用户名: 密码: 验证码:
熔盐法制备一维莫来石陶瓷材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在一定条件下,晶体沿着线性链方向生长的陶瓷材料被称为一维陶瓷材料。一维材料在其他维度方向上生长受限,因此表现出不同于传统材料的特殊性能。其中一维莫来石陶瓷由于其优异的热震性、抗蠕变性,以及高温下室温强度衰减小的特性,已经应用于晶须补强、涂层技术、过滤膜、高温催化反应器等方面。熔盐法是一种湿法化学合成方法,其优势在于合成的粉体无团聚、工艺简单;与其他液相法相比,其合成出的一维晶体质量更高。本文中,对采用熔盐法合成一维莫来石陶瓷进行了研究。
     对前驱体的研究表明,采用化学活性高、溶解能力强的前驱体,有助于获得独立分散的一维莫来石晶体。以Al_2(SO_4)_3、无定形SiO_2、Na_2SO_4为原料,其配比Al/Si/Na为2/1/8(原子比)时,在1000℃保温3h条件下,HF酸洗后最终产物全部为一维莫来石晶体。XRD、EDS、HR-TEM结果表明所得的莫来石晶体为富Al组成,光致发光性能反映出富Al组成产生的氧空位缺陷。对温度制度的研究表明,快速升温有助于莫来石相的生成;合成温度过高,莫来石晶体会在1100℃左右发生分解形成NaAlSiO_4。
     对莫来石晶体生长机理的研究表明。熔盐法合成过程中,当液相中不断生成的莫来石超过其过饱和度时,莫来石开始成核。在液固生长界面处,莫来石单体的沉淀是可逆的,因此生长能够按照其能量最低的原则不断进行调整,从而最大限度的保证其在c轴方向的自由生长。莫来石晶体在界面处的生长位置是由二维平台提供的,这个过程所需克服的能量壁垒大,当二维平台耗尽时,晶体即停止生长。莫来石晶体在熔盐法中的生长属于LS生长机理。
     通过对B_2O_3外加剂的研究,发现莫来石晶体尺寸的减小,当B_2O_3/SiO_2达到0.04(摩尔比)时形成了纳米级别莫来石晶体,其归因于B_2O_3的加入有助于成核速率加快。通过对莫来石晶种的研究,发现晶种的加入能够在一定程度上提高熔盐法制备莫来石晶体的产率,莫来石晶体的尺寸减小、尺寸更加均匀,这是由于晶种的加入能够为莫来石晶体提供生长位点,提高了莫来石晶体初期形核速率。
The specific crystals which grow along the linear chain are classified to one-dimension structured ceramic materials, which can exhibit special properties owing to the growth restriction in other directions. Owing to its great thermal shock resistance, creep resistance and stable room-temperature ?exural strength at high temperature, mullite has been applied in whisker technology, coating technology, filter membrane, high-temperature catalytic reactor, and so on. The molten salts synthesis (MSS) belong to a wet chemical method. In MSS, the resultant production without aggregation can be easily obtained, and has a higher quality when compared with other liquid phase methods. In this paper, the prepariton of one-dimension structured mullite by MSS was investigated.
     The investigation shows that high chemical activity and strong dissolve ability precursors were helpful to obtain isolated mullite crystal. The mullite was obtained when the sample with Al_2(SO_4)_3, amorphous-SiO_2, Na_2SO_4 (Al/Si/Na=2/1/8, atoms ratio) was heated at 1000℃for 3h after HF etching. XRD, EDS, and HR-TEM results show the Al-rich compostion in mullite, and photoluminescence results show the oxygen vacancies defects presence. The investigation on temperature schedule shows that rapid heating was helpful to form mullite, and mullite was transformed to NaAlSiO_4 at about 1100℃.
     The investigation on growth mechanism shows that supersaturation led to the mullite crystal nucleus formation in MSS. At the growth interface, the decomposition of mullite monomers was reversible, so the growth was revised continuously as energy minimum and along the c-axis. The new two-dimensional islands provided nucleations, which reqired large supersaturation because the nucleation barrier is high. The mullite crystal growth in MSS can be explained by liqiud-solid mechanism.
     With the B_2O_3 addition, the size of mullite crystal decreased. The mullite nanowires were obtained at B_2O_3/SiO_2 = 0.04. The phenomenon can be abscribed to the nucleation rate increase when B_2O_3 was added in MSS. With the mullite seeds addition, it was found that the yield of mullite was promoted and the the size of mullite crystal decreased. At the same time, the size distribution was narrower with higher seeds addition.
