靶向Survivin的siRNA对胰腺癌细胞增殖及对吉西他滨化疗敏感性影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌是预后极差的人体恶性肿瘤之一。胰腺癌患者早期症状不明显,确诊时多数已属晚期,往往已失去手术时机,五年生存率不到5%。包括化疗在内的综合治疗是提高胰腺癌患者生存率的关键,但现有的化疗药物大多对胰腺癌不敏感。吉西他滨是一种新型的嘧啶类抗代谢药物,是目前治疗胰腺癌的主要药物之一,它能缓解临床症状,然而并不能明显延长患者生存时间,化疗耐药是导致治疗失败的主要原因。因此,解决胰腺癌细胞的化疗耐药已经成为临床上迫切需要解决的实际问题。近年来随着分子生物学研究的深入发展,以凋亡抑制蛋白为靶点的基因治疗备受关注,目前的实验研究已经取得了初步的成效和进展,可能为有效提高胰腺癌治疗效果提供了一个新的方向。
     研究表明,Survivin作为一种新发现的凋亡抑制蛋白(inhibitor of apoptosisproteins,IAPs),具有抗凋亡和调节细胞周期的双重功能,在人类众多恶性肿瘤中广泛表达,而在正常组织中不表达或低表达。Survivin是至今克隆出的最小IAP,定位于染色体17q25,其基因全长14.7kb,在G2/M期特异性表达,编码16.5kb的蛋白。Survivin的表达与胰腺癌患者的预后、复发以及化疗耐药密切相关。Survivin主要通过其羧基端α-螺旋结构与有丝分裂的纺锤体微管结合,再通过BIR结构与caspase3和caspase7特异性地结合在一起,直接抑制凋亡终末效应器caspase3和caspase7的活性,阻断各种刺激诱导的细胞凋亡过程。Survivin亦可抑制细胞色素C从线粒体释放,阻断caspase激活,从而在上游阻断凋亡信号的传导抑制细胞凋亡。近年来研究发现阻断Survivin表达可抑制多种肿瘤细胞的生长。亦有学者实验证实,靶向抑制Survivin表达可增强胰腺癌细胞的放疗敏感性。由此我们结合Survivin的特性考虑,对Survivin基因进行阻断有可能会成为增强胰腺癌对吉西他滨化疗敏感性的一种新方法,而目前国内外文献尚未见相关报道。
     在本研究中,我们首先探讨Survivin在胰腺癌组织中的表达及与Bcl-2相关性研究,然后检测化疗诱导胰腺癌细胞凋亡Survivin表达的变化。构建靶向Survivin基因的siRNA真核表达载体,将构建的siRNA质粒通过脂质体导入到人胰腺癌Panc-1和BxPC3细胞中并筛选稳定转染的细胞系,观察其对survivin的mRNA和蛋白表达抑制作用,以及对胰腺癌细胞增殖、细胞周期、细胞侵袭力和对化疗药物吉西他滨的敏感性的影响。实验结果为今后利用靶向Survivin基因的siRNA增强胰腺癌细胞的化疗敏感性提供强有力的证据。本实验共分为以下四部分。
     第一部分Survivin在胰腺癌组织中的表达及与Bcl-2相关性研究
     目的
     本研究旨在检测人胰腺癌组织中Survivin的表达,分析其与临床病理特征的关系及与Bcl-2表达的相关性,探讨其在胰腺癌发生发展中的作用。
     材料和方法
     应用免疫组织化学SP法检测50例胰腺癌标本和14例正常胰腺组织中Survivin的表达,分析其与临床病理特征的关系,探讨Survivin与Bcl-2表达的相关性。
     结果
     1.50例胰腺癌标本中有31例出现Survivin阳性表达,阳性率为62%,而14例正常胰腺组织中均未检测到Survivin表达(P<0.05)。
     2.Survivin蛋白的表达与肿瘤分化程度、临床分期有关(P<0.05),与患者性别、肿瘤部位及有无淋巴结转移无显著相关性(P>0.05)。
     3.Bcl-2表达阳性、阴性组中Survivin的阳性表达率分别为77.8%和43.5%,两组比较差异有统计学意义(P<0.05)。
     结论
     1.Survivin在胰腺癌组织中的高表达提示其对胰腺肿瘤的发生、发展可能起重要作用,Survivin与Bcl-2的表达呈正相关,二者可能发挥协同作用。
     2.Survivin的高表达可作为胰腺癌预后不良的生物学指标。
     第二部分化疗诱导胰腺癌细胞凋亡Survivin表达的变化及意义
     目的
     研究紫杉体体外化疗对胰腺癌细胞凋亡抑制蛋白survivin基因mRNA和蛋白表达的影响。
     材料和方法
     1.培养人胰腺癌细胞株SW1990,加入低浓度的紫杉醇(PA),用流式细胞仪分别检测对照组和加药后24h、48h的细胞凋亡率。
     2.PT-PCR和免疫印迹技术(western-blot)检测survivin基因mRNA和蛋白的表达结果
     1.给予SW1990胰腺癌细胞低浓度的PA诱导后,对照组和加药后24h和48h胰腺癌细胞凋亡率(%)分别是2.59±0.35,14.75±1.29,22.65±2.80(P<0.05)。
     2.加药后24h和48h胰腺癌细胞survivin mRNA分别比对照组提高了1.1倍和2.9倍(P<0.05);蛋白分别提高了1.3倍和3.6倍(P<0.05)。
     结论
     紫杉醇化疗可促使胰腺癌细胞内survivin基因mRNA和蛋白的表达增加,这可能是胰腺癌细胞对化疗药物产生耐药性的因素之一。
     第三部分靶向Survivin基因的siRNA真核表达载体的构建及鉴定
     目的
     第一部分和第二部分显示,胰腺癌高表达Survivin蛋白,而且化疗可促使胰腺癌细胞内Survivin基因mRNA和蛋白的表达增加,本部分拟构建并鉴定针对survivin基因的siRNA真核表达载体,为下一步胰腺癌基因治疗奠定基础。
     材料和方法
     1.根据Survivin基因cDNA序列,在线设计2个针对目的基因的siRNA靶序列。
     2.定向克隆至真核表达载体psiRNA-hHlneo上。
     3.依次用酶切法和测序法对重组体进行鉴定。
     结果
     1.酶切鉴定,凝胶电泳分析,重组载体酶切后呈线性,电泳呈2700bp一条带,与预期结果符合。
     2.测序结果表明,目的序列插入正确。
     结论
     本研究成功构建了针对survivin的siRNA真核表达载体,可能为胰腺癌基因治疗提供一种新的治疗载体。
     第四部分靶向Survivin的siRNA对胰腺癌细胞增殖及对吉西他滨化疗敏感性影响
     目的
     本研究拟利用构建的靶向survivin基因的siRNA真核表达载体,稳定转染胰腺癌细胞株,探讨其对胰腺癌细胞增殖和对吉西他滨化疗敏感性的影响。
     材料和方法
     1.以psiRNA-survivin转染胰腺癌细胞Panc-1和BxPC3后,经G418筛选,建立稳定转染的细胞系。
     2.采用RT-PCR、Western Blot检测稳定转染后细胞survivin的mRNA和蛋白表达变化。
     3.体外培养各组胰腺癌细胞,绘制细胞生长曲线。
     4.流式细胞仪检测各组胰腺癌细胞的细胞周期。
     5.Transwell侵袭室方法检测各组胰腺癌细胞体外侵袭力。
     6.吉西他滨作用48h后,MTT检测各组细胞的增殖活性。
     7.吉西他滨作用48h后,流式细胞仪检测各组细胞凋亡指数。
     结果
     1.成功建立稳定转染psiRNA-survivin的Panc-1和BxPC3细胞系。
     2.重组质粒稳定转染胰腺癌细胞系后,Panc-1和BxPC3细胞survivin的mRNA分别下调了68.52%和64.32%(P<0.05),survivin的蛋白表达分别下调了76.68%和74.38%(P<0.05)。
