用户名: 密码: 验证码:
Mg-V-O催化剂上的环已烷气相氧化脱氢反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于环己烷氧化反应制备环己酮和环己醇工艺存在转化率和选择性较低、三废污染严重和能耗大的问题,自Noyori等从环己烯直接氧化合成己二酸获得成功后,环己烯被认为是合成环己酮、环己醇和己二酸的最佳原料,该工艺被认为是环境友好的绿色化工工艺。环己烯的获得途径主要有两条工艺路线。一是通过苯选择加氢制取,主要采用日本旭化成公司专利技术。但是在生产过程中,不但苯的转化率较低、环己烯的选择性不高,同时还副产30%左右的环己烷。另外一条工艺路线为环己烷脱氢反应。但是在热力学体系中,环己烷脱氢生成苯为热力学稳定体系。为此,本文提出采用环己烷经气相氧化脱氢制取环己烯工艺,不仅可作为制取环己烯的一条新途径,同时也是环己烷—苯—环己烯三者循环利用的切实可行的绿色工艺路线。
     本论文主要从以下方面对Mg-V-O催化剂上环己烷气相氧化脱氢反应进行研究。
     以Mg3(VO4)2制备为例,采用柠檬酸溶胶-凝胶法在缓和的焙烧条件下制备Mg-V-O催化剂。在制备过程中提出干凝胶前驱体结构为(NH4)2[VO2(C6H6O7)]2-3MgC6H6O7,并得到制备过程中的主要影响因素:柠檬酸加入量和焙烧温度。在最优制备条件下可以得到高度均一性的纯晶相Mg3(VO4)2催化剂,且该催化剂在80 h活性稳定性反应中表现出了好的活性稳定性和热稳定性。
     Mg-V-O氧化物通常以Mg3(VO4)2、Mg2V2O7和MgV2O6三种晶形稳定存在,通过对三晶相结构、表面酸碱性及催化剂表面活性组分可还原性进行深入研究,并结合各自在环己烷氧化脱氢制取环己烯反应中的催化性能,由于Mg3(VO4)2具有“孤立活性位”、表面弱碱性及较低的金属可还原性,因而可作为环己烷氧化脱氢反应的催化活性相。
     一般Mg-V-O催化剂为混合晶相催化剂,由于存在不同晶相间的协同催化效应,因而对环己烷氧化脱氢反应产生了不同于纯晶相催化剂的影响:(1)MgO+Mg3(VO4)2催化剂体系:当MgO含量大于10 wt.%时,两者之间通过形成的内聚界面产生晶相间协同催化效应,从而提高了环己烷转化率而降低了环己烯选择性;(2)Mg3(VO4)2+Mg2V2O7催化剂体系:通过溢流氧的遥控机理对反应产生积极的影响,Mg3(VO4)2在催化剂体系中充当溢流氧供体还是受体作用主要取决于催化剂体系中的主要晶相组分;(3)MgV2O6+V2O5体系:V2O5含量小于60 wt.%时,两晶相通过遥控机理产生的协同催化效应对反应产生消极影响;V205含量大于60 wt.%时,由于V205具有的金属氧化物表面离子迁移作用而在催化剂外表面形成包覆层,整个催化剂性能类似于V2O5。
     为了进一步提高Mg3(VO4)2催化剂在环己烷氧化脱氢反应中的催化性能,分别对催化剂进行了碱/碱土金属改性和添加共进料两方面的研究:(1)在碱/碱土金属改性研究中发现当碱/碱土金属与钒的原子比为0.1时,碱/碱土金属的加入对催化剂比表面积和晶相结构未产生较大影响,而是对其表面物理化学和微观性质产生了较大的影响:一方面减少了反应活性位和吸附活性位,另一方面降低了催化剂上活性物种的可还原程度、提高了钒物种活性组分周围的电子云密度分布以及改变了催化剂表面上氧物种的类型和含量,引起了环己烯选择性的提高而降低了环己烷的转化率;(2)采用水蒸气、醋酸和四氯化碳(TCM)作为共进料物质,对环己烷氧化脱氢反应的影响进行研究以揭示催化剂表面结构、表面化学性质与催化性能之间的关系:采用水蒸气共进料时,对催化剂的主要影响在于降低了反应物的停留时间且形成了更为孤立的活性位,引入水蒸气并不能提高环己烷氧化脱氢反应中环己烯的产率;采用TCM共进料时,对催化剂表面氧物种迁移程度产生了较大的影响而影响了催化活性;采用醋酸共进料时,不同的醋酸加入量会产生两种不同的催化结果:当醋酸量较少时,醋酸虽然占据了催化剂表面环己烷分子的吸附活性位和氧化脱氢反应活性位,但是提高了环己烷分子的活化,因而显示了较好的催化性能,而较高的醋酸分压一方面大幅度降低了催化剂的比表面积和结晶度,另一方面提高了催化剂表面酸性,不利于环己烯的脱附,从而导致催化剂在反应中催化性能的下降。
     更进一步,以Mg3(VO4)2为催化剂研究了主要工艺操作条件对反应的影响,在排除外扩散的基础上提出Power-Law的宏观动力学模型,并采用四阶龙格库塔法对参数进行估值。在此基础上提出,若是要想得到更为精确的Mars-van Krevenlen动力学模型参数,则需要更进一步的研究。
     通过本文的研究表明了Mg-V-O作为环己烷氧化脱氢反应催化剂的应用潜力,对催化剂制备方法、催化活性相、晶相间协同效应进行研究以获得较好催化性能的催化剂。通过碱/碱土金属对催化剂进行改性和采用共进料的方法以期得到更高的环己烯选择性和产率,并将以上方法对催化剂微观结构和表面化学性质与催化性能进行关联以揭示催化剂微观性质的改变对反应的影响。在此基础上,采用Mg3(VO4)2催化剂,研究了主要工艺操作条件对环己烷氧化脱氢反应的影响,并建立了初步的宏观动力学模型,以期对环己烷氧化脱氢反应有更进一步的了解。
The process of the oxidation of cyclohexane to cyclohexanone and cyclohexanol suffers from several problems, such as the lower cyclohexane conversion, lower product selectivity, higher energy consumption and the environmental pollution. Therefore, since the process of direct oxidation of cyclohexene to adipic acid proposed by Noyori et al. has been put forward and used in practice, cyclohexene is considered as the optimal raw material and the direct oxidation of cyclohexene process can be considered as the environmentally benign route in producing cyclohexanone, cyclohexanol and adipic acid. Cyclohexene can be obtained from two ways. One is the commercial process of partial hydrogenation of benzene to cyclohexene, which suffers from major problems of both low yield and low selectivity to cyclohexene. The other is the process of cyclohexane dehydrogenation. Since cyclohexane dehydrogenation to benzene is a thermodynamically favorable reaction, this process results in both high yield and high selectivity to benzene. To obtain cyclohexene as much as possible and to deal with cyclohexane from the partial hydrogenation of benzene, the oxidative dehydrogenation of cyclohexane to cyclohexene and benzene will be of critical importance in forming a new technology as indicated below.
     The oxidative dehydrogenation of cyclohexane over Mg-V-O catalysts was investigated in this thesis as the following aspects.
     Citric acid complexation under mild condition was proposed to prepare monophasic and well crystallized Mg3(VO4)2 particle to be used as an active catalyst for the oxidative dehydrogenation of cyclohexane. The catalyst characterization and the catalytic test results suggest the gel precursor might be (NH4)2[VO2(C6H6O7)]2-3MgC6H6O7, and the amount of citric acid and the calcination temperature are critical to the purity and the structure of Mg3(VO4)2. Among the catalysts tested, Mg3(VO4)2 prepared with the (Mg+V)/citric acid molar ratio of 1:1.2 and calcined at 823 K for 6 h exhibits the best catalytic performance with an excellent thermal stability.
     The catalytic active phase was identified among Mg3(VO4)2, Mg2V2O7 and MgV2O6 pure magnesium vanadates. The characterization and evaluation results show that Mg3(VO4)2 has the isolated active sites, weakly basic surface and lower reducibility of the metal cations, and could be recognized as the catalytic active phase.
     A series of mechanically mixed catalysts were studied in the reaction in attempting to investigate the biphasic synergetic effect. The finding reveals the purity and the composition of Mg-V-0 catalysts play an important effect on the overall catalytic performance in the oxidative dehydrogenation of cyclohexane.
