sci Instrum,1992,63(2):5771-5773.
    [11]Piling N A,Rholmes,Jones G R.Optical fiber current measurement system using liquid crystal and chromatic modulation.Proc.IEEE,1993,140(5):351-356.
    [12]Zheng S,Lu X.An active optical fiber current transducer.Proc.SPIE.2002,4920:405-409.
    [13]李莉,张心天.光纤电流互传感器及其研究现状.光电子技术与信息,2002,15(2):37-41.
    [14]Qiu H H,Duan X Y,Zou J Y.Optical fiber-based power and data delivery system for high voltage electronic current transformer.J Shanghai Univ(Engl Ed),2008,12(3):268-273.
    [15]Rogers A J.Optical methods for measurement of voltage and current on power systems.Optics and Laser Technology,1977,(12):273-283.
    [16]Smith.A.M.Optical Fibers for Current Measurement Applications.Optics and Laser Technology,1980,(2):25-29.
    [17]Papp A,Harms H.Magneto-optical current transformer 1:Principles.Applied Optics,1980,19(22):3729-3734.
    [18]Aulieh H,Beck W,Douklias N,et al.Magnrto-optical current transformer 2:Components.Applied Optics,1980,19(22):3735-3740.
    [19]Harms H,Papp A.Magnrto-optical current transformer 3:Measurements.Applied Optics,1980,19(22):3741-3745.
    [20]Cease T W,Driggans,Weikel.Optical Voltage and Current Sensors Used in a Revenue Metering System.IEEE Transaction on Power Delivery,1991,6(4):1374-1379
    [21]Maffetone T D,McDlelland T M.345kV Substation Optical Current Revenue Metering and Protective Relaying.IEEE Transactions on Power Delivery,1991,6(4):1430-1437.
    [22]EiyaAikawa,Akihiko Ueda,Masami Watanabe.Development of New Concept Current/Voltage Transducers for Distribution Network.IEEE Transactions on Power Delivery,1990,16(1):414-420.
    [23]Chatrefou D.Alstom Optical Sensor Presentation.2nd EPRI Optical Sensor Systems Workshop.Atlanta,Georgia,2000.
    [24]Sanders G A,Blake J N.Commercialization of Fiber-optic Current and Voltage Sensors at Nxtphase.IEEE,2002,7803-7289.
    [25]郭志忠.电子式互感器评述.电力系统保护与控制,2008,36(15):1-5.
    [26]张贵新,张清姣,罗承沐.电子式互感器的现状与发展前景.电力设备,2006,7(4):108-109.
    [27]Rao Y J.Recent Progress in Applications of In-Fiber Bragg Grating Sensors.Optic and Lasers in Engineering,1999,(31):297-324.
    [28]Zhang W G,et al.On-line detecting of the electric current by applying electric magnetic tuning.Proc.SPIE,2004,4220:109-112.
    [29]陈冠三.实用的在线光纤电流传感器.传感技术,2001,20(3):4-5.
    [30]Yang,S Q,Electric current measuring with high resolution using FBG covered by aluminium thin film.Proc.SPIE,2001,4595:2000-2003.
    [31]Jia D P,Zhao L M,Lin Y W.A copper coated fiber Bragg grating current sensor.Proc.SPIE,2004,5642:515-522.
    [32]焦斌亮,郑绳楦.用于电力系统的光学电流互感器技术进展.应用光学,2004,25(6):47-53.
    [33]Madde W.lain n,Craig Michie W.,Andrew Cruden.Temperature Compensation for Optical Current Sensors.Optical Engineering,1999,38(10):1699-1707.
    [34]Katsukawa H,,Ishikawa H.,Okajima H.,et al.Development of An Optical Current Transducer with A Bulk Type Faraday Sensor for Metering.IEEE Transactions on Power Delivery,1996,11(2):702-707.
    [35]Sohail Hamid Zaidi,Ralph P Tatam.Faraday effect Magnetometry:Compensation for the Temperature-Dependent Verdet Constant.Science Technology 1994(5):1471-1479.