     3.与对照组相比,转染psiRNA-survivin组胰腺癌细胞增殖缓慢,生长曲线十分平缓,差异具有统计学意义(P<0.05)。
     4.与对照组相比,转染psiRNA-survivin组胰腺癌细胞发生G0/G1期阻滞,G2/M期细胞减少,差异具有统计学意义(P<0.05)。
     5.实验组胰腺癌细胞侵袭数目比对照组明显减少(P<0.05)。
     6.psiRNA-survivin能显著增强吉西他滨对胰腺癌细胞的增殖抑制作用(P<0.05)。
     7.psiRNA-survivin能显著增强吉西他滨对胰腺癌细胞的凋亡诱导作用(P<0.05)。
     结论
     稳定转染靶向Survivin的siRNA后,胰腺癌细胞survivin的mRNA和蛋白表达量的明显下调。转染psiRNA-survivin组胰腺癌细胞增殖缓慢,生长曲线十分平缓,细胞侵袭力明显下降,并可明显增强吉西他宾对胰腺癌细胞的增殖抑制和凋亡诱导作用,这表明siRNA可能通过阻断survivin的表达而阻断其抗凋亡作用,抑制胰腺癌细胞增殖,并增强胰腺癌对吉西他滨的化疗敏感性。本次实验结果提示靶向survivin的siRNA可以作为克服肿瘤化疗耐药的一种有效方法,其与吉西他滨联合应用可能成为今后临床治疗胰腺癌值得探索的新途径。
Pancreatic cancer is among the most. human malignant tumor for poor prognosis.Unfortunately the early symptom of pancreatic cancer is not clear, because of advancedstage when final diagnosis was taken, the 5-year survival rate remains less than 5%. Thecombined therapy including chemotherapy is critical to increase the survival rate ofpancreatic cancer patient, but this tumor is insensitive to most of the chemotherapeutics.Gemcitabine is a new-type miazines antimetabolite, and it has become the standardfirst-line chemotherapeutic agent for advanced and metastatic pancreatic cancer, withsignificant clinical benefit, but still has marginal survival advantage. Chemoresistance is themain reason for the failure of treatment. Thus, the development of an effective treatment tosolve the chemoresistance of pancreatic cancer remains an urgent task. With thedevelopment of molecular bioresearch, gene therapy targeting inhibitor of apoptosis proteingot much attention, and it possibly provide a new trend to effectively treat pancreaticcancer.
     Previous studies have shown that survivin is the newfound member of the inhibitors ofapoptosis protein (inhibitor of apoptosis protein, IAP) family, has dual function in theregulation of cell cycle and the inhibition of apoptosis. To date, the overexpression ofsurvivin has been reported in various human malignancies, but not or to be low in mostnormal adult tissues. Survivin is the smallest IAP which has been cloned hithreto, and islocated on chromosome 17q25. Its gene total length is 14.7kb, and is expressed specificlyin G2/M phase coding a 16.5kb protein. The expression of survivin has close correlation tothe prognosis, recurrence and chemoresistance of pancreatic cancer. Survivin primarylybind to mitotic spindle microtubule byαhelical structure in C-terminus, then its BIRstructure bind specificly to caspase-3 and caspase-7, and directly inhibit terminal effectorcaspase-3 and caspase-7 activity, so it can block various kinds of stimulus inducingapoptosis procedure. Survivin also can inhibit the cytochrome C release from mitochondria, breakdown the caspase activation, and so it can block the conduction of apoptosis signaland inhibit cell apoptosis at upstream. In the recent years, some reports showed thatblockdown of survivin can inhibit the growth of various tumor cells. Some researcher foundthat inhibition of survivin can enhance the radiosensitivity of pancreatic cancer cells.Therefore concerning the character of survivin, we think that the regulation of survivinexpression could be a possible new treatment for the chemosensitization of humanpancreatic cancer to Gemcitabine, yet such investigation has not been performed until nowin the world.