     (1) MgO+Mg3(VO4)2 mixed catalysts system:
     When MgO content is less than 10 wt.%, the excess MgO might in a highly dispersion into Mg3(VO4)2. There is no synergetic effect between them. When MgO content is higher than 10 wt.%, the epitaxial phenomena might lead to the formation of coherent interface between MgO and Mg3(VO4)2, therefore, the catalytic activity is improved with a decreasing selectivity to cyclohexene.
     (2) Mg3(VO4)2+Mg2V2O7 mixed catalysts system:
     The biphasic synergetic effect might arise from the remote control mechanism between Mg3(VO4)2 and Mg2V2O7, which plays a positive effect on the catalytic performance in the oxidative dehydrogenation of cyclohexane. Mg3(VO4)2 acting as donor or accepter of the mobile oxygen is depended on the main phase in the mixed catalyst. A better catalytic behavior could be obtained over the Mg3(VO4)2+Mg2V2O7 mixed catalyst when the content of Mg3(VO4)2 was more than 70 wt.%.
     (3) MgV2O6+V2O5 mixed catalysts system:
     When V2O5 content was less than 60 wt.%, the synergetic effect might arise from the remote control mechanism, which plays a negative effect on the catalytic performance. When V2O5 content was higher than 60 wt.%, V2O5 would form a contamination layer on the entire catalyst to result in a similar catalytic performance with that of V2O5.
     In order to improve the selectivity and the yield of cyclohexene, the effects of alkali/alkaline earth metals (Li, Na, K and Ca) introduced to Mg3(VO4)2 and the introduction of the additives (steam, acetic acid and TCM) into the feedstream on the physicochemical properties of the catalyst and the catalytic behaviors in the oxidative dehydrogenation of cyclohexane were investigated.
     (1) The addition of alkali/alkaline earth metal to Mg3(VO4)2 affects the physicochemical nature and the catalytic behavior in the reaction. During the coordination of the additive with the surface active species, the additive blocked the active sites and hindered the reducibility of the active species thus decreasing the catalytic activity. Moreover, the additive could improve the selectivity to cyclohexene by changing the acid-basic nature, the redox property as well as the type and number of the oxygen species as investigated by H2-TPR and XPS characterization.
     (2) The effects of the addition of the additives on the catalytic behavior were also investigated. The addition of steam to the reacting mixture has a negative effect on the conversion due to significant decrease of active sites on the catalyst surface and the short of the retention time. The addition of TCM to the feedstream affects the removability of lattice oxygen in the catalyst, which results a high conversion of cyclohexane and a low selectivity to cyclohexene. The addition of acetic acid to cyclohexane plays the interesting effects. A lower addition amount of acetic acid only affects the isolation of the active sites and the acid-base property of catalyst surface, while a higher addition amount of acetic acid affects not only the acid-base property of the catalyst surface but also the degree of crystallinity and the grain size of Mg3(VO4)2 catalyst.
     Furthermore, the effects of the reaction temperature, W/F and molar ratio of cyclohexane to oxygen on the oxidative dehydrogenation of cyclohexane over Mg3(VO4)2 catalyst were obtained. The kinetic of the reaction was investigated using the fixed reactor in the case of eliminating external diffusion. A Power-Law type model was proposed and the kinetic parameters were estimated by nonlinear regression of the experimental data, and the predicted concentration profiles were in agreement with the experimental results.
     The research of this thesis exhibits that the application potentiality of Mg-V-0 catalyst. The the preparation method, catalytic active phase, and the biphasic synergetic effect between the different phases were investigated in order to obtain the optimal composition of Mg-V-0 catalysts. In order to obtain the higher selectivity and the yield of cyclohexene, the effects of the addition of alkali/alkaline earth metal to Mg3(VO4)2 and the introduction of the additive into the feedstream on the physicochemical properties of the catalyst and the catalytic behaviors in the oxidative dehydrogenation of cyclohexane were studied. Furthermore, the effects of the reaction temperature, W/F and molar ratio of cyclohexane to oxygen on the oxidative dehydrogenation of cyclohexane over Mg3(VO4)2 catalyst were obtained and the kinetic model of the reaction was proposed in order to give a better understanding of the oxidative dehydrogenation of cyclohexane over Mg-V-0 catalysts.
引文
[1]闵恩泽,李成岳.绿色石化技术的科学与工程基础[M].北京:中国石化出版社,2002,188-244.
    [2]Grasselli R K. Fundamental principles of selective heterogeneous oxidation catalysis [J]. Topics in Catal.,2002,21:79-88.
    [3]Vedrine J C. The role of redox, acid-base and collective properties and of cristallin estate of heterogeneous catalysts in the selective oxidation of hydrocarbons [J]. Topics in Catal., 2002,21:97-106.
    [4]Labinger J A. Selective alkane oxidation:hot and cold approaches to a hot problem [J]. Mole. Catal. A:Chem.,2004,220:27-35.
    [5]Bruin B, Budzelaar P H M, Gal A W. Functional modeld for rhodium-mediaredolefin-oxygenation catalysis [J]. Angew. Chem. Int. Ed.,2004,43:4142-4157.
    [6]Bielanski A, Haber J. Oxygen in catalysis [M]. Marcel Dekker Inc., New York,1991.
    [7]Kung H H. Transition metal oxides:Surface chemistry and catalysis [M]. Elsevier, Amsterdam,1989.
    [8]Krylor O V. Total catalytic oxidation of hydrocarbons problems of kinetics and catalysis. 12d. Nauka, Moscaw,1982, Vol.18.
    [9]Sato K, Aoki M, Noyori R. A "green" route to adipic acid:direct oxidation of cyclohexenes with 30 percent hydrogen peroxide [J]. Science,1998,281:1646-1648.
    [10]Suresh K A, Sharma M M, Sridhar T. Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons [J]. Ind. Eng. Chem. Res.,2000,39:3958-3997.
    [11]Schuchardt U, Cardoso D, Sercheli R, Pereira R, Cruz R S, Guerreiro M C. Cyclohexane oxidation continues to be a challenge [J]. Appl. Catal. A:General,2001,211:1
    [12]赵立芳,郭进宝.环己烯合成方法研究[J].精细石油化工进展,2004,7:19-22.
    [13]张乐,刘振宇,刘寿长.钉催化苯选择加氢制环己烯的研究进展[J].煤炭转化,2001,24:40-45.
    [14]Milon C, Donato A, Musolino M. Selective hydrogenation of benzene to cyclohexene on Ru/y-Al2O3 [J]. J. Catal.,1996,159:253-258.
    [15]叶代启,庞先燊,黄仲涛.聚酰胺生产新技术-苯不完全加氢制环己烯的开发研究[J].分子催化,1993,3:170-177.
    [16]刘寿长.苯部分加氢制环己烯催化技术研究进展[J].精细与专用化学品,2004,12:1008-1010.
    [17]Kluson P, Cerveny L. Selective hydrohenation over ruthebium catalysts [J]. Appl. Catal. A:General,1995,128:13-31.
    [18]路芳,刘著,徐杰.负载型钌基催化剂催化苯选择加氢合成环己烯[J].化学进展,2003,15:338-343.
    [19]Liu S C, Liu Z Y, Wang Z, Wang Y M, Yuan P. Characterization and study on performance of the Ru-La-B/ZrO2 amorphous alloy catalysts for benzene selective hydrogenation to cyclohexene under pilot conditions [J]. Chem. Eng. J.,2008,139:157-164.
    [20]Chaar M A, Patel D, Kung M C, Kung H H. Selective oxidative dehydrogenation of butane over V-Mg-O catalysts [J]. J. Catal.,1987,105:483-498.
    [21]Panizzaa M, Resinia C, Buscaa G, Lopezb E F, Escribano V S. A study of the oxidative dehydrogenation of cyclohexane over oxide catalysts [J]. Catal. Lett.,2003,89:199-205.
    [22]Mochida L, Jitsumatsu T, Kato A, Seiyama T. Catalytic oxidation over molecular sieves ion-exchanged with transition metal ions:A kinetic study of the oxidative dehydrogenation of cyclohexene over Y sieve ion-exchanged with cupricion [J]. J. Catal.,1975,36:361-369.
    [23]Alyea E C, Keane M A. The oxidative dehydrogenation of cyclohexene and cyclohexene over unsupported and supported molybdena catalysts prepared by metal oxide vapor deposition [J]. J. Catal.,1996,164:28-35.