    [36]Nobuki Itoh,Hisashi Minemoto,Daisuke lshiko,et al.Small Optical Magnetic-Field Sensor That Uses Rare-Earth Iron Garnet Films Based on the Faraday Effect.Applied Optics,1999,38(10):2047-2052.
    [37]Ulrich R.,Simon.A.Polarization Optics of Twisted Single-Mode Fibers.Appl.Opt.,1997,(18):2241-2251.
    [38]Rose A H,Ren Z B,Day G W.Twisting and Annealing Optical Fiber for Current Sensors.Journal of Light Wave Technology,1996.14(11):2492-2498.
    [39]Kurosawa K,et al.An Optical fiber-type Current Sensor Utilizing the Faraday Effect of the Flt Glass Fiber.Proc.SPIE,1994,2360:24-27.
    [40]Kurosawa K,et al.A Method for Improvement of Immunity from Environment in Faraday Effect Current Sensor Using the Flint Glass Fiber.SPIE Proc.,1994,2360:430-433.
    [41]Kurosawa K,et al.Optical Current Transducers Using Flint Glass Fiber as the Faraday Sensor Element.Tech.Digest,11th OFS Conf.Sapporo,Japan:1996.34-139.
    [42]Ulmer E.A..A High Accuracy Optical Current Transducer for Electric Power Systems.IEEE Trans.on Power Delivery,1990,5(2):892-898.
    [43]Menke P.,Bosselmann T..Temperature Compensation in Magneto Optic ac Current Sensors Using an Intelligent ac-do Signal Evaluation.Joumal of Lightwave Technology,1995,13(7):1362-1370.
    [44]Kazup Hotate,Yoshiaki Konishi.Formulas Describing Error Induced by Fiber Linear -Birefringence in Fiber-Optic Current Sensors.IEEE,2002:866-869.
    [45]李红斌,刘延冰.基于比较测量法的光学电流互感器.光子学报,2004,33(6):708-710.
    [46]李红斌,刘延冰.光学电流互感器温度补偿方法.仪表技术与传感器,2004(4):32-33,39.
    [47]Xianyun Ma,Chengmu Luo.A method to Eliminate Birefringence of A Magneto-optic AC Current Transducer With Glass Ring Sensor Head.IEEE Transactions on Power Delivery,1998,13(4):1015-1019.
    [48]马仙云,吴维韩,罗承沐,张贵新.磁光式光电电流互感器及其双折射问题.高电压技术,1996,22(1):3-5.
    [49]Masaru Higaki,Kunio Fujii,Shizuo Yamaguchi.Optical DC Current and Voltage Measurement by Superposing AC Magnetic or Electric Field.SPIE Conference on Optical Engineering for Sensing and Nanotechnology.Yokohama,Japan,1999:509-512.
    [50]方志,段乃欣,朱周侠等.电力系统用光电电流互感器的发展.华东电力,2002,(12):51-53.
    [51]邸荣光,刘仕兵.光电式电流互感器技术的研究现状与发展.电力自动化设备,2006,26(8):98-100.
    [52]Mora J,Diez A,Cruz J L et al.A magnetostrictive sensoe interrogated by fiber gratings for DC-current and temperature discrimination.IEEE Photon.Technol.Lett.,2000,12(12):1680-1682.
    [53]余有龙,叶红安等.光纤光栅电流传感器.光学学报,2001,21(5):586-588.
    [54]Jia Danping et al.A study of high voltage current based on fiber Bragg grating.Proc.SPIE,2005,6024.
    [55]徐时清,戴世勋,张军杰等.全光纤电流传感器研究新进展.激光与光电子学进展,2004,41(1):41-45.
    [56]凌子恕.高电压互感器技术手册.北京:中国电力出版社,2005.
    [57]杨世铭.传热学.北京:人民教育出版社,1980.
    [58]Komatsu,Yasutoshi,Onoda.A novel optical temperature and pressure sensing system.SICE Annual Conference,2008,(8):334-337.
    [59]Yu D,Liu J,Study on on-line monitoring of temperature of transformer winding based on distributed fiber optical temperature sensing technology.Proceedings of ICPADM 2006-8th International Conference on Properties and Applications of Dielectric Materials,2007:250-253.