     In the present study, we firstly detect the expression of survivin and bcl-2 in pancreaticcarcinoma and analyze their significance, and then study the alteration of survivin geneexpression in pancreatic cancer cell after chemotherapy in virto. A short interfering RNA(siRNA) plasmid expression vector against survivin was constructed and transfected stablyinto Panc-1 and BxPC3 cells. The changes of survivin expression and cell cycle distributionfollowing RNAi and the role of siRNA in inducing tumor cell apoptosis and enhancing itschemosensitivity to gemcitabine were investigated. Together, these data provide strongevidence for the potential use of survivin-targeted RNAi as a novel way to chemosensitizehuman pancreatic cancer cells. Our study was divided into four parts below.
     Part One The expression of survivin and its relationship withbcl-2 in pancreatic carcinoma
     Objective
     To investigate the expression and associativity of survivin and bcl-2 in tissues of humanpancreatic carcinoma, and study their role in the development of pancreatic cancer.
     Methods
     The expression of survivin and bcl-2 was detected by SP immunohistochemistry inpancreatic tissues from 50 patients with pancreatic carcinoma and that from 14 patientswith normal pancreas, and analyze their relation with clinicopathologic feature.
     Results
     Survivin was expressed in 31 of 50 pancreatic carcinoma(62%). In contract, expressionof survivin in nomal pancreatic tissues was not detectable(p<0.05). The survivin expressionwas correlated with histological grades and clinical stages(p<0.05), and was not significantlycorrelated with sex, position of tumor or lymph node matastasis status(p>0.05). Theexpression rate of survivin was 77.8% and 43.5% in positive and negative group of bcl-2expression respectively, and there was significant difference between two groups(p<0.05).
     Conclusion
     A high expression of survivin in pancreatic carcinoma suggests that survivin may playan important role in the development of unfavourable prognosis. The expression of survivinhas positive correlation with bcl-2, and it may be a biological parameter to unfavourableprognosis.
     Part Two The alteration and significance of survivin expression inpancreatic cancer cell apoptosis induced by chemotherapy
     Objective
     To study the alteration of survivin gene expression in pancreatic cancer cell afterchemotherapy(PA) in virto.
     Methods
     Cultivate the pancreatic cancer cell SW 1990 in virto, and give low concentration of PAto these cells, then alteration of survivin mRNA and protein expression was evaluated byPT-PCR and western-blot in pancreatic cancer cells which had been cultured with PA for24h、48h and control group respectively. Meanwhile, SW1990 cell apoptosis rate wasdetected by flow cytometry.
     Results
     The apoptosis rate(%) of SW1990 cell of control group and in low concentration PAfor 24h、48h were 2.59±0.35,14.75±1.29,22.65±2.80( p<0.05); Survivin mRNA levelwas increased 1.1 and 2.9 multiple(p<0.05), Survivin protein level was increased 1.3 and3.6 multiple at 24h and 48h respectively(p<0.05).
     Conclusion
     Chemotherapy of PA can increase the expression of survivin in pancreatic cancer cell,which suggest that survivin may correlate with the chemoresistence of pancreaticcarcinoma cell.
     Part Three The construction and identification of siRNA eukaryoticexpression vector targeting survivin sene
     Objective
     To construct and identify the siRNA eukaryotic expression vector targeting survivin gene,which could be applied to explore further gene therapy to pancreatic carcinoma.
     Methods
     According to the cDNA sequence of survivin gene, two siRNA target sequence weredesigned on intemet, and then psiRNA1 and psiRNA2 were constructed respectively byeukaryotic expression vector psiRNA-hH1 neo. The constructed recombinant was identified byendonuclease digestion and DNA sequencing.
     Results
     The results of endonuclease digestion and DNA sequencing suggested, the sequence ofinserted fragment was correct.
     Conclusion
     Eukaryotic expression vector of siRNA targeting survivin was successfully constructedin this study, and should be a new effective vector for gene therapy of pancreaticcarcinoma.
     Part Four Effects of survivin siRNA on proliferation of humanpancreatic cancer cells and chemosensitivity to gemcitabine
     Objective
     To construct the siRNA eukaryotic expression vector targeting survivin gene, andinvestigate the effects of survivin siRNA on proliferation of human pancreatic cancer cellsand chemosensitivity to gemcitabine.
     Methods
     The siRNA eukaryotic expression vector targeting survivin gene was constructed.Panc-1 and BxPC3 cells were transfected with constructed siRNA vector and then selectedby G418, and we got the stable transfected cells. The expression of survivin mRNA andprotein among the stable transfected cells and the untransfected cells was detected bysemiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) and Westernblot, respectively. The cell growth curve was drawn, and the cell cycle distribution wasmeasured by flow cytometry. The invasiveness of pancreatic cancer cells in vitro wasassayed using transwell cell culture chambers. Panc-1 and BxPC3 cells or transfected cellswere treated by Gemcitabine for 48h, and then the growth inhibition rates was measured byMTT assay and cell apoptosis rate was detected by flow cytometry.
     Results
     After the recombinant plasmid psiRNA-survivin transfected stably to pancreatic cancerline cells, survivin mRNA level were reduced by 68.52% and 64.32% respectively in stablytransfected Panc-1 and BxPC3 cells comparing with control group(P<0.05), and survivinprotein level were reduced by 76. 68% and 74. 38% (P<0.05) respectively, and the cellgrowth curve became much slower, many cells were blocked in the G0/G1 phase 68.72±3.21% (P<0.05). The number of invasived cells in the experimental group was far less thanin control(P<0.05). Further more, the growth inhibition rates and apoptosis of these stablytransfected cells were significantly increased after treatment by gemcitabine(P<0.05).
     Conclusion
     The constructed siRNA eukaryotic expression vector targeting survivin could decreasesurvivin expression, inhibit the growth and cell invasiveness of pancreatic cancer cellssignificantly, and enhance the chemosensitivity to gemcitabine. Therefore, the inhibition ofsurvivin expression could be a possible new treatment for the chemosensitization of humanpancreatic cancer.