引文
[1]Zhao Y S, Fu H, Peng A, etc., Low-Dimensional Nanomaterials Based on Small Organic Molecules: Preparation and Optoelectronic Properties, Advanced Materials, 2008, 20: 2859~2876
    [2]张立德,张玉刚,一维纳米材料中的新效应和新功能,功能材料,2004,35(z1):50~53
    [3]Kolmakov A, Moskovits M, Chemical Sensing and Catalysis by One-dimensional Metal-oxide Nanostructures, Annual Review of Materials Research, 2004, 34: 151~180
    [4]Petrovic J J, Milewski J V, Rohr D L, etc., Tensile mechanical properties of SiC whiskers, Journal of Materials Science, 1985, 20(4): 1167~1177
    [5]Chopra N, Measurement of the elastic modulus of a multi-wall boron nitride nanotubes, Solid State Communications, 1998, 105(5): 297~300
    [6]Wagner R S, Whisker Technology, New York: Wiley-Interscience, 1970
    [7]Wong E W, Sheehan P E, Lieber C M, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 1997, 277: 1971~1975
    [8]Zhu S J, Iizuka T, Fatigue behavior of Al18B4O33 whisker-framework reinforced Al matrix composites at high temperatures, Composites Science and Technology, 2003, 63(2): 265~271
    [9]Chen S H, Jin P P, Schumacher G, etc., Microstructure and interface characterization of a cast Mg2B2O5 whisker reinforced AZ91D magnesium alloy composite, Composites Science and Technology, 2010, 70(1): 123~129
    [10]Zaremba T, Witkowska D, Methods of manufacturing of potassium titanate fibres and whiskers. A review, Materials Science-Poland, 2010, 28(1): 25~41
    [11]朱张校,工程材料,北京:清华大学出版社,2001
    [12]周健,唐己琴,孟海兵等,聚丙烯/硫酸钙晶须复合材料的研究,工程塑料应用,2008,36(11):19~22
    [13]冯新,吕家桢,陆小华等,钛酸钾晶须在复合材料中的应用,复合材料学报,1999,16(4)
    [14]温广武,雷廷权,周玉,石英玻璃基复合材料的研究进展,材料工程,2002,1:40~43
    [15]高桂英,陈立富微,孔挤压技术制备SiCw补强CMAS玻璃陶瓷基复合材料,硅酸盐学报,1999,27(1):112~115
    [16]叶枫,周玉,雷廷权等,SiCw/BAS复合材料的显微结构及力学性能的研究,无机材料学报,2000,15(3):516~520
    [17]刘桂香,徐光亮,罗庆平,自蔓延燃烧法合成ZnO粉体及其压敏电阻的制备,硅酸盐学报,2006,34(9):1055~1059
    [18]Iijima S, Helical microtubules of graphitic carbon, Nature, 354, 56~58
    [19]Huang M H, Wu Y Y, Feick H, etc., Catalytic growth of zinc oxide nanowires by vapor transport, Advanced Materials, 2001, 13(2): 113~116
    [20]Cui Y, Duan X F, Hu J T, etc., Doping and electrical transport in silicon nanowires, Journal of Physical Chemistry B, 2000, 104(22): 5213~5216
    [21]赵继刚,王太宏,纳米线、纳米管器件在逻辑电路中的应用,微电子技术,2003,31(2):4~10
    [22]Huang Y, Duan X, Cui Y, etc., Gallium Nitride Nanowire Nanodevices, Nano Letters, 2002, 2 (2): 101~104
    [23]Cui Y, Lieber C M, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks, Science, 2001, 291: 851~853
    [24]Venkatasubramanian R, Siivola E, Colpitts T, etc., Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 2001, 413: 597~602
    [25]Wu Y, F Rong, Yang P, Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires, Nano Letters, 2002, 2(2): 83~86
    [26]Wang J, Gudiksen M S, Duan X, etc., Highly polarized photoluminescence and photodetection from single indium phosphide nanowires, Science, 2001, 293: 1455~1457
    [27]Johnson J C, Choi H J, Knutsen K P, etc., Single gallium nitride nanowire lasers, Nature Materials, 2002, 1: 106~110
    [28]Tang Z K, Wong G K L, Yu P, etc., Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Applied Physics Letters, 1998, 72(25): 3270~3272
    [29]Zhao M H, Wang Z L, Mao S X, Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope, Nano Letters, 2004, 4(4): 587~590
    [30]Ma R, Bando Y, Zhu H, etc., Hydrogen Uptake in Boron Nitride Nanotubes at Room Temperature, Journal of the American Chemical Society, 2002, 124(26):7672~7673
    [31]Chen J, Kuriyama N, Yuan H, Electrochemical Hydrogen Storage in MoS2 Nanotubes, Journal of the American Chemical Society, 2001, 123(47): 111813~111814
    [32]Yang P, Yan H, Mao S, Controlled Growth of ZnO Nanowires and Their Optical Properties, Advanced Functional Materials, 2002, 12(5): 323~331
    [33]Kind H, Yan H, Messer B, etc., Nanowire Ultraviolet Photodetectors and Optical Switches, Advanced Materials, 2002, 14(2): 158~160
    [34]Law M, Kind H, Messer B, etc., Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature, Angewandte Chemie International Edition, 2002, 41(13): 2405~2408
    [35]Chao L, Zhang D, Liu X, etc., In2O3 nanowires as chemical sensors, Applied Physics Letters, 2003, 82(10): 1613~1615