    [24]Maggiore R, Giordano N, Cristafulli C, Castelli F, Solarino L, Bart J C. The mechanism of dehydrogenation of cyclohexene on MoO3/Al2O3 catalysts [J]. J. Catal.,1979,60:193-203.
    [25]黄仲涛,曾昭槐.石油化工过程催化作用[M].北京:中国石化出版社,1995.
    [26]Kistiakowsky C B, Ruhoff J R, Smith H A, Vaughan W E. Heats of organic reactions. IV: Hydrogenation of some dienes and of benzene [J]. J. Am. Chem. Soc.1986,58,146-153.
    [27]Slayden S W, Liebman J F. The energetics of aromatic and carbons:an experimental thermochemical perspective [J]. Chem. Rev.,2001,101:1541-1566.
    [28]Riad M, Mikhail S. Dehydrogenation of cyclohexane over molybdenum/mixed oxide catalysts [J]. Catal. Comm.,2008,9:1398-1403.
    [29]Haber J, Ruis P, Delmon B. Catalytic oxidation-state of the artandprospects in new developments in selective oxidation by heterogeneous catalysis [J]. Science Studies in Surface Science and Catalysis,1992,72:279-304.
    [30]Tallman R. C., Ark E. D. US3108144,1963.
    [31]Tallman R.C., Ark E. D. US3108143,1963.
    [32]Lebedeva N. L., J.Nefti Gaza Neftekhim, Tezisy Dokl. Konf,1997,151
    [33]Kung H H, Kung M C. Oxidative dehydrogenation of cyclohexane over vanadates catalysts [J]. J. Catal.,1991,128:287-291.
    [34]Jin M, Cheng Z M. Oxidative Dehydrogenation of cyclohexane to cyclohexene over Mg-V-O catalysts [J]. Catal. Lett.,2009,131:266-278.
    [35]Jin M, Cheng Z M, Gao Y L, Fang X C, Oxidative dehydrogenation of cyclohexane with Mg3(VO4)2 synthesized by the citrate process [J]. Mater. Lett.,2009,63:2055-2058.
    [36]朱宇君,李静,杨向光,吴越.醋酸对环己烷气相氧化脱氢产物选择性影响的研究[J].高等学校化学学报,2006,27:1118-1120.
    [37]Zhu Y J, Li J, Yang X G, Wu Y, A new route to control product selectivity in the oxidative dehydrogenation of cyclohexane and cyclohexene [J]. Chem. Lett.,2004,33: 822-823.
    [38]Zhu Y J, Li J, Xiao F X. Effect of different VOPO4 phase catalysts on oxidative dehydrogenation of cyclohexane to cyclohexene in acetic acid [J]. J. Mole. Catal. A: Chemical,2006,246:185-189.
    [39]Kubo T, Nippon J, Kaishi K.1973,12:2257-2263.
    [40]Hayakawa T, Gakkaishi J S.1987,30:161-165.
    [41]Patcas F, Pateas F C. Reaction pathways and kinetics of the gas-phase oxidation of cyclohexane on NiO/γAl2O3 catalyst [J]. Catal. Today,2006,117:253-258.
    [42]Patcas F, Honicke D. Effect of alkali doping on catalytic properities of alumina-supported nickel oxide in the selective oxidehydrogenation of cyclohexane [J]. Catal. Comm.,2005,6:23-27.
    [43]Patcas F, Krysmann W, Honicke D, Buciuman F C. Preparation of structured egg-shell catalysts for selective oxidations by the ANOF technique [J]. Catal.Today,2001,69:379-383.
    [44]Zhu H, Ge Q J, Li W Z, Liu X B, Xu H Y. Study of Mn-based catalysts for oxidative dehydrogenation of cyclohexane to cyclohexene [J]. Catal. Lett.,2005,105:29-34.
    [45]Dietz III A G, Carlsson A F, Schmidt L D. Partial oxidation of C5 and C6 alkanes over monolith catalysts at short contact times [J]. J.Catal.,1996,176:459-473.
    [46]Akimoto, Masamichi, Kashita. J. Bull. Chem. Soc. Japan,1986,59:2577-2584.
    [47]O'Connor R P, Klein E J, Henning D, Schmidt L D. Tuning millisecond chemical reactors for the catalytic partial oxidation of cyclohexane [J]. Appl.Catal. A:General,2003, 238:29-40.
    [48]O'Connor R P, Schmidt L D. Catalytic partial oxidation of cyclohexane in a single-gauze reactor [J]. J.Catal.,2000,191:245-256.
    [49]Alimardan O K M. Kineties and mechanism of cyelohexane dehydrogenation to cyclohexene in the presence of molecular oxygen [J]. J. Petroleum Chemistry:USSR (English Translation of Neftekhimiya),1991,31:22-29.
    [50]Emerson L P, Martin W, Schuchardt U. Cyclohexane oxidation over rare exchanged zeolite Y [J]. J. Mole. Catal. A:Chemical,1998,136:69-74.
    [51]Bielanski A, Haber J. Oxygen in catalysis on transition metal oxides [J]. Catal. Rev. Sci. Eng,1979,19:1-41.
    [52]辛勤.固体催化剂研究方法[M],北京:科学出版社,2004.
    [53]Mars P, Van Krevenlen D W. [J] Chem. Eng. Sci.,1954,3:341-342.
    [54]Sokolovskii V, Arena F, Giordano N, Parmaliana A. Role of acid-base properties of SiO2-based catalysts in the selective oxidation of propane [J]. J. Catal.,1997,167:296-299.
    [55]Hutchings G J, Desmartin-Chomel A, Olier J C, Volta J C. Role of the product in the transformation of a catalyst to its active state [J]. Nature,1994,368:41-42.
    [56]Kung H H, Birkeland K, Bethke G K, Harlow R, Herron N, Lee P L. The kinetics significance of V5+in n-butane oxidation catalyzed by vanadium phosphates [J]. Science, 1997,275:191-193.
    [57]方智敏,翁维正,万惠霖.VMgO催化剂上丙烷氧化脱氢反应的原位Raman谱学研究[J].分子催化,1998,12:207-213.
    [58]张伟德,沙开清,李基涛.丙烷氧化脱氢催化剂’V2O5/MPO4在(M=Al, Zr, Ca)的研究[J].高等学校化学学报,1999,20:608-611.
    [59]方智敏,翁维正,万惠霖.丙烷氧化脱氢VMgO催化剂活性位的研究[J]厦门大学学报(自然科学版),1998,37:525-531.
    [60]Carrazan S R G, Peres C, Bernard J P, Ruwet M, Ruiz P, Delmon B. Catalytic synergy in the oxidative dehydrogenation of propane over MgVO catalysts [J]. J. Catal.,1996,158: 452-476.
    [61]Gao X T, Ruiz P, Xin Q, Guo X X, Delmon B. Effect of coexistence of magnesium vanadate phases in the selective oxidation of propane to propene [J]. J. Catal.,1994,148: 56-67.
    [62]Pantazidis A, Auroux A, Herrmann J M. Role of acid-base redox and structural properties of VMgO catalysts in the oxidative dehydrogenation of propane [J]. Catal. Today, 1996,32:81-88.
    [63]Centi G, Trifiro F, Ebner J R, Franchetti V M. Mechanistic aspects of maleic anhydride synthesis from C4 hydrocarbons over phosphorus vanadium oxide [J]. Chem. Rev.,1988,88: 55-80.
    [64]Hutchings G J. Vanadium phosphorus oxide catalysts for the selective oxidation of n-butane oxidation to maleicanhydride [J]. Catal. Today,1993,16:139-146.
    [65]Trifiro F. Key properties of V-P mixed oxides in selective oxidation of C4 and C5 n-parafins [J]. Catal. Today,1993,16:91-98.
    [66]Marengo S, Patrono P, Comoti P, Galli G, Galli P, Massucci M A, Meloni M T. Propane partial oxidation over M3+-substituted vanadyl phosphates dispersed on titania and silica [J]. Appl. Catal. A:General,2002,230:219-231.
    [67]Herrmann J M, Vernoux P, Bere K E, Abon M. In situ study of redox and of p-type semiconducting properties of vanadyl pyrophosphate and of V-P-O catalysts during the partial oxidation of n-butane to maleic anhydride [J]. J. Catal.,1997,167:106-117.
    [68]Abon M, Bere K E, Delichere P. Nature of active oxygen in the n-butane selective oxidation over well-defined V-P-O catalysts:an oxygen isotopic labelling study [J]. Catal. Today,1997,33:15-23.