引文
1. Keighley MR. Gastrointestinal cancers in Europe. Aliment Pharmacol Ther, 2003,18: 7-30.
    2. Wheatley SP, McNeish IA. Survivin: a protein with dual roles in mitosis and apoptosis. Int Rev Cytol, 2005,247: 35-88.
    3. Song KY, Jung CK, Park WS, et al. Expression of the antiapoptosis gene Survivin predicts poor prognosis of stage Ⅲ gastric adenocarcinoma. Jpn J Clin Oncol, 2009,39(5): 290-296.
    4. Ponnelle T, Chapusot C, Martin L, et al. Cellular localisation of survivin: impact on the prognosis in colorectal cancer. J Cancer Res Clin Oncol, 2005,131 (8): 504-510.
    5. Cohen C, Lohmann CM, Cotsonis G, et al. Survivin expression in ovarian carcinoma:correlation with apoptotic markers and prognosis. Mod Pathol, 2003,16(6): 574-583.
    6. Ikeguchi M, Liu J, Kaibara N, et al. Expression of survivin mRNA and protein in gastric cancer cell line(MKN-45) during cisplatin treatment. Apoptosis, 2002,7(1):23-29.
    7. Wang L, Zhang GM, Feng ZH. Down-regulation of survivin expression reversed multidrug resistance in adriamycin-resistant HL-60/ADR cell line. Acta Pharmacol Sin, 2003,24(12): 1235-1240.
    8. Liu JR, Opipari AW, Tan L, et al. Dysfunctional apoptosome activation in ovarian cancer: implications for chemoresistance. Cancer Res, 2002,62: 924-931.
    9. Fields AC, Cotsonis G, Sexton D, et al. Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome. Mod Pathol, 2004 17(11):1378-1385.
    10. Ambrosini G, AdidaC, Altieri DC.A novel anti-apoptosis Gene, Suvrivin, expressed in cancer and lymphoma. NatureMed, 1997,3(8): 917-921.
    11. His S, Sung BJ, ChoYS, et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and caspase-7. Biochemistry, 2001,40(4):1117-1123.
    12. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science, 1998, 281(5381): 1322-132.
    13. Satoh K, Kaneko K, Hirota M, et al. Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors.Cancer,2001,15;92(2):271-278.
    14. Bhanot U, Heydrich R, Moller P, et al. Survivin expression in pancreatic intraepithelial neoplasia (PanESI): steady increase along the developmental stages of pancreatic ductal adenocarcinoma. Am J Surg Pathol, 2006,30(6): 754-759.
    15. Javle MM, Tan D, Yu J, et al. Nuclear survivin expression predicts poor outcome in cholangiocarcinoma. Hepatogastroenterology, 2004,51(60): 1653-1657.
    16. Skoufias DA, Mollinari C, Lacroix FB, et al. Human survivin is a kinetochore-associated passenger protein. J Cell Biol, 2000,151(7): 1575-1582.
    17. Gradilone A, Gazzaniga P, Ribuffo D, et al. Survivin, bcl-2, bax, and bcl-X gene expression in sentinel lymph nodes from melanoma patients. J Clin Oncol, 2003,21(2):306-312.
    18. Mikami T, Yoshida T, Akino F, et al. Apoptosis regulation differs between ulcerative colitis-associated and sporadic colonic tumors. Association with survivin and bcl-2.Am J Clin Pathol, 2003,119(5): 723-730.
    19. Okada H, Mak TW. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer. 2004,4(8): 592-603.
    20. Smith SD, Wheeler MA, Plescia J, et al. Urine detection of survivin and diagnosis of bladder cancer. JAMA, 2001,285(3): 324-328.
    21. Moore M. Urine detection of survivin and diagnosis of bladder cancer. J Insur Med, 2001,33(2): 202-203.
    22. Shariat SF, Casella R, Khoddami SM, et al. Urine detection of survivin is a sensitive marker for the noninvasive diagnosis of bladder cancer. J Urol, 2004,171(2Pt1):626-630.
    1. Kawasaki H, Toyoda M, Shinohara H, et al. Expression of survivin correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis. Cancer, 2001, 91(11): 2026-2032.
    2. Kennichi S, Kenzo K, Morihisa H, et al. Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors. Cancer, 2D01,92(2): 271.
    3. Ikeguchi M, Liu J, Kaibara N, et al. Expression of survivin mRNA and protein in gastric cancer cell line(MKN-45) during cisplatin treatment. Apoptosis, 2002,7(1):23-29.
    4. Ikeguchi M, Nakamura S, Kaibara N. Quantitative analysis of expression levels of bax, bcl-2, and survivin in cancer cells during cisplatin treatment. Oncol Rep, 2002,9(5): 1121-1126.
    5. Chang Q, Liu ZR, Wang DY, et al. Survivin expression induced by doxorubicin in cholangiocarcinoma, world J Gastroenterol, 2004,10(3):415-418.
    6. Wheatley SP, McNeish IA. Survivin: a protein with dual roles in mitosis and apoptosis. Int Rev Cytol, 2005,247: 35-88.
    7. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis Gene, Suvrivin, expressed in cancer and lymphoma. NatureMed, 1997,3(8): 917-921.
    8. Liu T, Brouha B, Grossman D. Rapid induction of mitochondrial events and caspase-independent apoptosis in surviving-targeted melanoma cells. Oncogene, 2004, 23(1):39-48.
    9. Shin S, Sung BJ, Cho YS, et al. An anti-apoptotic protein human survivin is a direct inhibitor of Caspase-3and -7. Biochemistry,2001,40(4): 1117-1123.
    10. Kajiwara Y, Yamasaki F, Hama S, et al. Expression of survivin in astrocytic tumors:correlation with malignant grade and prognosis. Cancer,2003,97(4):1077-1083.
    11.叶超平,邱成志,黄种心,等.肝癌术后复发及预后与Survivin表达的关系.中华实验外科杂志,2006,23(7):829-831.