    [60]Chang W,Liu XH,Wu YB,et al.Study on optical fiber grating sensing technology applied in temperature measurement of mined-out areas.Conference Information:International Conference on Mine Hazards Prevention and Control,2007:113-117.
    [61]Allison SG,Prosser WH.Optical fiber distributed sensing structural health monitoring(SHM)strain measurements taken during cryotank Y-joint test article load cycling at liquid helium temperatures.Proc.SPIE,2007,6770:770-773.
    [62]Wang Z.D.;Yan T.Optical fiber pre-warning system for safety of oil pipelines.Optical Technique.2008,34(4):579-582.
    [63]K.T.V Grattan,R.K.Selli,A.W.Palmer.Fiber-optic absorption temperature sensor using fluorescence reference channel.Review of Scientific Instruments,1986,57(6):1231-1234.
    [64]K.T.VGrattan,R.K.Selli,A.W.Palmer.Ruby fluorescence wavelength division fiber-optic temperature sensor.Review of Scientific Instruments,1987,58(7):1175-1178.
    [65]Bosselmann T.,A.Reule,J.Schroeder.Fiber-optic temperature sensor using fluorescence decay time.Proc.SPIE,1984,514:151-154.
    [66]K.T.V Grattan,A.W.Palmer.Infrared fluorescence decay-time temperature sensor.Review of Scientific Instruments,1985,56(9):1784-1787.
    [67]Ghassemlooy Z.,K.T.VGrattan,D.Lynch.Probe design.aspects of ruby decay-time fluorescence sensors.Review of Scientific Instruments,1988,60(1):87-89.
    [68]K.T.V.Grattan,A.W.Palmer.Fluorescence-based lifetime measurement thermometer foruse at subroom temperature(200-300K).Rev.Sci.Instrum.,1995,66(3):2611-2614.
    [69]Babnik A.,Kobe A..Improved probe geometry for fluorescence-based fiber-optic temperature sensor.Sensors and Actuators,1996,(57):203-207.
    [70]Zhang Z.Y.,Sun T.,K.T.V.Grattan et al.Optical.fiber temperature sensor scheme using Tm:doped yttrium oxide power-based probe.Proc.SPIE,1999,3746:422-425.
    [71]da silva C.J.,de Araujo M.T.,Gouveia E.A.et al.Thermal effect on multiphonon-asisted anti-Strokesexcited upconversion fluorescence emission in Yb~(3+)-sensitized Er~(3+)-doped optical fiber.Applied Physics B,2000,(70):185-188.
    [72]Sharp J.H.,C.W.P.Shi,H.C.Seat.Er-doped sapphire fire temperature Sensors using upconversion emission.Measurement and Control,2001,(34):173-175.
    [73]Messias D.N.,Vermelho M.VD.,Gouveia-neto A.S.et al.All optical integrated upconversion fluoresecnec-based point temperature sensing system using Er~(3+)-doped silicon waveguides.Review of Scientific Instruments,2002,73(2):476-479.
    [74]丁毅,张立儒.红宝石荧光光纤温度传感器.第五届全国光纤通信学术会议论文集,1991:558-561.
    [75]张立儒,刘洪祥.电磁波加温热疗用光纤温度传感器的研制.计量学报,1993,14(1):21-25.
    [76]刘英,刘桂雄.一种红宝石荧光光纤温度传感器的研究.光学精密工程,1998,6(1):18-22.
    [77]刘英,刘桂雄,李玩雪等.提高红宝石光纤温度传感器性能的方法研究.光通信技术,1999,23(2):147-150.
    [78]刘英,刘桂雄,李玩雪.红宝石光纤温度传感器在实用化中两个问题的讨论.光通信技术,1999,23(4):301-304.
    [79]周金海,汤伟中,屠斌飞.Nd:YAG单晶光纤荧光温度传感器的信号采集处理器研制.第一届全国敏感元件传感器学术会议论文集,1991:990-992.
    [80]张友俊,胡文豪,汤伟中.强度调制型荧光光纤温度传感器原理性实验系统.光通信技术,1997,21(2):154-156.