    [69]Volta J C, Olier R, Roullet M, Abdelouahab F B, Bere K. Study by in situ laser raman spectroscopy of a VPO catalyst in the course of n-butane oxidation to maleic anhydride [J]. Studies in Surface Science and Catalysis,1993,75:1531-1534.
    [70]Cadus L E, Gomez M F, Abello M C. Synergy effects in the oxidative dehydrogenation of propane over Mg-MoO4-MoO3 catalysts [J]. Catal. Lett.,1997,43:229-233.
    [71]Allison J N, Goddard III W A. Oxidative dehydrogenation of methanol to formaldehyde [J].J. Catal.,92,1985,127-135.
    [72]Fujimoto K. Fundamental study of the oxidation of butane over vanadyl pyrosphate [J]. Stud. Surf. Sci. Catal.,1994,81:73-79.
    [73]黄晓峰.丁烷选择氧化制顺丁烯二酸酐动态动力学模型及其应用[D].北京:北京化工大学,1999.
    [1]Gao X T, Ruiz P, Xin Q, Guo X X, Delmon B. Effect of coexistence of magnesium vanadate phases in the selective oxidation of propane to propene [J]. J. Catal.,1994,148: 56-67.
    [2]Klisinska A, Samson K, Gressel I, Grzybowska B. Effect of additives on properties of V2O5/SiO2 and V2O5/MgO catalysts:I. Oxidative dehydrogenation of propane and ethane [J]. Appl. Catal. A:General,2006,309:10-16.
    [1]储伟.催化剂工程[M],四川:四川大学出版社,2006.
    [2]Balderas-Tapia L, Hernandez-Perez I, Schacht P, Cordova I R, Aguilar-Rios G G. Influence of reducibility of vanadium-magnesium mixed oxides on the oxidative dehydrogenation of propane [J]. Catal. Today,2005,107-108:371-376.
    [3]Pantazidis A, Auroux A, Herrmann J M, Mirodatos C. Role of acid-base, redox and structural properties of VMgO catalysts in the oxidative dehydrogenation of propane [J]. Catal. Today,1996,32:81-88.
    [4]Kung M C, Kung H H. Oxidative dehydrogenation of cyclohexane over vanadates catalysts [J]. J. Catal.,1991,128:287-291.
    [5]Soenen V, Herrmann J M, Volta J C. In situ electrical characterization of magnesium vanadate reference phases (meta-MgV2O6, pyro-Mg2V2O7, and ortho-Mg3V2O8) used in oxidative dehydrogenation of propane to propene [J]. J. Catal.,1996,159:410-417.
    [6]Sam D S H, Soenen V, Volta J C. Oxidative dehydrogenatio n of propane over V-Mg-O catalysts [J]. J. Catal.,1990,123:417-435.
    [7]葛善海,刘长厚,范煜,张守臣.V-Mg-O催化剂上丁烷氧化脱氢动力学研究[J].高校化学工程学报,2001,15:230-236.
    [8]方智敏,翁维正,万惠霖,蔡启瑞.丙烷氧化脱氢V-Mg-O催化剂活性位的研究[J].厦门大学学报(自然科学版),1998,37:525-532.
    [9]方智敏,翁正新,万惠霖,蔡启瑞.VMgO催化剂上丙烷氧化脱氢反应的原位Raman谱学研究[J].分子催化,1998,12:207-213.
    [10]Klisinska A, Loridant S, Grzybowska B, Gressel J S I. Effect of additives on properties of V2O5/SiO2 and V2O5/MgO catalysts Ⅱ Structure and physicochemical properties of the catalysts and their correlations with oxidative dehydrogenation of propane and ethane [J]. Appl. Catal. A:General,2006,309:17-27.
    [11]Chaar M A, Patel D, Kung M C, Kung H H. Selective oxidative dehydrogenation of butane over V-Mg-O catalysts [J]. J. Catal.,1987,105:483-498.
    [12]Tellez C, Abon M, Dalmon J A, Mirodatos C, Santamaria J. Oxidative dehydrogenation of butane over VMgO catalysts [J]. J. Catal.,2000,195:113-124.
    [13]Rubio O, Herguido J, Menendez M. Oxidative dehydrogenation of n-butane on V/MgO catalysts-kinetic study in anaerobic conditions [J]. Chem. Eng. Sci.,2003,58:4619-4627.
    [14]Gao X T, Ruiz P, Xin Q. Preparation and characterization of three pure magnesium vanadate phases catalysts for selective oxidation of propane to propene [J]. Catal. Lett.,1994, 23:321-337.
    [15]Gao X T, Ruiz P, Xin Q. Effect of coexistence of magnesium vanadate phases in the selective oxidation of propane to propene [J]. J. Catal.,1994,148:56-67.
    [16]Carrazan S R G, Peres C, Bernard J P, Ruwet M, Ruiz P, Delmon B. Catalytic synergy in the oxidative dehydrogenation of propane over MgVO catalysts [J]. J. Catal.,1996,158: 452-476.
    [17]Guo C L, Zhang X L, Zhang J L, Wang Y P. Preparation of La2NiO4 catalyst and catalytic performance for partial oxidation of methane [J]. J. Mole. Catal. A:Chemical,2007, 269:254-259.
    [18]Landschoot N V, Kelder E M, Schoonman J. Citric acid-assisted synthesis and characterization of doped LiCoVO4 [J]. Solid State Ionics,2004,166:307-316.
    [19]Li W, Cheng H. Cu-Cr-O nanocomposites:Synthesis and characterization as catalysts for solid state propellants [J]. Solid State Sci.,2007,9:750-755.
    [20]Li J, Wu Y S, Pan Y B, Guo J K. Alumina precursors produced by gel combustion [J]. Ceramics Inter.,2007,33:361-363.
    [21]燕青芝,宿新泰,周艳平.Sol-gel自蔓燃烧法控制合成二氧化钛纳米粉体及性能[J].物理化学学报,2005,21:57-62.
    [22]张显,来成飞,张立同.含脲柠檬酸钌燃烧法制备纳米氧化钌粉[J].硅酸盐学报,2003.31:209-212.
    [23]汪汉斌,刘祖黎,卢强华.柠檬酸根对纳米四氧化三铁颗粒的生长及性能的影响[J].无机化学学报,2004,20:1279-1283.
    [24]Tsaramyrsi M, Kavousanaki D, Raptopoulou C P. Systematic synthesis, structural characterization, and reactivitysrudies of vanadium(V)-citrate anions [VO2(C6H6O7)]22-isolated from aqueous solutions in the presence of different cations [J]. Inorg. Chim. Acta, 2001,320:47-59.
    [25]Liu J R, Lin W M. Citric acid complex method of preparing inverse spinel LiNiVO4 cathode material for lithium batteries [J]. J. Power Sources,2002,108:113-116.
    [26]华中师范大学等编,分析化学(上册)[M],第三版.北京:高等教育出版,2001.
    [27]Blangenois N, Florea M, Grange P. Influence of the co-precipitation pH on the physico-chemical and catalytic properties of vanadium aluminum oxide catalyst [J]. Appl. Catal. A:General,2004,263:163-170.
    [28]Wachs I E, Chen Y S, Jehng J M, Briand L E, Tanaka T. Molecular structure and reactivity of the group V metal oxides [J]. Catal. Today,2003,78:13-24.
    [29]Clark G M, Morley R. J. Solid State Chem.,1976,16:429.
    [30]李朝辉,连建设,李光玉.柠檬酸与金属离子的摩尔比对溶胶-凝胶法合成NiO/Ce0.8Gd0.2O1.9复合纳米粉的影响[J].吉林大学学报(工学版),2006,36:79-84.
    [31]辛勤.固体催化剂研究方法[M],北京:科学出版社,2004.
    [1]Chaar M A, Patel D, Kung M C, Kung H H. Selective oxidative dehydrogenation of butane over V-Mg-O catalysts [J]. J. Catal.,1987,105:483-498.
    [2]Kung H H, Kung M C. Oxidative dehydrogenation of alkanes over vanadium-magnesium-oxides [J]. Appl. Catal. A:General,1997,157:105-116.
    [3]Takita Y, Xia Q, Kikutani K, Soda K, Takami H, Nishiguchi H, Nagaoka K. Anaerobic oxidation of isobutane:Ⅱ Catalysis by Mg-V complex oxides [J]. J.Mole. Catal. A:Chemical, 2006,248:61-69.
    [4]Creaser D, Andersson B. Oxidative dehydrogenation of propane over V-Mg-O:Kinetic investigation by nonlinear regression analysis [J]. Appl. Catal. A:General,1996,141: 131-152.