    [36]Zhou X T, Lai H L, Peng H Y, etc., Thinβ-SiC nanorods and their field emission properties, Chemical Physics Letters, 2000, 318: 58~62
    [37]Nemanic V, Zumer M, Zajec B, etc., Field-emission properties of molybdenum disulfide nanotubes, Applied Physics Letters, 2003, 82(25): 4573~4575
    [38]Wang N, Cai Y, Zhang R Q, Growth of nanowires, Materials Science and Engineering: R: Reports, 2008, 60: 1~51
    [39]Wagner R S, Ellis W C, Vapor-liquid-solid Mechanism of Single Crystal Growth, Applied Physics Letters, 1964, 4: 89~92
    [40]Wagner R S, Ellis W C, The vapor-Liquid-Solid Mechanism of Crystal Growth and Its Application to Silicon, Transactions of the Metallurgical Society of AIME, 1965, 233: 1053~1064
    [41]Wei D, Chen Q, Evolution of Catalyst Droplets during VLS Growth and Cooling Process: A Case of Ge/ZnO Nanomatchsticks, Crystal Growth Design, 2010, 10(1): 122~127
    [42]Wu Y, Yan H, Huang M, etc., Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties, Chemistry– A European Journal, 2002, 8(6): 1260~1268
    [43]Cai Y, Chan S K, Sou I K, etc., The Size-Dependent Growth Direction of ZnSe Nanowires, Advanced Materials, 2006, 18(1): 109~114
    [44]Morales A M, Lieber C M, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, 1998, 279: 208~211
    [45]Zhang Y F, Tang Y H, Duan X F, etc., Yttrium–barium–copper–oxygen nanorods synthesized by laser ablation, Chemical Physics Letters, 2000, 323: 180~184
    [46]Shi W, Zheng Y, Peng H, etc., Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires, Journal of the American Ceramic Society, 2000, 83(12): 3228~3230
    [47]Rao C N R, Deepak F L, Gundiah G, etc., Inorganic nanowires, Progress in Solid State Chemistry, 2003, 31: 5~147
    [48]Wang N, Zhang Y F, Tang Y H, etc., SiO2-enhanced synthesis of Si nanowires by laser ablation, Applied Physics Letters, 1998, 73(26): 3902~3904
    [49]Wang N, Tang Y H, Zhang Y F, etc., Nucleation and growth of Si nanowires from silicon oxide, Physical Review B, 1998, 58(24): 16024~16026
    [50]Zhang Y F, Tang Y H, Wang N, etc., Germanium nanowires sheathed with an oxide layer, Physical Review B, 2000, 61(7) : 4518~4521
    [51]Shi W, Zheng Y, Wang N, etc., A General Synthetic Route to III-V Compound Semiconductor Nanowires, Advanced Materials, 2001, 13(8): 591~594
    [52]Wu Q, Hu Z, Liu C, etc., Synthesis and Optical Properties of Gallium Phosphide Nanotubes, The Journal of Physical Chemistry B, 2005, 109, 19719~19722
    [53]Chan S K, Cai Y, Wang N, etc., Growth temperature dependence of MBE-grown ZnSe Nanowires, Journal of Crystal Growth, 2007, 301-302: 866~870
    [54]C.H. Hsiao, S.J. Chang, S.B. Wang, etc., MBE growth of ZnSe nanowires on oxidized silicon substrate, Superlattices and Microstructures, 2009, 46(4): 572~577
    [55]Martensson T, Svensson C P T, Wacaser B A, etc., Epitaxial III?V Nanowires on Silicon, Nano Letters, 2004, 4(10): 1987~1990
    [56]Bjork M T, Ohlsson B J, Sass T, etc., One-dimensional Steeplechase for Electrons Realized, Nano Letters, 2002, 2(2): 87~89
    [57]Bjork M T, Ohlsson B J, Sass T, etc., One-dimensional heterostructures in semiconductor nanowhiskers, Applied Physics Letters, 2002, 80: 1058~1060
    [58]Gates B, Mayers B, Cattle B, etc., Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium, Advanced Functional Materials, 2002, 12(3): 219~227
    [59]Mayers B, Xia Y, One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach, Journal of Materials Chemistry, 2002, 12: 1875~1881
    [60]张经纬,王伟,吴志申等,均匀沉淀法制备一维结构的氧化锌,化学研究,2008,19(2):84~87
    [61]Martin C R, Nanomaterials: A Membrane-Based Synthetic Approach, Science, 1994, 266: 1961~1966
    [62]Li M, Schnablegger H, Mann S, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Nature, 402: 393~395
    [63]Rao C N R, Govindaraj A, Deepak F L, etc., Surfactant-assisted synthesis of semiconductor nanotubes and nanowires, Applied Physics Letters, 2001, 78: 1853~1855
    [64]Yin Y, Lu Y, Sun Y, etc., Silver Nanowires Can Be Directly Coated with Amorphous Silica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica, Nano Letters, 2002, 2(4): 427~430