    [81]张友俊,汤伟中,郭军伟等.非接触型荧光解光纤温度传感器.传感器技术,1999,18(3):45-46.
    [82]张友俊,胡文豪,汤伟中.荧光光纤温度传感器原理性实验系统的研制.传感器技术,1997,16(2):7-9.
    [83]张友俊.荧光光纤传感器的表面非接触测温.传感器技术,2001,20(6):49-50.
    [84]Yonghang Shen,Yangi Wang,Limin Tong et al.Novel sapphire fiber thermometer using fluorescent decay.Sensors and Actuator A,1998,(71):70-73.
    [85]叶林华,沈忠平,赵渭忠等.基于荧光衰减测量的蓝宝石光纤温度计.光电了.激光,2002,13(8):773-776.
    [86]Lin Yingwen,Zhing Xi,Liu Weiqing.Fluorescent decay-time thermometry and its application.Proc.SPIE,1996,2895:572-575.
    [87]贾丹平,沈一峰,吴江等.荧光余辉光纤测温法研究.沈阳工业大学学报,1998,20(2):15-18.
    [88]Jia Danping,Lin Wei,Bai Jingjie,et al.Realization of multi-channel fluorescent temperature measuring system.Proc.SPIE,2000,4077:264-267.
    [89]王冬生,王桂梅,王玉田等.基于稀土荧光材料的光纤温度传感器.仪器仪表学报,2007,28(4):123-127.
    [90]武金铃,韩登科,李翠萍等.基于荧光机理的光纤温度测量技术的研究.微计算机信息,2008,24(9-1):154-156.
    [91]MeiSun.Fiberoptic thermometry based on photoluminescent decay time.TEMPERATURE,1993,(6):715-720.
    [92]Rosso L.,Fernicola V.C..Time and frequency-domain analyses of fluorescence lifetime for temperature sensing.Rev.Sci.Instrum,2006,77(3):1-6.
    [93]Sun W.M.,Yuan L.B.,Xiang Y.R.,New Designs of Fiber-Based Fire Alarm System.Rev.Sci.Instrum,2004,16(2):177-183.
    [94]T.Sun,Z.Y.Zhang,K.T,V.Grattan.Analysis of double exponential behavior in alexandrite for optical temperature sensing applications.Rev.Sci.Instrum,1997,68(9):3442-3446.
    [95]Andrei A.,Istrator,Oleg F.Vyvenko.Eponential analysis in phenomena.Rev.Sci.Instrum,1999,70(2):1233-1257.
    [96]Sun T.,Zhang Z.Y.,K.T.V.Grattan.Analysis of double exponential fluorescence decay behavior for optical temperature sensing.Rev.Sci.Instrum,1997,68(1):58-62.
    [97]Fernicola V.C.,Rosso L.,Galleano R..Investigations on exponential lifetime measurement for fluorescence thermometry.Rev.Sci.Instrum,2000,71(7):2938-2942.
    [98]Eugene G.Novikov.Error estimation in the phase plane method of multi-exponential decay analysis.Optics Communications,1998,(151):313-320.
    [99]徐叙榕,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004.
    [100]祝大昌.分子发光分析法.上海:复旦大学出版社,1985.
    [101]许金钩,王尊木.荧光分析法.北京:科学出版社,2006.
    [102]李建宇.稀土发光材料及其应用.北京:化学出版社,2003.
    [103]胡春海.光纤荧光温度传感器理论和实验研究:(博士学位论文).秦皇岛:燕山大学,2004.
    [104]王冬生.荧光光纤温度传感器的研究:(硕士学位论文).秦皇岛:燕山大学,2005.
    [105]崔书平.医用光纤温度计的研究:(硕士学位论文).沈阳:沈阳工业大学,2003.
    [106]Sun W.M.,ZhangJ.Z.,Yu L.Measurement of decay time based on FFT.Optics&Laser Technology,2004,36(4):323-326.
    [107]孙伟民,张建中,于蕾等.荧光寿命的快速傅里叶变换拟合方法.光学学报,2004,24(6):838-840.
    [108]孙伟民.基于荧光光纤光栅的应变与温度同时测试技术:(博士学位论文).哈尔滨:哈尔滨工程大学,2005.