    12. Javle MM, Tan D, Yu J, et al. Nuclear survivin expression predicts poor outcome in cholangiocarcinoma. Hepatogastroenterology, 2004, 51(60): 1653-1657.
    13.罗顺峰,朱虹,张万广,等.5-Fu对肝癌细胞内凋亡抑制蛋白Survivin的诱导作用.肝胆外科杂志,2002,10(3):227-228.
    1. Chang Q, Liu ZR, Wang DY, et al. Survivin expression induced by doxorubicin in cholangiocarcinoma, world J Gastroenterol, 2004,10(3):415-418.
    2. Ikeguchi M, Liu J, Kaibara N, et al. Expression of survivin mRNA and protein in gastric cancer cell line(MKN-45) during cisplatin treatment. Apoptosis, 2002,7(1): 23-29.
    3. Fukuda S, Pelus LM. Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther, 2006,5(5): 1087-1098.
    4. Wheatley SP, McNeish IA. Survivin: a protein with dual roles in mitosis and apoptosis. Int Rev Cytol, 2005,247: 35-88.
    5. Altieri DC. Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm. J Cell Biochem, 2004,92(4): 656-663.
    6.刘文松,秦仁义,燕海姣.紫杉醇诱导胰腺癌细胞凋亡survivin表达的变化及意义.中国医师进修杂志,2007,30(4):1-3.
    7. Liu JR, Opipari AW, Tan L, et al. Dysfunctional apoptosome activation in ovarian cancer: implications for chemoresistance. Cancer Res, 2002,62(3): 924-931.
    8. Wang Z, Xie Y, Wang H. Changes in survivin messenger RNA level during chemotherapy treatment in ovarian cancer cells. Cancer Biol Ther, 2005,4(7):716-719.
    9. Fukuda S, Pelus LM. Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther, 2006,5(5): 1087-1098.
    10. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis Gene, Suvrivin, expressed in cancer and lymphoma. NatureMed, 1997,3(8): 917-921.
    11. Hauser HP, Bardroff M, PyrowolakisG, et al. A giant ubiqitin conjugating enzyme related to IAP apoptosis inhibitor. J Cell Biol, 1998,141(6): 1415-1422.
    12. His S, Sung BJ, ChoYS, et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and caspase-7. Biochemistry, 2001,40(4): 1117-1123.
    13. Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotics Pindle checkpoint by Survivin. Nature, 1998,396(6711): 580-584.
    14. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998,391 (6669): 806-811.
    15. Hannon GJ. RNA interference. Nature, 2002,418(6894): 244-251.
    16. Marx J. Interfering with gene expression. Science, 2000,288(5470): 1370-1372.
    17. Zamore PD. Ancient pathways programmed by small RNAs. Science, 296(5571): 1265-1269.
    18. Song H, Xin XY, Xiao F, et al. Survivin gene RNA interference inhibits proliferation, induces apoptosis, and enhances radiosensitivity in HeLa cells. Eur J Obstet Gynecol Reprod Biol, 2008,136(1): 83-89.
    19. Cerutti H. RNA interference:traveling in the cell and gaining functions. Trends Genet, 2003,19(1): 39-46.
    20. Kami K, Doi R, Koizumi M, Toyoda E, et al. Downregulation of survivin by siRNA diminishes; radioresistance of pancreatic cancer cells. Surgery, 2005,138(2): 299-305.
    21. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol, 2004,22(3): 326-330.
    22. Tafer H, Ameres SL, Obernosterer G, et al. The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol, 2008,26(5): 578-583.
    23. Vert JP, Foveau N, Lajaunie C, et al. An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinformatics, 2006,7: 520.
    24. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 296 (5567):550-553.
    25. Sui G, Soohoo C, Affar el B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA, 2002,99(8): 5515-5520.
    1. Keighley MR. Gastrointestinal cancers in Europe. Aliment Pharmacol Ther, 2003,18: 7-30.
    2. He AR, Lindenberg AP, Marshall JL. Biologic therapies for advanced pancreatic cancer. Expert Rev Anticancer Ther, 2008,8(8): 1331-1338.
    3. Pino SM, Xiong HQ, McConkey D, et al. Novel therapies for pancreatic adenocarcinoma. Curt Gastroenterol Rep, 2004,6(2):119-125.
    4. E1-Rayes BF, Philip PA. A review of systemic therapy for advanced pancreatic cancer. Clin Adv Hematol Oncol, 2003,1(7): 430-434.
    5. Wang Z, Xie Y, Wang H. Changes in survivin messenger RNA level during chemotherapy treatment in ovarian cancer cells. Cancer Biol Ther, 2005,4(7):716-719.
    6. Chang Q, Liu ZR, Wang DY, et al. Survivin expression induced by doxorubicin in cholangiocarcinoma, world J Gastroenterol, 2004,10(3):415-418.
    7. Ma X, Wang S, Zhou J, et al. Induction of apoptosis in human ovarian epithelial cancer cells by antisurvivin oligonucleotides. Oncol Rep,2005,14(1):275-279.
    8. Fuessel S, Herrmann J, Ning S, et al. Chemosensitization of bladder cancer cells by survivin-directed antisense oligodeoxynucleotides and siRNA. Cancer Lett, 2006,232(2):243 -254.
    9. Buchholz M, Biebl A, Neesse A, et al. SERPINE2 (protease nexin Ⅰ) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res, 2003,63(16): 4945-4951.
    10. Altieri DC. Molecular circuits of apoptosis regulation and cell division control: the
    survivin paradigm. J Cell Biochem,2004,92(4):656-663.
    11. Wang L, Zhang GM, Feng ZH. Down-regulation of survivin expression reversed multidrug resistance in adriamycin-resistant HL-60/ADR cell line. Acta Pharmacol Sin,2003,24(12): 1235-1240.
    12. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis Gene, Suvrivin, expressed in cancer and lymphoma. NatureMed, 1997,3(8): 917-921.