    [65]He R, Law M, Fan R, etc., Functional Bimorph Composite Nanotapes, Nano Letters, 2002, 2(10): 1109~1112
    [66]Trentler T J, Hickman K M, Goel S C, Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth, Science, 1995, 270: 1791~1794
    [67]Mann L, Scher E C, Alivisatos A P, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals, Journal of the American Chemical Society, 2000, 122(51): 12700~12706
    [68]Heath J R, LeGoues F K, A liquid solution synthesis of single crystal germanium quantum wires, Chemical Physics Letters, 1993, 208: 263~268
    [69]Wang X, Li Y, Selected-Control Hydrothermal Synthesis ofα- andβ-MnO2 Single Crystal Nanowires, Journal of the American Chemical Society, 2002, 124(12): 2880~2881
    [70]Wang W, Geng Y, Yan P, etc., A Novel Mild Route to Nanocrystalline Selenides at Room Temperature, Journal of the American Chemical Society, 1999, 121(16): 4062~4063
    [71]Charlot G, Trémillon B, Les réactions chimiques dans les solvants et les sels fondus, Paris: Gauthier-Villars, 1963
    [72]Arendta R H, The molten salt synthesis of single magnetic domain BaFe12O19 and SrFe12O19 crystals, Journal of Solid State Chemistry, 1973, 8(4): 339~347
    [73]Afanasiev P, Geantet C, Synthesis of solid materials in molten nitrates, Coordination Chemistry Reviews, 1998, 178-180: 1725~1752
    [74]Du Y, Inman D, Precipitation of finely divided Al2O3 powders by a molten salt method, Journal of material chemistry, 1996, 6: 1239~1240
    [75]Du Y, Rogers P, Inman D, The acidic/basic effects on preparation of zirconia powders from molten salts, Journal of Materials Science, 1996, 31: 3361~3364
    [76]高峰,张昌松,洪荣子等,工艺参数对熔盐法制备Bi4Ti3O12的影响,材料科学与工艺,2007,15(5):610~613
    [77]Roy B, Ahrenkiel S P, Fuierer P A, Controlling the Size and Morphology of TiO2 Powder by Molten and Solid Salt Synthesis, Journal of the American Ceramic Society, 2008, 91(8): 2455~2463
    [78]Park J H, Lee D H, Shin H S, etc., Transition of the Particle-Growth Mechanism with Temperature Variation in the Molten-Salt Method, Journal of the American Ceramic Society, 1996, 79(4): 1130~1132
    [79]Yoon K H, Cho Y S, Kangr D H, Review: Molten salt synthesis of lead-based relaxors, Journal of Materials Science, 1998, 33: 2977~2984
    [80] Du Y, Inman D, Preparation of zirconia powders from molten nitrites and nitrates, Journal of Materials Science, 1996, 31: 5505~5511
    [81]Ouatib R E, Guillemet S, Durand B, etc., Reactivity of aluminum sulfate and silica in molten alkali-metal sulfates in order to prepare mullite, Journal of the European Ceramic Society, 2005, 25(1): 73~80
    [82]Afanasiev P, Geantet C, Synthesis of solid materials in molten nitrates, Coordination Chemistry Reviews, 1998, 178-180: 1725~1752
    [83]Yang Z, Gu Y, Chen L, etc., Preparation of Mn5Si3 nanocages and nanotubes by molten salt flux, Solid State Communications, 2004, 130(5): Pages 347~351
    [84]Du Y, Inman D, Preparation of zirconia powders from molten nitrites and nitrates, Journal of Materials Science, 1996, 31: 5505~5511
    [85]Afanasiev P, Geantet C, Synthesis of solid materials in molten nitrates, Coordination Chemistry Reviews, 1998, 178-180: 1725~1752
    [86]曹建,谢嘉宁,熔盐法合成BaFe11Co0.5Ti0.5O19磁性粉体及其性能分析,功能材料,1996, 27(5):446~448
    [87]栗海峰,龚荣洲,范力仁等,熔盐法制备单相Co2W六角铁氧体及电磁性能研究,稀有金属材料与工程,2009,38(11):2053~2056
    [88]夏峰,王晓莉,张良莹等,PMN-PT系陶瓷的熔盐法合成及其压电性能研究,硅酸盐学报,1998,26(1):114~117
    [89]宋煜昕,李承恩,晏海学,熔盐法合成SrBi2Ta2O9粉体,无机材料学报,2002,17(1): 145~148
    [90]Mao Y, Tran T, Guo X, etc., Luminescence of Nanocrystalline Erbium-Doped Yttria, Advanced Functional Materials, 2009, 19(5): 748~754
    [91]Chen H, Grey C P, Molten Salt Synthesis and High Rate Performance of the“Desert-Rose”form of LiCoO2, Advanced Materials, 2008, 20(11): 2206~2210
    [92]Wang X, Gao L, Zhou F, etc., Large-scale synthesis ofα-LiFeO2 nanorods by low-temperature molten salt synthesis (MSS) method, Journal of Crystal Growth, 2004, 265: 220~223
    [93]Viswanath B, Raghavan R, Gurao N P, etc., Mechanical properties of tricalcium phosphate single crystals grown by molten salt synthesis, Acta Biomaterialia, 2008, 4(5): 1448~1454