    [109]王玉田,王冬生,崔立超.基于快速傅立叶变换的荧光测温仪.测控技术,2006,25(11):18-20.
    [110]Roos B.W.,Sanoren W.C..An Algorithm for Least-squares Estimation of Nonlinear Parameters.Appl.Math,1963,11(2):431-441.
    [111]周小林,孙东松,钟志庆等.Levenberg-Marquardt算法在测风激光雷达中的应用.红外与激光工程,2007,36(4):500-504.
    [112]蔡亮,陈国雄,潘祖善.采用简化的普罗尼谱估计法的谐波电流检测方法.电工技术学报,1999,14(1):73-76.
    [113]Flores J.L.Nunez,G.Garcia-Torales,V.H.Ortiz-Muro.Optical current sensor using phase measurement algorithms,Proc.SPIE,2007,6770:156-160.
    [114]董航,刘涤尘,邹江峰.基于Prony算法的电力系统低频振荡分析,高电压技术,2006,32(6):97-100.
    [115]苟北,陈陈,提兆旭.Prony算法在电力系统负荷动态模型辨识中的应用研究.电力自动化设备,1997,21(1):21-24.
    [116]魏伟,赵书强,马燕峰.基于Prony算法的模糊电力系统稳定器设计.电力自动化设备,2005,25(3):54-57.
    [117]徐雁.光电直流电流及谐波电流互感器的研究:(博士学位论文).武汉:华中科技大学,2004.
    [118]李维波.基于Rogowski线圈的大电流测量传感理论研究与实践:(博士学位论文).武汉:华中科技大学,2006.
    [119]Zhang K.W.,Wang N.,Duan X.Y.A Rogowski Current Transducer Based on Digital Integrator.ACED2004 the 12th Asian conference on electrical discharge,Shenzhen,2004,421-425.
    [120]C.A.斯佩克托尔著,揭秉信,周予为译.直流大电流测量.北京:计量出版社,1985.
    [121]David E Shepard.An overview of Rogowski coil current sensing technology.LEM Dyn Amp Inc.
    [122]Andrzej Kacz Kowski,Walter Knoth.Combined sensors for current and voltage are ready for application in GIS.Proceeding of International Conference on Power Systems,CIGRE,1998.356-360.
    [123]Kojovic,L.A.PCB Rogowski coil designs and performances for novel protective relaying.Power Engineering Society General Meeting,IEEE,2003,1445-1446.
    [124]ABDI-JALEBI E,MCMAHON R.Simply and practical constrction of high-performance,low-cost Rogowski transducers and accompanying circuitry for research applications Proceedings of IEEE Conference on Instrumentation and Measurement Technology.Ottawa,Canada:IEEE,2005:354-358.
    [125]Ljubomir Kojorie.PCB Rogowski coil designs and performances for novel protective relaying,IEEE,2003(6):609-614.
    [126]D Ramboz John,E Destefan Dennis,S Start Robert.The verification of Rogowski coil linearity from 200 A to greater than 100 KA using ratio methods.IEEE Instrumentation and Measurement Technology Conference,2002,2(1):687-692.
    [127]黄腾超,沈亦兵,候西云.二次硼离子热扩散制作微电阻.浙江大学学报,2003,39(4):471-474.
    [128]唐飞,王晓浩,叶雄英等.硅微电阻电热式推进器的加热电阻的设计制作和试验研究.机械工程学报,2006,42(2):105-109.
    [129]吕晓辰,姜培学,任泽霈等.微型电阻加热推进器内的传热问题.计算物理,2004,21(1):43-46.
    [130]孔祥谦.有限单元法在传热学中的应用.北京:科学出版社,1998.
    [131]张国智,胡仁喜,陈继刚等.ANSYS 10.0热力学有限元分析实例指导教程.北京:机械工业出版社,2007.
    [132]段进,倪栋,王国业.ANSYS 10.0结构分析从入门到精通.北京:北京科海电子出版社,2006.
    [133]张艳,叶妙元,徐雁等.光电式直流电流互感器的研制与挂网运行.高压电器,2006,42(1):73-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700