    [5]Kumar B R, Kumar R. Effect of gallium, aluminium, and chromium on silica supported V-Mg-O catalysts during oxidative dehydrogenation of propane:Kinetic study [J]. J. Natural Gas Chem.,2008,17:256-263.
    [6]Chao Z S, Ruckenstein E. Noncatalytic and catalytic conversion of ethane over V-Mg oxide catalysts prepared via solid reaction or mesoporous precursors [J]. J. Catal.,2004, 222:17-31.
    [7]Rybarczyk P, Berndt H, Radnik J, Pohl M M, Buyevskaya O, Baerns M, Bruckner A. The structure of active sites in Me-V-O catalysts (Me= Mg, Zn, Pb) and its influence on the catalytic performance in the oxidative dehydrogenation (ODH) of propane [J]. J. Catal.,2007, 202:45-58.
    [8]Blanco S, Carrazan S R G, Rives V. Oxidative dehydrogenation of propane on Mg-V-Al mixed oxides [J]. Appl. Catal. A:General,2008,342:93-98.
    [9]Balderas-Tapia L, Hernandez-Perez I, Schacht P, Cordova I R, Aguilar-Rios G G. Influence of reducibility of vanadium-magnesium mixed oxides on the oxidative dehydrogenation of propane [J]. Catal. Today,2005,107-108:371-376.
    [10]Pless J D, Bardin B B, Kim H S, Ko D, Smith M T, Hammond R R, Stair P C, Poeppelmeier K R. Catalytic oxidative dehydrogenation of propane over Mg-V/Mo oxides [J]. J. Catal.,2004,223:419-431.
    [11]Machli M, Heracleous E, Lemonidou A A. Effect of Mg addition on the catalytic performance of V-based catalysts in oxidative dehydrogenation of propane [J]. Appl. Catal. A:General,2002,236:23-34.
    [12]Belomestnykh I P, Isaguliants G V. V-Mg-O catalysts for oxidative dehydrogenation of alkylpyridines and alkylthiophenes [J]. Catal. Today,2009,142:192-195.
    [13]Michalakos P M, Kung M C, Jahan I, Kung H H. Selectivity patterns in alkane oxidation overMg3(VO4)2-MgO, Mg2V2O7, and (VO)2P2O7 [J]. J. Catal.,1993,140:226-242.
    [14]Chao Z S, Ruckenstein E. Noncatalytic and catalytic conversion of ethane over V-Mg oxide catalysts prepared via solid reaction or mesoporous [J]. J. Catal.,2004,222:17-31.
    [15]Sam D S H, Soenen V, Volta J C. Oxidative dehydrogenation of propane over V-Mg-O catalysts [J]. J.Catal.,1990,123:417-435.
    [16]Gao X T, Ruiz P, Xin Q, Guo X X, Delmon B. Effect of coexistence of magnesium vanadates phases in the selective oxidation of propane to propene [J]. J. Catal.,1994,148: 56-67.
    [17]方智敏,翁维正,万惠霖,蔡启瑞.丙烷氧化脱氢V-Mg-O催化剂活性位的研究[J],厦门大学学报(自然科学版),1998,37:525-532.
    [18]Pless J D, Bardin B B, Kim H S, Ko D, Smith M T, Hammond R R, Stair P C, Poeppelmeier K R. Catalytic oxidative dehydrogenation of propane over Mg-V/Mo oxides [J]. J.Catal.,2004,223:419-431.
    [19]Soenen V, Herrmann J M, Volta J C. In situ electrical characterization of magnesium vanadate reference phases (meta-MgV2O6, pyro-Mg2V2O7, and ortho-Mg3V2O8) used in oxidative dehydrogenation of propane to propene [J]. J. Catal.,1996,159:410-417.
    [20]Chaar M A, Patel D, Kung M C, Kung H H. Selective oxidative dehydrogenation of butane over V-Mg-O catalysts [J]. J. Catal.,1987,105:483-498.
    [21]Kung H H, Chaar M A. US 4772319,1988.
    [22]Chaar M A, Patel D, Kung H H. Selective oxidative dehydrogenation of propane over V-Mg-O catalysts [J]. J. Catal.,1988,109:463-467.
    [23]照日格图,李文钊.丙烷氧化脱氢反应催化剂体系研究进展[J].天然气化工,2003,28:15-21.
    [24]Balderas-Tapia L, Hernandez-Perez I, Schacht P, Cordova I R, Aguilar-Rios G G. Influence of reducibility of vanadium-magnesium mixed oxides on the oxidative dehydrogenation of propane [J]. Catal. Today,2005,107-108:371-376.
    [25]Pantazidis A, Auroux A, Herrmann J M, Mirodatos C. Role of acid-base, redox and structural properties of VMgO catalysts in the oxidative dehydrogenation of propane [J]. Catal. Today,1996,32:81-88.
    [26]刘睿,王新平,贾翠英,施维.正丁烷在VMgO和Ni-VMgO催化剂上氧化脱氢[J].催化学报,2005,26:650-655.
    [27]Chesnokov V V, Bedilo A F, Heroux D S, Mishakov I V, Klabunde K J. Oxidative dehydrogenation of butane over nanocrystalline MgO, Al2O3, and VOx/MgO catalysts in the presence of small amounts of iodine [J]. J. Catal.,2003,218:438-446.
    [28]Kung M C, Kung H H. Oxidative dehydrogenation of cyclohexane over vanadates catalysts [J]. J. Catal.,1991,128:287-291.
    [29]Hanuza J, Jerowska-Trzebiatowska B, Oganowski W. J. Mol. Catal.,1985,29:109.
    [30]Carrazan S R G, Peres C, Bernard J P, Ruwet M, Ruiz P, Delmon B. Catalytic synergy in the oxidative dehydrogenation of propane over MgVO catalysts [J]. J. Catal.,1996,158: 452-476.
    [31]Blasco T, Lopez-Nieto J M, Dejoz A, Vazquez M I. Influence of the acid-base character of supported vanadium catalysts on their catalytic properties for the oxidative dehydrogenation of n-butane [J]. J. Catal.,1995,157:271-282.
    [32]Chen T, Li W Z. Oxidative dehydrogenation of ethane over perovskite catalysts I Effect of Li doping on cataltytic behavior [J]. Chin. J. Catal.,1997,18:120-124.
    [33]Chen T, Li W Z. Oxidative dehydrogenation of ethane over perovskite catalysts II Roles of the alkali metal ion doping and CO2 [J]. Chin. J. Catal.,1997,18:60-163.
    [34]Krishnamachari N, Calvo C. J Canad Chem,1971,49:1630.
    [35]Gopal R, Calvo C. Acta Crystallogr Sect B,1974,30:2491.
    [36]Ng H N, Calvo C. J Canad Chem,1972,50:3619.
    [37]Clark G M, Morley R. J. Solid State Chem.,1976,16:429.
    [38]Ng H N, Calvo C, J Canad Chem,1972,50:3619
    [39]Grasselli R K. Fundamental principles of selective heterogeneous oxidation catalysis [J]. Topics in Catal.,2002,21:79-88
    [40]Zhang W D, Sha K Q, Li J T. Studies of the V2O5/MPO4(M=Al, Zr, Ca) catalysts in propane oxidative dehydrogenation [J]. Chem. Res. in Chinese Univ.,1999,20:608-611.
    [41]Sugiyama S, Osaka T, Hirata Y, Sotowa K I. Enhancement of the activity for oxidative dehydrogenation of propane on calcium hydroxyapatite substituted with vanadate [J]. Appl. Catal. A:General,2006,312:52-58.
    [1]Mars P, Van Krevenlen D W. Chem Eng Sci (Suppl),1954,3:341.
    [2]Hutchings G J, Desmartin-Chomel A, Olier J C, Volta J C. Role of the product in the transformation of a catalyst to its active state [J]. Nature,1994,368:41-45.
    [3]Coulston G W, Bare S R, Kung H H, Birkeland K, Bethke G K, Harlow R, Herron N, Lee P L. The kinetic significance of V5+in n-butane oxidation catalyzed by vanadium phosphates [J]. Science,1997,275:191-193.
    [4]Chaar M A, Patel D, Kung M C, Kung H H. Selective oxidative dehydrogenation of butane over V-Mg-O catalysts [J]. J. Catal.,1987,105:483-498.