    [94]Zhao J, Cui L, Gao W, etc., Synthesis of NiTi particles by chemical reaction in molten salts, ntermetallics, 2005, 13: 301~303
    [95]Liu S F, Fua W T, Synthesis of superconducting Ba1?xKxBiO3 by a modified molten salt process, Materials Research Bulletin, 2001, 36: 1505~1512
    [96]Descemond M, Brodhag C, Thevenot F, etc., Characteristics and sintering behaviour of 3mol% Y2O3-ZrO2 powders synthesized by reaction in molten salts, Journal of Materials Science, 1993, 28(9): 2283~2288
    [97]张绶庆,苏联第三次晶体生长会议情况介绍,硅酸盐学报,1964,3(1):61~62
    [98]辽宁大学物理系光学教研室晶体研制组,强迫通风致冷熔盐法培养YAG单晶,辽宁大学学报(自然科学版),1974,1:7~11
    [99]张肇庆,钇铁石榴石单晶的生长,磁性材料及器件,1975,3:1~20
    [100]张英,用激光加热熔区的无坩埚区熔红宝石晶体,激光与红外,1973,6:7~8
    [101]江爱栋,陈祖生,陈棻等,熔盐法生长优质硼酸铝钕单晶,人工晶体学报,1988,17:279
    [102]林声和,颗粒定向PbBi2Nb2O9陶瓷的制备,硅酸盐学报,1985,13(1):69~74
    [103]方跃,刘一苇,邵岫渝等,超导晶体Ba(Pb(1-x)Bix)O3的熔盐法生长,人工晶体学报,1985,14:161
    [104]Arendt R H, Rosolowski J H, Szymaszek J W, Lead zirconate titanate ceramics from molten salt solvent synthesized powders, Materials Research Bulletin, 1979, 14(5): 703~709
    [105]Kimura T, Takahashi T, Yamaguchi T, in Ferrites; Proceedings of the ICF3, Tokyo: Centre for Academic Publications, 1981
    [106]Hayashi Y, Kimura T, Yamaguchi T, Preparation of rod-shaped BaTiO3 powder, Journal of Materials Science, 1986, 21: 757~762
    [107]Kimura T, Yamaguchi T, Morphology of Bi2WO6 powders obtained in the presence of fused salts, Journal of Materials Science, 1982, 17, 1863~1870
    [108]Kimura T, Kanazawa T, Yamaguchi T, Preparation of Bi4Ti3O12 Powders in the Presence of Molten Salt Containing LiCl, Journal of the American Ceramic Society, 1983, 66(8): 597~600
    [109]Hayashi Y, Kimura T, Yamaguchi T, Preparation of acicular NiZn-ferrite powders, Journal of Materials Science, 1986, 21: 2876~2880
    [110]Kimura T, Yamaguchi T, Newnham R E, Phase and Morphology of PbNb2O6 Obtained by Molten Salt Synthesis, Particulate Science and Technology, 1983, 1(3): 357~364
    [111]王晓霞,熔盐法合成片状氧化铁粉体的研究:[硕士学位论文],长沙;中南大学,2005
    [112]朱文杰,赵鹤云,张海斌等,熔盐法制备α-Fe2O3一维纳米针状材料,功能材料,2004,35(z1):2816~2818
    [113]周刘飞,刘云飞,吕忆农,片状SrTiO3晶体的合成及其反应机理,南京工业大学学报(自然科学版),2007,29(3):13~19
    [114]Liu Y, Zheng C, W. Wang W, etc., Synthesis and Characterization of Rutile SnO2 Nanorods, Advanced Materials, 2001, 13(24): 1883~1887
    [115]Liu H, Hu C, Wang Z L, Composite-Hydroxide-Mediated Approach for the Synthesis of Nanostructures of Complex Functional-Oxides, Nano Letters, 2006, 6(7): 1535~1540
    [116]Jin X, Gao L, Size Control ofα-Al2O3 Platelets Synthesized in Molten Na2SO4 Flux, Journal of the American Ceramic Society, 2004, 87(4): 533~540
    [117]李丽华,黄金亮,张柯等,熔盐法合成片状Bi4Ti3O12粉体的研究,电子元件与材料,2007,26(3):47~48
    [118]张柯,黄金亮,李丽华,工艺参数对熔盐法制备SrBi4Ti4O15粉体的影响,电子元件与材料,2007,26(1):10
    [119]于海洋,隋万美,翟会深等,熔盐法二氧化钛针状晶的制备及表征,青岛大学学报(自然科学版),2006,19(3):44~47
    [120]仝启杰,齐涛,刘玉民等,KOH亚熔盐法制备钛酸钾晶须和二氧化钛,过程工程学报,2007,7(1):85~89
    [121]靳治良,李武,张志宏,硼酸镁晶须的合成研究,无机盐工业,2003,35(3):22~24
    [122]Willert M, Rothe R, Landfester K, etc., Synthesis of Inorganic and Metallic Nanoparticles by Miniemulsification of Molten Salts and Metals, Chemistry of Materials, 2001, 13(12): 4681~4685
    [123]Tian H, Ma J, Xie L, etc., Low temperature synthesis of nano-sized (Sn0.25,Ti0.75)O2 photocatalysts by a molten salt method, Ceramics International, 2007, 33(6): 915~918
    [124]Jiang X, Ma J, Liu J, etc., Synthesis of ZnWO4 nano-particles by a molten salt method, Materials Letters, 2007, 61: 4595~4598
    [125]Song Z, Ma J, Sun H, etc., Low-temperature molten salt synthesis and characterization of CoWO4 nano-particles, Materials Science and Engineering: B, 2009, 163(1): 62~65
    [126]Song Z, Ma J, Sun H, etc., Synthesis of NiWO4 nano-particles in low-temperature molten salt medium, Ceramics International, 2009, 35(7): 2675~2678
    [127]Jiang X, Ma J, Yao Y, etc., Low-temperature synthesis of SrWO4 nano-particles by a molten salt method, Ceramics International, 2009, 35(8): 3525~3528
    [128]Zhan Y, Zheng C, Liu Y, etc., Synthesis of NiO nanowires by an oxidation route, Materials Letters, 2003, 57(21): 3265~3268
    [129]Xi Y, Hu C, Zhang X, etc., Optical switches based on Bi2S3 nanowires synthesized by molten salt solvent method, Solid state communications, 2009, 149: 1894~1896