    13. Earnshaw WC.Cell biology. Keeping survivin nimble at centromeres in mitosis. Science,2005,310(5753):1443-1444.
    14. Lee MA, Park GS, Lee HJ, et al. Survivin expression and its clinical significance in pancreatic cancer. BMC Cancer,2005,5:127.
    15. Altieri DC. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med, 2001,7(12):542-547.
    16. Tamm I, Wang Y, Sausville E, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res, 1998,58(23): 5315-5320.
    17. Song Z, Yao X, Wu M. Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chern, 2003,278(25): 23130-231340.
    18. Zhang C, Li B, Gaikwad AS, et al. Avicin D selectively induces apoptosis and downregulates p-STAT-3, bcl-2, and survivin in cutaneous T-cell lymphoma cells. J Invest Dermatol, 2008,128(11): 2728-2735.
    19. Yang H, Fu JH, Hu Y, et al. Influence of SiRNA targeting survivin on chemosensitivity of H460/cDDP lung cancer cells. J Int Med Res, 2008,36(4): 734-747.
    20. Shen J, Liu J, Long Y, et al. Knockdown of survivin expression by siRNAs enhances chemosensitivity of prostate cancer cells and attenuates its tumorigenicity. Acta Biochim Biophys Sin, 2009,41(3): 223-230.
    21. Hannon GJ. RNA interference. Nature, 2002,418(6894): 244-251.
    22. Marx J. Interfering with gene expression. Science, 2000,288(5470): 1370-1372.
    23. Zamore PD. Ancient pathways programmed by small RNAs. Science, 296(5571): 1265-1269.
    24. Check E. RNA interference: hitting the on switch. Nature,2007,448(7156):855-858.
    25. Aoki Y, Cioca DP, Oidaira H, et al. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol, 2003,30(1-2): 96-102.
    26. Liu D, Zhang Y, Dang C, et al. siRNA directed against TrkA sensitizes human pancreatic cancer cells to apoptosis induced by gemcitabine through an inactivation of PI3K/Akt-dependent pathway. Oncol Rep, 2007,18(3): 673-677.
    27. Mita AC, Mita MM, Nawrocki ST, et al. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res, 2008,14(16): 5000-5005.
    28. Fukuda S, Pelus LM. Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther, 2006,5(5): 1087-1098.
    29. Wang Y, Zhu H, Quan L, et al. Downregulation of survivin by RNAi inhibits the growth of esophageal carcinoma cells. Cancer Biol Ther, 2005,4(9): 974-978.
    30. Ning S, Fuessel S, Kotzsch M, et al. siRNA-mediated down-regulation of survivin inhibits bladder cancer cell growth. Int J Oncol, 2004,25(4): 1065-1071.
    31. Song H, Xin XY, Xiao F, et al. Survivin gene RNA interference inhibits proliferation, induces apoptosis, and enhances radiosensitivity in HeLa cells. Eur J Obstet Gynecol Reprod Biol, 2008,136(1): 83-89.
    32. Congmin G, Mu Z, Yihui M, et al. Survivin~an attractive target for RNAi in non-Hodgkin's lymphoma, Daudi cell line as a model. Leuk Lymphoma, 2006,47(9):1941-1948.
    33. Townson JL, Naumov GN, Chambers AF. The role of apoptosis in tumor progression and metastasis. Curr Mol Med, 2003,3(7): 631-642.
    34. Repesh LA. A new in vitro assay for quantitating tumor cell invasion. Invasion Metastasis, 1989,9(3): 192-208.
    35. Albini A. Tumor and endothelial cell invasion of basement membranes. The matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathol Oncol Res, 1998,4(3):230-241.
    36. Li BH, Yang XZ, Li PD, et al. IL-4/Stat6 activities correlate with apoptosis and metastasis in colon cancer cells. Biochem Biophys Res Commun, 2008,369(2):554-560.
    37. Li H, Niederkorn JY, Neelam S, et al. Downregulation of survivin expression enhances sensitivity of cultured uveal melanoma cells to cisplatin treatment. Exp Eye Res, 2006,83(1):176-82.
    38. Shen J, Liu J, Long Y, et al. Knockdown of survivin expression by siRNAs enhances chemosensitivity of prostate cancer cells and attenuates its tumorigenicity. Acta Biochim Biophys Sin, 2009,41(3): 223-230.
    1. He AR, Lindenberg AP, Marshall JL. Biologic therapies for advanced pancreatic cancer. Expert Rev Anticancer Ther,2008,8(8): 1331-1338.
    2. Li D, Xie K, Wolff R, et al. Pancreatic cancer. Lancet,363(9414): 1049-1057.
    3. Aoki K, Yoshida T, Sugimura T, et al. Liposome-mediated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer research, 55(17): 3810-3816.
    4. Tsuchida T, Kijima H, Hori S, et al. Adenovirus-mediated anti-K-ras ribozyme induces apoptosis and growth suppression of human pancreatic carcinoma. Cancer gene therapy ,7(3): 373-383.
    5. Takeuchi M, Shichinohe T, Senmaru N, et al. The dominant negative H-ras mutant, N116Y, suppresses growth of metastatic human pancreatic cancer cells in the liver of nude mice. Gene Ther, 2000,7(6): 518-526.
    6. Pennati M, Binda M, Colella G, et al. Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene, 2004,23(2): 386-394.
    7. Calbo J, Marotta M, Cascallo M, et al. Adenovirus-mediated wt-pl6 reintroduction induces cell cycle arrest or apoptosis in pancreatic cancer. Cancer gene therapy ,8(10):740-750.