    [5]Chaar M A, Patel D, Kung H H. Selective oxidative dehydrogenation of propane over V-Mg-O catalysts [J]. J. Catal.,1988,109:463-457.
    [6]Owen O S, Kung M C, Kung H H. The effect of oxide structure and cation reduction potential of vanadates on the selective oxidative dehydrogenation of butane and propane [J]. Catal. Lett.,1992,12:45-50.
    [7]Kung M C, Kung H H. Oxidative dehydrogenation of cyclohexane over vanadates catalysts [J]. J. Catal.,1991,128:287-291.
    [8]Kumar B R, Kumar R. Effect of gallium, aluminium, and chromium on silica supported V-Mg-O catalysts during oxidative dehydrogenation of propane:Kinetic study [J]. J. Natural Gas Chem.,2008,17:256-263.
    [9]Chao Z S, Ruckenstein E. Noncatalytic and catalytic conversion of ethane over V-Mg oxide catalysts prepared via solid reaction or mesoporous precursors [J]. J. Catal.,2004, 222:17-31.
    [10]Rybarczyk P, Berndt H, Radnik J, Pohl M M, Buyevskaya O, Baerns M, Bruckner A. The structure of active sites in Me-V-O catalysts (Me= Mg, Zn, Pb) and its influence on the catalytic performance in the oxidative dehydrogenation (ODH) of propane [J]. J. Catal.,2007, 202:45-58.
    [11]Blanco S, Carrazan S R G, Rives V. Oxidative dehydrogenation of propane on Mg-V-Al mixed oxides [J]. Appl. Catal. A:General,2008,342:93-98.
    [12]Balderas-Tapia L, Hernandez-Perez I, Schacht P, Cordova I R, Aguilar-Rios G G. Influence of reducibility of vanadium-magnesium mixed oxides on the oxidative dehydrogenation of propane [J]. Catal. Today,2005,107-108:371-376.
    [13]Gao X T, Ruiz P, Xin Q, Preparation and characterization of three pure magnesium vanadate phases catalysts for selective oxidation of propane to propene [J]. Catal. Lett.,1994, 23:321-337.
    [14]Gao X T, Ruiz P, Xin Q. Effect of coexistence of magnesium vanadate phases in the selective oxidation of propane to propene [J]. J. Catal.,1994,148:56-67.
    [15]Carrazan S R G, Peres C, Bernard J P, Ruwet M, Ruiz P, Delmon B. Catalytic synergy in the oxidative dehydrogenation of propane over MgVO catalysts [J]. J. Catal.,1996,158: 452-476.
    [16]Pantazidis A, Auroux A, Herrmann J M. Role of acid-base redox and structural properties of VMgO catalysts in the oxidative dehydrogenation of propane [J]. Catal. Today, 1996,32:81-88.
    [17]Fang Z M, Weng W Z, Wan H L, Tsai K. Biphasic synergy vatalysis of the oxidative dehydrogenation of propane over VMgO catalysts [J]. J Molecular Catal (China),1995,9: 401-410.
    [18]Courtine P, Bordes E. Mode of arrangement of components in mixed vanadia catalyst and its bearing for oxidation catalysis [J]. Appl. Catal. A:General,1997,157:45-65.
    [19]Weng L T, Delmon B. Phase cooperation and remote control affects in selective oxidation catalysts [J]. Appl. Catal. A:General,1992,81:141-213.
    [20]Sam D S H, Soenen V, Volta J C. Oxidative dehydrogenation of propane over V-Mg-O catalysts [J]. J. Catal.,1990,123:417-435.
    [21]Moens L, Ruiz P, Delmon B, Devillers M. Cooperation effects toward partial oxidation of isobutene in multiphasic catalysts based on bismuth pyrostannate [J]. Appl. Catal. A: General,1998,171:131-143.
    [22]Ruiz P, Bastians Ph, Cassin L, Reuze R, Daza L, Acosta D, Delmon B. New aspects of the cooperation between phases in vanadium phosphate catalysts [J]. Catal. Today,1993,16: 99-111.
    [23]Blasco T, Lopez-Nieto J M, Dejoz A, Vazquez M I. Influence of the acid-base character of supported vanadium catalysts on their catalytic properties for the oxidative dehydrogenation of n-butane [J]. J. Catal.,1995,157:271-282.
    [24]Grasselli R K. Fundamental principles of selective heterogeneous oxidation catalysis [J]. Topics in Catal.,2002,21:79-88.
    [25]Jin M, Cheng Z M. Oxidative Dehydrogenation of cyclohexane to cyclohexene over Mg-V-O Catalysts [J]. Catal. Lett.,2009,131:266-278.
    [26]Krishnamachari N, Calvo C. J Canad Chem,1971,49:1630.
    [27]Bordes E, Courtine P. Mode of arrangement of components in mixed vanadia catalyst and its bearing for oxidation catalysis [J]. Appl. Catal. A:General,1997,157(1/2):45-65.
    [28]Vejux A, Courtine P. TEM study of interfacial relationships in the V2O5-TiO2(anatase) system [J]. J. Solid State Chem.,1986,63:179-190.
    [29]Courtine P. Solid State Chemistry in Catalysis [M]. ACS Symp. Washington D C:Am. Chem. Sec.1985.
    [30]Courtine P, Bordes E. Proc.3rd World Congr. Oxidation Catalysis [M]. Amsterdam: Elsevier,1997,177.
    [31]Bordes E. Synergistic effects in selective oxidation catalysis:does phase cooperation result in site isolation [J]. Topic in Catal.,2001,15(2-4):131-137.
    [32]Wang Y, Chen F Q, Zhan X L, Chen F. Site isolation and phase cooperation in heterogeneous selective oxidation and ammoxidation catalysis [J]. Progress in Chem.,2006, 18:7-12.
    [33]Centi G, Trifiro F, Ebner J R, Franchetti V M. Mechanistic aspects of maleic anhydride synthesis from C4 hydrocarbons over phosphorus vanadium oxide [J]. Chem Rev,1988,88: 55-80.
    [34]Delmon B, Ruiz P. Preface [J]. Catal. Today,1987,1:1-4.
    [35]Delmon B, Ruiz P. The role of mobile oxygen species in the selective oxidation of isobutene [J]. Catal. Today,1988,3:199-209.
    [36]Gaigneaux E M, Tsiakaras P E, Herla D, Ghenne L, Ruiz P, Delmon B. Catalytic synergy via spillover at low temperature:the dehydration and dehydrogenation of sec-butanol in the presence of oxygen [J]. Catal. Today,1997,33,151-160.
    [37]Wachs I E, Chen Y S, Jehng J M, Briand L S, Tanaka T. Molecular structure and reactivity of the group V metal oxides [J]. Catal. Today,2003,78:13-24.
    [1]Blasco T, Lopez-Nieto J M, Dejoz A, Vazquez M I. Influence of the acid-base character of supported vanadium catalysts on their catalytic properties for the oxidative dehydrogenation of n-butane [J]. J. Catal.,1995,157:271-282.
    [2]Grzybowska B, Mekss P, Grabowski R, Wcislo K, Barbaux Y, Gengembre L. Effect of potassium addition to V2O5/TiO2 and MoO3/TiO2 catalysts on their physicochemical and catalytic properties in oxidative dehydrogenation of propane [J]. Stud. Surf. Sci. Catal.,1994, 82:151-158.
    [3]Grabowska R, Grzybowska B, Samson K, Sloczynski J, Stoch J, Wcislo K. Effect of alkaline promoters on catalytic activity of V2O5/TiO2 and MoO3/TiO2 catalysts in oxidative dehydrogenation of propane and in isopropanol decomposition [J]. Appl. Catal. A:General, 1995,125:129-144.
    [4]Lemonidou A A, Nalbandian L, Vasalos I A. Oxidative dehydrogenation of propane over vanadium oxide based catalysts:Effect of support and alkali promoter [J]. Catal. Today,2000, 61:333-341.
    [5]Klisinska A, Samson K, Gressel I, Grzybowska B. Effect of additives on properties of V2O5/SiO2 and V2O5/MgO catalysts:I Oxidative dehydrogenation of propane and ethane [J] Appl. Catal. A:General,2006,309:10-16.
    [6]Klisinska A, Loridant S, Grzybowska B, Stoch J, Gressel I. Effect of additives on properties of V2O5/SiO2 and V2O5/MgO catalysts:Ⅱ Structure and physicochemical properties of the catalysts and their correlations with oxidative dehydrogenation of propane and ethane [J]. Appl. Catal. A:General,2006,309:17-27.