    [130]Teshima K, Yubuta K, Sugiura S, etc., Selective Growth of Calcium Molybdate Whiskers by Rapid Cooling of a Sodium Chloride Flux, Crystal Growth & Design, 2006, 6(7): 1598~1601
    [131]Xu C Y, Zhen L, Yang R, etc., Synthesis of Single-Crystalline Niobate Nanorods via Ion-Exchange Based on Molten-Salt Reaction, Journal of the American Chemical Society, 2007, 129(50): 15444~15445
    [132]Wang W?Z, Zeng B?Q, Yang J, etc., Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission, Advanced Materials, 2006, 18(24): 3275~3278
    [133]Bauer W H, Gordon I, Moore C H, Flame Fusion Synthesis of MulliteSingle Crystals, Journal of the American Ceramic Society, 1950, 33(4): 140~143
    [134]Davis R F, Pask J A, "Mullite", in High-Temperature Oxides, Part IV, New York: Academic Press, 1971
    [135]Schneider H, Schreuer J, Hildmann B, Structure and properties of mullite—A review, Journal of the European Ceramic Society, 2008, 28: 329~344
    [136]Jaaski J Y, Nissen H U, Investigation of Superstructures in Mullite by High Resolution Electron Microscopy and Electron Diffraction, Physics and Chemistry of Minerals, 1983, 10: 47~54
    [137]Schmucker M., Hildmann B, Schneider H., Mechanism of 2/1- to 3/2-mullite transformation at 1650℃, American Mineralogist, 2002, 87: 1190~1193
    [138]Braue W, Hildmann B, Schneider H, etc., Reactive wetting of mullite Al2[Al2+2xSi2?2x]O10?x single crystals by yttrium-aluminosilicate and borosilicate glasses, Journal of Materials Science, 2005, 40: 2335~2340
    [139]Schreuer J, Hildmann B, Schneider H, Elastic Properties of Mullite Single Crystals up to 1400℃, Journal of the American Ceramic Society, 2006, 89(5): 1624~1631
    [140]Kriven W M, Palko J W, Sinogeikin S, High temperature single crystal properties of mullite, Journal of the European Ceramic Society, 1999, 19: 2529~2541
    [141]Hildmann B, Schneider H, Thermal conductivity of 2/1-mullite single crystals, Journal of the American Ceramic Society, 2005, 88: 2879~2882
    [142]Schneider H, Eberhard E, Thermal expansion of mullite, Journal of the American Ceramic Society, 1990, 73: 2073~2076
    [143]Dokko P C, Pask J A, Mazdiyasni K S, High-Temperature Mechanical Properties of Mullite Under Compression, Journal of the American Ceramic Society, 1977, 60: 150~155
    [144]Prochazka S, Kiug F G, Infrared-Transparent Mullite Ceramic, Journal of the American Ceramic Society, 1983, 66(12): 874~880
    [145]Tummala R R, Ceramic and Glass-Ceramic Packaging in the 1990s, Journal of the American Ceramic Society, 1991, 74(5): 895~908
    [146]Aksay I A, Dabbs D M, Sarikaya M, Mullite for Structural, Electronic, and Optical Applications, Journal of the American Ceramic Society, 1991, 74(10): 2343~2358
    [147]谭清华,一种刚玉-莫来石浇注制品及其制备方法,中国专利,101691305,2010-04-07
    [148]Nah Y, Upper nozzle for tundish, is formed using material containing mullite, alumina and zirconia-mullite composite, and has aggregate portion, neutrality portion and differentiation portion having preset range pore size, Korea Patent, 2010023579, 2010-03-04
    [149]Miller R A, Multilayer article i.e. multi-functionally graded environmental barrier coatings, comprises bond coat in contact with substrate, and interlayer, where bond coat is mullite doped with oxide of gadolinium, yttrium, ytterbium and/or zirconium, US Paten,7740960, 2010-03-04
    [150]Grohol D, Forming composite body of mullite and cordierite used as e.g. catalyst supports involves firing acicular mullite body in vacuum or inert atmosphere in presence of source of silicon atoms and source of magnesium atoms at specific temperature, WO Patent, 2010033763, 2010-03-25
    [151]Guo M, Synthesizing method of porous cordierite-mullite composite material by solid waste involves naturally cooling blank in air after sintering for predetermined time and temperature in air, China Patent, 101671198, 2010-03-17
    [152]Matsubara M, Backup stucco material for manufacturing casting mold for precision castings has nonspherical monolithic refractory particle provided with rounded corner part and comprised with mullite, corundum, or compounded minerals, Japan Patent, 2010000521, 2010-01-07