    8. Katz MH, Bouvet M. Novel gene therapy approaches to pancreatic cancer. Int J Gastrointest Cancer, 2003,33(1): 89-97.
    9. Hannon GJ. RNA interference. Nature,2002,418(6894): 244-251.
    10. Zamore PD. Ancient pathways programmed by small RNAs. Science, 296(5571): 1265-1269.
    11. Check E. RNA interference: hitting the on switch. Nature,2007,448(7156): 855-858.
    12. Aoki Y, Cioca DP, Oidaira H, et al. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol, 2003,30(1-2): 96-102.
    13. Liu WS, Yan HJ, Qin RY, et al. SiRNA directed against survivin enhances pancreatic cancer cell gemcitabine chemosensitivity. Dig Dis Sci, 2009,4(1): 89-96.
    14. Kami K, Doi R, Koizumi M, Toyoda E, et al. Downregulation of survivin by siRNA diminishes radioresistance of pancreatic cancer cells. Surgery, 2005,138(2): 299-305.
    15. Shen J, Liu J, Long Y, et al. Knockdown of survivin expression by siRNAs enhances chemosensitivity of prostate cancer cells and attenuates its tumorigenicity. Acta Biochim Biophys Sin, 2009,41(3): 223-230.
    16. Okamoto K, Ocker M, Neureiter D, et al. bcl-2-specific siRNAs restore gemcitabine sensitivity in human pancreatic cancer cells. J Cell Mol Med, 2007,11(2): 349-361.
    17. Kasuya H, Nomoto S, Nakao A. The potential of gene therapy in the treatment of pancreatic cancer. Drugs Today, 2002,38(7): 457-464.
    18. Li ZS, Pan X, Xu GM, et al. Killing effects of cytosine deaminase gene mediated by adenovirus vector on human pancreatic cancer cell lines in vitro. Hepatobiliary Pancreat Dis Int, 2003,2(1):147-151.
    19. O'Connor DS, Schechner JS, Adida C, et al. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol, 2000,156(2):393-398.
    20. Beckermann BM, Kallifatidis G, Groth A, et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer, 2008,99(4):622-631.
    21. Burris H 3rd, Rocha-Lima C. New therapeutic directions for advanced pancreatic cancer: targeting the epidermal growth factor and vascular endothelial growth factor pathways. Oncologist, 2008,13(3): 289-298.
    22. Spano JF', Chodkiewicz C, Maurel J, et al. Efficacy of gemcitabine plus axitinib compared with gemcitabine alone in patients with advanced pancreatic cancer: an open-label randomised phase II study. Lancet, 2008, 371(9630): 2101-2108.
    23. Mesri M, Morales-Ruiz M, Ackermann EJ, et al. Suppression of vascular endothelial growth factor-mediated endothelial cell protection by survivin targeting. Am J Pathol, 2003,158(5): 1757-1765.
    24. Schnurr M, Galambos P, Scholz C, et al. Tumor cell lysate-pulsed human dendritic cells induce a. T-cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines. Cancer Res, 2001,61(17): 6445- 6450.
    25. Sato T, Yamauchi N, Sasaki H, et al. An apoptosis-inducing gene therapy for pancreatic cancer with a combination of 55-kDa tumor necrosis factor (TNF) receptor gene transfection and mutein TNF administration. Cancer Res, 1998,58 (8): 1677-1683.
    26. Zalatnai A, Szegedi Z, Bocsi J. Flow cytometric evidence of apoptosis in human pancreatic cancer xenografts treated with Sandostatin (octreotide). Anticancer Res, 2000,(3A): 1663-1666.
    27. Feng Y, Huang T, Gao J, et al. Inhibition of metastatic progression of SSTR2 gene transfection mediated by adenovirus in human pancreatic carcinoma cells. J Huazhong Univ Sci Technolog Med Sci, 2006,26(1): 68-71.
    28. Ohashi M, Kanai F, Tanaka T, et al. In vivo adenovirus-mediated prodrug gene therapy for carcinoembryonic antigen-producing pancreatic cancer. Jpn J Cancer Res, 1998, 89(4): 457-462.
    29. Yamamoto M, Davydova J, Wang M, et al. Infectivity enhanced, cyclooxygenase-2 promoter-based conditionally replicative adenovirus for pancreatic cancer.Gastroenterology, 2003,125(4): 1203-1218.
    30. Hecht JR, Bedford R, Abbruzzese JL, et al. A phase 鈪?鈪?trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res, 2003,9(2): 555-561.
    31. Kurihara T, Brough DE, Kovesdi I, et al. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest, 2000,106(6): 763-771.
    32. Weber E, Anderson WF, Kasahara N, et al. Recent advances in retrovirus vector-mediated gene therapy: teaching an old vector new tricks. Curr Opin Mol Ther,2001,3(5): 439-453.
    33. Sakoda T, Kasahara N, Kedes L. Lentivirus vector-mediated gene transfer to cardiomyocytes. Methods Mol Biol, 2003,219: 53-70.
    34. El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release, 2004,94(1):1-14.
    35. Wu J, Nantz MH, Zern MA. Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications. Front Biosci, 2002,7: 717-725.
    1. Wheatley SP, McNeish IA. Survivin: a protein with dual roles in mitosis and apoptosis. Int Rev Cytol, 2005,247: 35-88.
    2. Altieri DC. Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm. J Cell Biochem,2004,92(4):656-663.
    3. Fukuda S, Pelus LM. Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther, 2006,5(5): 1087-1098.
    4. Altieri DC. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med, 2001,7(12): 542-547.
    5. Tamm I, Wang Y, Sausville E, et al. IAP family p rotein survivin. Inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drags. Cancer Res, 1998, 58(22): 5315-5320.
    6. Ambrosini G, Adida C, sirugo G, et al. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem, 1998,273 (18): 11171 - 11182.
    7. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis Gene, Suvrivin, expressed in cancer and lymphoma. NatureMed, 1997,3(8): 917-921.
    8. Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotics Pindle checkpoint by Survivin. Nature, 1998,396(6711): 580-584.
    9. Hauser HP, Bardroff M, PyrowolakisG, et al. A giant ubiqitin conjugating enzyme related to IAP apoptosis inhibitor. J Cell Biol, 1998,141(6): 1415-1422.