    [7]Valenzuela R X, Mamedov E A, Corberan V C. Effect of different additives on the performance of V-Mg-O catalysts in the oxidative dehydrogenation of propane [J]. React. Kinet. Catal. Lett.,1995,55:213-220.
    [8]Kung M C, Kung H H. The effect of potassium in the preparation of magnesium orthovanadate and pyrovanadate on the oxidative dehydrogenation of propane and butane [J]. J. Catal.,1992,134:668-677.
    [9]Albrecht S, Wendt G, Lippold G, Adamski A, Dyrek K. Characterization of modified V2O5-ZrO2 catalysts for the oxidative dehydrogenation of propane [J]. Solid State Ionics, 1997,101-103:909-914.
    [10]Chen K D, Xie S B, Bell A T, Iglesia E. Alkali effect on molybdenum oxide catalysts for the oxidative dehydrogenation of propane [J]. J. Catal.,2000,195:244-252.
    [11]Sugiyama S, Hashimoto T, Morishita Y, Shigemoto N, Hayashi H. Effects of calcium cations incorporated into magnesium vanadates on the redox behaviors and the catalytic activities for the oxidative dehydrogenation of propane [J]. Appl. Catal. A:General,2004, 270:253-260.
    [12]Cortez G G, Fierro J L G, Banares M A. Role of potassium on the structure and activity of alumina-supported vanadium oxide catalysts for propane oxidative dehydrogenation [J]. Catal. Today,2003,78:219-228.
    [13]Madeire L M, Martin-Aranda R M, Maldonado-Hodar F J, Fierro J L, Portela M F. Oxidative dehydrogenation of n-butane over alkali and alkaline earth-promoted a-NiMoO4 catalysts [J]. J. Catal.,1997,169:469-479.
    [14]Witko M, Grybos R, Tokarz-Sobieraj R. Heterogeneity of V2O5(010) surfaces-the role of alkali metal dopants [J]. Topics in Catalysis,2006,38:75-84.
    [15]Klisinska A, Haras A, Samson K, Witko M, Grzybowska B. Effect of additives on properties of vanadia-based catalysts for oxidative dehydrogenation of propane experimental and quantum chemical studies [J]. J..Mole. Catal. A:Chemical,2004,210:87-92.
    [16]Patcas F, Honicke D. Effect of alkali doping on catalytic properities of alumina-supported nickel oxide in the selective oxidehydrogenation of cyclohexane [J]. Catal. Comm.,2005,6:23-27.
    [17]Chen T, Li W Z. Oxidative dehydrogenation of ethane over perovskite catalysts I Effect of Li doping on cataltytic behavior [J]. Chin. J. Catal.,1997,18:120-124.
    [18]Chen T, Li W Z. Oxidative dehydrogenation of ethane over perovskite catalysts II Roles of the alkali metal ion doping and CO2 [J]. Chin. J. Catal.,1997,18:60-163.
    [19]Mars P, Van Krevenlen D W. [J] Chem. Eng. Sci.,1954,3:341-342.
    [20]Yuan H X, Ouyang J M. Application of X-ray photoelectron spectroscopy to the study of complexes and its progress [J]. Spectroscopy and Spectral Analysis,2007,27:395-399.
    [21]Xu A J, Zhaori G T, Jia M L, Lin Q, Study on performance of Ni3V2O8 catalyst and analysis of X-ray photoelectron spectroscopy [J]. Spectroscopy and Spectral Analysis,2007, 27:2134-2138.
    [22]Sam D S H, Soenen V, Volta J C. Oxidative dehydrogenation of propane over V-Mg-O catalysts [J]. J. Catal.,1990,123:417-435.
    [23]Gao X T, Ruiz P, Xin Q, Guo X X, Delmon B. Effect of coexistence of magnesium vanadate phases in the selective oxidation of propane to propene [J]. J. Catal.,1994,148: 56-67.
    [24]方智敏,翁维正,万惠霖.丙烷氧化脱氢VMgO催化剂活性位的研究[J].厦门大学学报(自然科学版),1998,37:525-531.
    [25]Jin M, Cheng Z M. Oxidative dehydrogenation of cyclohexane to cyclohexene over Mg-V-O catalysts [J]. Catal. Lett.,2009,131:266-278.
    [26]Jin M, Cheng Z M, Gao Y L, Fang X C, Oxidative dehydrogenation of dyclohexane with Mg3(VO4)2 synthesized by the citrate process [J]. Mater. Lett.,2009,63:2055-2058.
    [27]Kung H H, Kung M C, Oxidative dehydrogenation of cyclohexane over vanadates catalysts [J]. J. Catal.,1991,128:287-291.
    [28]Balderas-Tapia L, Hernandez-Perez I, Schacht P, Cordova I R, Aguilar-Rios G G. Influence of reducibility of vanadium-magnesium mixed oxides on the oxidative dehydrogenation of propane [J]. Catal. Today,2005,107-108:371-376.
    [29]Zhang W D, Sha K Q, Li J T. Studies of the V2O5/MPO4(M=Al, Zr, Ca) catalysts in propane oxidative dehydrogenation [J]. Chem. Res. in Chinese Univ.,1999,20:608-611.
    [30]Sugiyama S, Osaka T, Hirata Y, Sotowa K I. Enhancement of the activity for oxidative dehydrogenation of propane on calcium hydroxyapatite substituted with vanadate [J]. Appl. Catal. A:General,2006,312:52-58.
    [31]Bielanski A, Haber J, Oxygen in Catalysis [M], Marcel Dekker, New York,1991.
    [32]Vedrine J C, Millet J M M, Volta J C. Molecular description of active sites in oxidation reactions:Acid-base and redox properties, and role of water [J]. Catal. Today,1996,32: 115-123.
    [33]Grzybowska-Swierkosz B. Thirty years in selective oxidation on oxides:what have we learned? [J]. Toptics in Catalysis,2000,11-12:23-42.
    [34]Grzybowska-Swierkosz B. Active centres on vanadia-based catalysts for selective oxidation of hydrocarbons [J]. Appl. Catal. A:General,1997,157:409-420.
    [1]Sugiyama S, Lizuka Y, Fukuda N, Hayashi H. Enhancement of the activities with feedstream doping by tetrachloromethane in the oxidative dehydrogenation of propane on a-magnesium pyrovanadate [J]. Catal. Lett.,2001,73:137-140.
    [2]Sugiyama S, Nitta E, Hayashi H, Moffat J B. The oxidation of propane on nonstoichiometric calcium hydroxyapatites in the presence and absence of tetrachloromethane [J]. Appl. Catal. A:General,2000,198:171-178.
    [3]Sugiyama S, Shono T, Nitta E, Hayashi H. Effects of gas-and solid-phase additives on oxidative dehydrogenation of propane on strontium and barium hydroxyapatites [J]. Appl. Catal. A:General,2001,211:123-130.
    [4]Moffat J B, Sugiyama S, Hayashi H. The effects of the introduction of tetrachloromethane into the feedstream for the partial oxidation and oxidative coupling of methane [J]. Catal. Today,1997,37:15-23.
    [5]Nozaki F, Limori Y. Bull.Chem.Sic. Japan,1976,49:567.
    [6]Weissman M, Benson S W. Int.J.Chem. Kinet,1984,16:307.
    [7]Contractor R M, Horowitz H S, Sisler G M, Bordes E. The effects of steam on n-butane oxidation over VPO as studied in a riser reactor [J], Catal. Today,1997,37:51-57.
    [8]Arnold E W, Sundaresan S. The effects of steam on n-butane selective oxidation [J]. Applied Catal. A:General,1988,41:225-239.
    [9]Lerou J J, Mills P L. Weijnen M P C, Drinkenburg A A H. Precision process technology [M], Kluwer Academix Publishers, Dordrecht,1993.
    [10]Lemonidou A A, Tjatjopoulos G J, Vasalos I A. Investigations on the oxidative dehydrogenation of n-butane over VMgO-type catalysts [J]. Catal. Today,1998,45:65-71.
    [11]Lemonidou A A, Machli M. Oxidative dehydrogenation of propane over V205-MgO/TiO2 catalyst:Effect of reactants contact mode [J]. Catal. Today,2007, 127:132-138.
    [12]Savary L, Saussey J, Costentin G, Bettahar M M, Gubelman-Bonneau M, Lavalley J C. Propane oxydehydrogenation reaction on a VPO/TiO2 catalyst:Role of the nature of acid sites determined by dynamic in-situ IR studies [J]. Catal. Today,1996,32:57-61.