    [153]Kato T, Multilayered ceramic substrate for tool for electric inspection of silicon wafer, has ceramic layer with mullite and magnesium and/or yttrium, conductive layer with tungsten/or molybdenum, and preset thermal expansion coefficients, Japan Patent, 2010098049, 2010-04-30
    [154]Kyocera C, Ceramic wiring board used for semiconductor device package includes insulated base material consisting of sintered compact of mullite, and tungsten layer which covers exposed surface of molybdenum layer, Japan Patent, 3645744, 2005-05-11
    [155]Rakhimov R, Mullite type ceramic infrared radiator, WO Patent, 9936372, 1999-07-22
    [156]Osendi M I, Baudin C, Mechanical Properties of Mullite Materials, Journal of the European Ceramic Society, 1996, 16: 21l~224
    [157]Pyzik A J, Todda C S, Han Chan, Formation mechanism and microstructure development in acicular mullite ceramics fabricated by controlled decomposition of fluorotopaz, Journal of the European Ceramic Society, 2008, 28(2): 383~391
    [158]Murthy M K, X-Ray Study of the Solid Solution of TiO2, Fe2O3, and Cr2O3 in Mullite(3AL2O3.2SIO2), Journal of the American Ceramic Society, 1960, 43: 267
    [159]Mitamura T, Kobayashi H, Ishibashi N, Effect of rare earth oxide addition on the sintering mullite, Journal of the Ceramic Society of Japan, 1991, 99: 339~344
    [160]Hong S H, Cermignani W, Messing G L, Anisotropic Grain Growth in Seeded and B2O3-doped Diphasic Mullite Gels, Journal of the European Ceramic Society, 1996, 16: 133~141
    [161]Kong L B, Zhang T S, Ma J, etc., Some main group oxides on mullite phase formation and microstructure evolution, Journal of Alloys and Compounds, 2003, 359: 292~299
    [162]Kong L B, Gan Y B, Ma J, etc., Mullite phase formation and reaction sequences with the presence of pentoxides, Journal of Alloys and Compounds, 2003, 351: 264~272
    [163]Kong L B, Chen Y Z, Zhang T S, Effect of alkaline-earth oxides on phase formation and morphology development of mullite ceramics, Ceramics International, 2004, 30: 1319~1323
    [164]Kong L B, Zhang T S, Ma J, etc., Mullite phase formation in oxide mixtures in the presence of Y2O3, La2O3 and CeO2, Journal of Alloys and Compounds, 2004, 372: 290~299
    [165]Pereta D S, Allott G, Mullite morphology in fired kaolinte/halloysite clays, Journal of Materials Science Letters, 1985, 4(10): 1270~1272
    [166]Katsuki H, Ichinose H, Furuta S, Growth of mullite whiskers on alumina particle by thermal decomposition of clay minerals, Journal of the Ceramic Society of Japan, 1996, 104: 788~791
    [167]Park Y M, Yang T Y, Yoon S Y, etc., Mullite whiskers derived from coal ?y ash, Materials Science and Engineering A, 2007, 454~455: 518~522
    [168]Locsei B, Mullite formation in the Aluminium Fluoride-Silica System(AlF3-SiO2), Nature, 1961, 190: 907~908
    [169]Okada K, Otuska N, Synthesis of mullite whiskers by vapor phase reaction, Journal of Materials Science Letters, 1989, 8(9): 1052~1054.
    [170]Ismail M G M U, Arai H, Nakai Z, etc., Mullite Whiskers from Precursor Gel Powders, Journal of the American Ceramic Society, 1990, 73(9): 2736~2739
    [171]Moyer J R, Hughes N N, A Catalytic Process for Mullite Whiskers, Journal of the American Ceramic Society, 1994, 77(4): 1083~1086
    [172]Choi H J, Lee J G, Synthesis of Mullite Whiskers, Journal of the American Ceramic Society, 2002, 85(2): 481~483
    [173]敖寒梅,陈南春,天然高岭土水热合成纳米莫来石粉体的研究,非金属矿,2008,31(5):12~13
    [174]彭小芹,杨晓菡,何丽娟,粉煤灰水热合成制备超细粉体材料研究,沈阳建筑大学学报(自然科学版),2005,21(4):333~337
    [175]Kaya C, He J Y, Gu X, etc., Nanostructured ceramic powders by hydrothermal synthesis and their applications, Microporous and Mesoporous Materials, 2002, 54: 37~49
    [176]Saadi L, Moussa R, Samdi A, etc., Synthesis of Mullite Precursors in Molten Salts Influence of the Aluminium Source of Salt, Key Engineering Materials, 1997, 132~136: 228~231
    [177]Saadi L, Moussa R, Samdi A, etc., Synthesis of Mullite Precursors in Molten Salts. Influence of the Molten Alkali Nitrate and Additives, Journal of the European Ceramic Society 1999, 19: 517~520