    10. Mann CD, Neal CP, Garcea G, et al. Prognostic molecular markers in hepatocellular carcinoma: a systematic review. Eur J Cancer, 2007,43(6): 979-992.
    11. Graziano F, Cascinu S. Prognostic molecular markers for planning adjuvant chemotherapy trials in Dukes' B colorectal cancer patients: how much evidence is enough? Ann Oncol, 2003,14(7): 1026-1038.
    12. Neal CP, Garcea G, Doucas H, et al. Molecular prognostic markers in resectable colorectal liver metastases: a systematic review. Eur J Cancer, 2006,42(12): 1728-1743.
    13. Adida C, Crotty PL, McCrath J, et al. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol, 1998,152(1): 43-49.
    14. Suzuki A, Ito T, Kawano H, et al. Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene, 2000,19 (10): 1346-1353.
    15. Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev, 1999, 13:239-252.
    16. Song Z, Yao X, Wu M. Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem, 2003,278(25): 23130-231340.
    17. Zhang C, Li B, Gaikwad AS, et al. Avicin D selectively induces apoptosis and downregulates p-STAT-3, bcl-2, and survivin in cutaneous T-cell lymphoma cells. J Invest Dermatol, 2008,128(11): 2728-2735.
    18. Shen J, Liu J, Long Y, et al. Knockdown of survivin expression by siRNAs enhances chemosensitivity of prostate cancer cells and attenuates its tumorigenicity. Acta Biochim Biophys Sin, 2009,41(3): 223-230.
    19. Vischioni B, van der Valk P, Span SW, et al. Expression and localization of inhibitor of apoptosis proteins in normal human tissues. Hum Pathol, 2006,37(1): 78-86.
    20. Li F, Yang J, Ramnath N, et al. Nuclear or cytoplasmic expression of survivin: what is the significance? Int J Cancer, 2005,20;114(4): 509-512.
    21. Suzuki A, Hayashida M, Ito T, et al. Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16(INK4a) and Cdk2/cyclin E complex activation. Oncogene, 2000,19(29): 3225-3234.
    22. Sarela AI, Verbeke CS, Ramsdale J, et al. Expression of survivin, a novel inhibitor of apoptosis and cell cycle regulatory protein, in pancreatic adenocarcinoma. Br J Cancer, 2002,86(6): 886-892.
    23. Elfiky AA, Rosenberg JE. Targeting angiogenesis in bladder cancer. Curr Oncol Rep, 2009,11(3):244-249.
    24. Mesri M, Morales-Ruiz M, Ackermann EJ, et al. Suppression of vascular endothelial growth factor-mediated endothelial cell protection by survivin targeting. Am J Pathol, 2003,158(5): 1757-1765.
    25. Crooke ST. Potential roles of antisense technology in cancer chemotherapy. Oncogene, 2000,19(56): 6651-6659.
    26. Kanwar JR, Shen WP, Kanwar RK, et al. Effects of survivin antagonists on growth of established tumors and B7-1 immunogene therapy. J Natl Cancer Inst,2001,93(20):1541-1552.
    27. Ma X, Wang S, Zhou J, et al. Induction of apoptosis in human ovarian epithelial cancer cells by antisurvivin oligonucleotides. Oncol Rep,2005,14(1):275-279.
    28. Fuessel S, Herrmann J, Ning S, et al. Chemosensitization of bladder cancer cells by survivin-directed antisense oligodeoxynucleotides and siRNA. Cancer Lett, 2006,232(2):243-254.
    29. Hannon GJ. RNA interference. Nature, 2002,418(6894): 244-251.
    30. Zamore PD. Ancient pathways programmed by small RNAs. Science, 296(5571):1265-1269.
    31. Check E. RNA interference: hitting the on switch. Nature, 2007,448(7156):855-858.
    32. Aoki Y, Cioca DP, Oidaira H, et al. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol, 2003,30(1-2): 96-102.
    33. Liu WS, Yan HJ, Qin RY, et al. SiRNA directed against survivin enhances pancreatic cancer cell gemcitabine chemosensitivity. Dig Dis Sci, 2009,4(1): 89-96.
    34. Wang Y, Zhu H, Quan L, et al. Downregulation of survivin by RNAi inhibits the growth of esophageal carcinoma cells. Cancer Biol Ther, 2005,4(9): 974-978.
    35. Congmin G, Mu Z, Yihui M, et al. Survivin-an attractive target for RNAi in non-Hodgkin's lymphoma, Daudi cell line as a model. Leuk Lymphoma, 2006,47(9):1941-1948.
    36. Kami K, Doi R, Koizumi M, et al. Downregulation of survivin by siRNA diminishes radioresistance of pancreatic cancer cells. Surgery, 2005,138(2): 299-305.
    37. Uchida H, Tanaka T, Sasaki K, et al. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther, 2004,10(1): 162-171.
    38. Fedor M. Structure and function of the hairpin ribozyme. J Mol Biol, 2000,297(2): 269-291.
    39. Choi KS, Lee TH, Jung MH. Ribozyme-mediated cleavage of the human survivin mRNA and inhibition of antiapoptotic function of survivin in MCF-7 cells. Cancer Gene Ther, 2003,10(2): 87-95.
    40. Pennati M, Binda M, De Cesare M, et al. Ribozyme-mediated down-regulation of survivin expression sensitizes human melanoma cells to topotecan in vitro and in vivo.Carcinogenesis, 2004,25(7): 1129-1136.
    41. Pennati M, Binda M, Colella G, et al. Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene, 2004,23(2): 386-394.
    42. Grossman D, McNiff JM, Li F, et al. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J Invest Dermatol, 1999,113(6): 1076-1081.
    43. Ichiki Y, Hanagiri T, Takenoyama M, et al. Tumor specific expression of survivin- 2B in lung cancer as a novel target of immunotherapy. Lung Cancer, 2005,48(2): 281-289.
    44. Schmitz M, Diestelkoetter P, Weigle B, et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res, 2000,60(17): 4845-4849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700