    [13]Erdohelyi A, Solymosi F. Partial oxidation of ethane over supported vanadium pentoxide catalysts [J]. J. Catal.,1990,123:31-42.
    [14]Chang Y.F, Somorjai G A, Heinemann H. Oxydehydrogenation of ethane over ZSM-5 zeolite catalysts:Effect of steam [J]. Appl. Catal. A:General,1993,96:305-318.
    [15]朱宇君,李静,杨向光,吴越.醋酸对环己烷气相氧化脱氢产物选择性影响的研究[J].高等学校化学学报,2006,27:1118-1120.
    [16]Zhu Y J, Li J, Yang X G, Wu Y. A new route to control product selectivity in the oxidative dehydrogenation of cyclohexane and cyclohexene [J]. Chem. Lett.,2004,33: 822-823.
    [17]Zhu Y J, Li J, Xiao F X. Effect of different VOPO4 phase catalysts on oxidative dehydrogenation of cyclohexane to cyclohexene in acetic acid [J]. J. Mole. Catal. A: Chemical,2006,246:185-189.
    [18]Yuan H X, Ouyang J M. Application of X-ray photoelectron spectroscopy to the study of complexes and its progress [J]. Spectroscopy and Spectral Analysis,2007,27:395-399.
    [19]Xu A J, Zhaori G T, Jia M L, Lin Q. Study on performance of M3V2O8 catalyst and analysis of X-ray photoelectron spectroscopy [J]. Spectroscopy and Spectral Analysis,2007, 27:2134-2138.
    [20]Sam D S H, Soenen V, Volta J C. Oxidative dehydrogenation of propane over V-Mg-O catalysts [J]. J. Catal.,1990,123:417-435.
    [21]Gao X T, Ruiz P, Xin Q, Guo X X, Delmon B. Effect of coexistence of magnesium vanadate phases in the selective oxidation of propane to propene [J]. J. Catal.,1994,148: 56-67.
    [22]Blasco T, Lopez-Nieto J M, Dejoz A, Vazquez M I. Influence of the acid-base character of supported vanadium catalysts on their catalytic properties for the oxidative dehydrogenation of n-butane [J]. J. Catal.,1995,157:271-282.
    [23]Chen T, Li W Z. Oxidative dehydrogenation of ethane over perovskite catalysts I Effect of Li doping on cataltytic behavior [J]. Chin. J. Catal.,1997,18:120-124.
    [24]Sugiyama S, Matsumoto H, Hayashi H, Moffat J B. Decomposition of tetrachloromethane on calcium hydroxyapatite under methane oxidation conditions [J]. Appl. Catal. B:Environmental,1999,20:57-66.
    [1]Patcas F, Pateas F C. Reaction pathways and kinetics of the gas-phase oxidation of cyclohexane on NiO/γAl2O3 catalyst [J]. Catal. Today,2006,117:253-258.
    [2]Patcas F, Honicke D. Effect of alkali doping on catalytic properities of alumina-supported nickel oxide in the selective oxidehydrogenation of cyclohexane [J]. Catal. Comm.,2005,6: 23-27.
    [3]Patcas F, Krysmann W, Honicke D, Buciuman F C. Preparation of structured egg-shell catalysts for selective oxidations by the ANOF technique [J]. Catal.Today,2001,69:379-383.
    [4]Chaar M A, Patel M C, Kung M C, Kung H H. Selective oxidative dehydrogenation of butane over V-Mg-O catalysts [J]. J. Catal.,1987,105:483-498.
    [5]Lenonidou A A, Stambouli A E. Catalytic and non-catalytic oxidative dehydrogenation of n-butane [J]. Appl. Catal. A:General,1998,171:325-332.
    [6]Lemonidou A A, Tjatjopoulos G J, Valalos I A. Investigations on the oxidative dehydrogenation of n-butane over VMgO-type catalysts [J]. Catal. Today,1998,65:71-83.
    [7]Dejoz A, Lopez Nieto J M, Melo F, Vazquez I. Kinetic study of the oxidation of n-butane on vanadium oxide supported on Al/Mg mixed oxide [J]. Ind. Eng. Chem. Res.,1997, 36:2588-2596.
    [8]Lopez Nieto J M, Dejoz A, Vazquez I, Leary W O. Oxidative dehydrogenation of n-butane on MgO-supported vanadium oxide catalysts [J]. Catal. Today,1998,40:215-228.
    [9]Machli M, Boudouris C, Gaab S, Find J, Lemonidou A A, Lercher J A. Kinetic modelling of the gas phase ethane and propane oxidative dehydrogenation [J]. Catal. Today,2006,112: 53-59.
    [10]Grabowski R, Sloxzynski J. Kinetics of oxidative dehydrogenation of propane and ethane on VOx/SiO2 pure and with potassium additive [J]. Chem. Eng. Pro.,2005,44:1082-1093.
    [11]Madeira L M, Maldonado-Hodar F J, Portela M F, Freire F, Martin-Aranda R M, Oliveira M. Oxidative dehydrogenation of n-butane on Cs doped nickel molybdate:Kinetics and mechanism [J]. Appl. Catal. A:General,1996,135:137-153.
    [12]葛善海.V-Mg-O催化剂上丁烷氧化脱氢及惰性无机膜反应器中低碳烃类选择氧化的研究[D],大连理工大学博士学位论文,2000.
    [13]朱丙辰主编.化学反应工程[M],北京:化学工业出版社,2004.
    [14]朱开宏,袁渭康主编.化学反应工程分析[M],北京:高等教育出版社,2004.
    [15]Grabowski R, Sloxzynski J, Grzesik N M. Kinetics of oxidative dehydrogenation of propane [J]. Appl. Catal. A:General,2003,242:297-309.
    [16]Barsan M M, Thyrion F C. Kinetic study of oxidative dehydrogenation of propane over Ni-Co molybdate catalyst [J]. Catal. Today,2003,81:159-170.
    [17]Sautel M, Thomas G, Kaddouri A, Mazzocchia C, Anouchinsky R. Kinetic of oxidative dehydrogenation of propane on the β phase of nickel molybdate [J]. Appl. Catal. A:General, 1997,155:217-228.
    [18]Tellez C, Menendez M, Santamaria J. Kinetic study of the oxidative dehydrogenation of butane on V/MgO catalysts [J]. J. Catal.,1999,183:210-221.
    [19]Creaser D, Andersson B. Oxidative dehydrogenation of propane over V-Mg-O:kinetic investigation by nonlinear regression analysis [J]. Appl. Catal. A:General,1996,141:131-152.
    [20]Stoxzynski J. Kinetics and mechanism of reduction and reoxidation of the alkali metal promoted vanadia-titania catalysts [J]. Appl. Catal. A:General,1996,146:401-423.
    [21]Juusola J A, Mann R F, Downie J. The kinetics of the vapor-phase oxidation of o-xylene over a vanadium oxide catalyst [J]. J. Catal.,1970,17:106-131.
    [22]Boag I F, Bacon D W, Downie J. Analysis of the reaction network for the vanadia-catalyzed oxidation of ortho-xylene [J]. J. Catal.,1975,38:375-384.
    [23]Stern D L, Grasselli R K. Reaction network and kinetics of propane oxydehydrogenation over nickel cobalt molybdate [J]. J. Catal.,1997,167:560-569.
    [24]Pantazidis A, Mirodatos C. Proceedings of the 11th Interational Congress on Catalysis-40th Anniversary, Stud. Surf. Sci. Catal.,1996,101:1029-1041.
    [25]Kung H H, Kung M C. Oxidative dehydrogenation of cyclohexane over vanadates catalysts [J]. J. Catal.,1991,128:287-291.
    [26]Garland M. Transport effects in homogeneous catalysis (Encyclopedia of Catalysis) [M]. New York, John wiley& Sons Inc.,2002.
    [27]黄华江编著.适用化工计算机模拟MATLAB在化学工程中的应用[M].化学工业出版社,2004.
    [28]Holl J H. Genetic Algorithms [J]. Science American.1992,267:44-51.
    [29]朱中南,戴迎春编.化工数据处理与实验设计[M].华东理工大学联合化学反应工程研究所.1983.
    [30]范鸣玉编著.最优化技术基础[M].清华大学出版社.1982.
    [31]黄晓峰.丁烷选择氧化制顺酐动态动力学模型及其应用[D].北京化工大学.博士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700