    [178]Hashimoto S, Yamaguchi A, Synthesis of needlelike mullite particles using potassium sulfate flux, Journal of the European Ceramic Society, 2000, 20: 397~402
    [179]Hashimoto S, Yamaguchi A, Synthesis of mullite whiskers using Na2SO4 flux, Journal of the Ceramic Society of Japan, 2004, 112(2): 104~109
    [180]李雪冬,朱伯铨,张少伟,熔盐介质对合成莫来石晶须的影响,稀有金属材料与工程,2008,3 7(z1):300~302
    [181]Ouatib R E, Guillemet S, Durand B, etc., Reactivity of aluminum sulfate and silica in molten alkali-metal sulfates in order to prepare mullite, Journal of the European Ceramic Society, 2005, 25: 73~80
    [182]Barin I, Thermochemical Data of Pure Substances. Part II. La–Zr, 2nd ed., VCH, Germany: Weinheim, 1993
    [183]Levin B, Metastable alumina polymorphs: Crystal structures and transition sequences, Journal of the American Ceramic Society, 1998, 81: 1995~2012
    [184]Levin E M, McMurdie H F, Phase Diagrams for Ceramists 1975 Supplement, American: Am Ceram Soc, Westerville, OH, 1975
    [185]Takei T, Kameshima Y, Yasumori A, etc., Crystallization kinetics of mullite from Al2O3-SiO2 glasses under non-isothermal conditions, Journal of the European Ceramic Society, 2001, 21: 2487~2493
    [186]Schneider H, Merwin L, Sebald A, Mullite formation from non-crystallineprecursors, Journal of Materials Science, 1992, 27: 805~812
    [187]谢刚,熔融盐理论与应用,北京:冶金工业出版社,1998
    [188]Saito Y, Takei T, Hayashi S, etc., Effects of amorphous and crystalline SiO2 additives onγ-Al2O3-to-alpha-Al2O3 phase transitions, Journal of the American Ceramic Society, 1998, 81: 2197~2200
    [189]Li C C, Chiu C C, Desu S B, Formation of lead niobates in molten salt systems, Journal of the American Ceramic Society, 1991, 74: 42~47
    [190]陆佩文,无机材料科学基础,武汉:武汉工业大学出版社,1996
    [191]Li D X, Thomson W J, Mullite formation from nonstoichiometric diphasic precursors, Journal of the American Ceramic Society, 1991, 74: 2382~2387
    [192]Ossaka J, Tetragonal mullite-like phase from co-precipitated gels, Nature, 1996, 191: 1000~1001
    [193]Souza M F, Yamamoto J, Regiani I, etc., Mullite Whiskers Grown from Erbia-Doped Aluminum Hydroxide–Silica Gel, Journal of the American Ceramic Society, 2000, 83: 60~64
    [194]梁英教,车荫昌,无机热力学数据手册,沈阳:东北大学出版社,1993
    [195]丁宏娅,马鸿文,王蕾等,利用高铝粉煤灰制备氢氧化铝的实验,现代地质,2006,20:405~408
    [196]Trentler T J, Hickman K M, Goel S C, etc., Solution-Liquid-Solid growth of crystalline semiconductors: An analogy to Vapor-Liquid-Solid growth, Science, 1995, 270: 1791~1794
    [197]Nakamoto M, Tanaka T, Holappa L, etc., Surface tension evaluation of molten silicates containing surface-active components (B2O3, CaF2 or Na2O), ISIJ International, 2007, 47: 211~216
    [198]Fujino S, Hwang C W, Morinaga K, Density, Surface Tension, and Viscosity of PbO-B2O3-SiO2 Glass Melts, Journal of the American Ceramic Society, 2004, 87: 10~16
    [199]Pye L D, Montenero A, Joseph I, Properties of glass-foring melts, New York: CRC press, 2005
    [200]Zhang G M, Fu Z Y, Wang Y C, etc., Boron-doped mullite derived from single-phase gels, Journal of the European Ceramic Society, 2010, 30: 2435~2441
    [201]Schneider H, Transition metal distribution in mullite, Ceramic Transactions, 1990, 6: 135~157
    [202]Chen Y, Chi B, Liu Q, etc., Fluoride-assisted synthesis of mullite(Al5.65Si0.35O9.175) nanowires, Chemical Communications, 2006: 2780~2782
    [203]Seong H K, Kim U, Kim M H, etc., Synthesis and Optical Properties of Mullite Nanowires, Journal of the American Ceramic Society, 2007, 90: 1937~1939
    [204]Peng X S, Zhang L D, Meng G W, etc., Photoluminescence and Infrared Properties ofα-Al2O3 Nanowires and Nanobelts, The Journal of Physical Chemistry B, 2002, 106: 11163~11167
    [205]Yu D P, Hang Q L, Ding Y, etc., Amorphous silica nanowires: Intensive blue light emitters, Applied Physics Letters, 1998, 73: 3076~3078
    [206]Qi J, White J M, Belcher A M, etc., Optical spectroscopy of silicon nanowires, Chemical Physics Letters, 2003, 372: 763~766
    [207]Horsch M, Vrabec J, Hasse H, Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate, Physical Review E: statistical, nonlinear and soft-matter physics, 2008, 78: 011603

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700