用户名: 密码: 验证码:
中国小麦条锈菌分子群体遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是我国小麦安全生产最严重的威胁之一,引起该病害的小麦条锈病菌(Puccinia striiformis f.sp.tritici)是一种远程气流传播的病原真菌,从而致使病害具有大区流行的特点,因此明确认识条锈菌在我国小麦主产区群体遗传结构对病害的有效控制至关重要。五十多年来锈病工作者对病原菌群体的持续研究获得了宝贵的理论成果,对控制病害的流行起到了重要作用,然而利用传统的病原菌毒性鉴定及病害调查方法对我国条锈菌大区流行体系的推断需要分子群体遗传学研究的证实和完善,而且对有些重要地区间的菌源传播关系还需要深入的研究。本研究旨在构建小麦条锈菌微卫星分子标记体系,并利用该体系对我国病害主要发生区域的病原菌进行群体遗传分析,以期明确我国小麦条锈菌不同地理群体遗传多样性情况,确定遗传多样性的中心,同时了解大区范围内群体遗传结构及群体间分化程度,并结合群体间基因流强度及个体共享指纹的统计结果推断地区间病原菌的传播关系。本研究获得了以下结果:
     1.本研究首次对小麦条锈菌cDNA文库蕴含的EST-SSR进行了的分析,明确了小麦条锈菌EST-SSR的基本特征。在1307条无冗余EST序列中,发现了135序列包含着170个SSR,平均长度为16.48 bp,相对较短,平均分布频率是1/3.69 kb,小麦条锈菌EST-SSR以三核苷酸重复最多,重复基元类型较为丰富,出现最多的重复基序是GTT/CAA类型。小麦条锈菌EST中SSR信息的明确为进一步建立和应用EST-SSR标记奠定了基础。
     2.对本研究开发的小麦条锈菌EST-SSR和已报道的适合条锈菌研究的SSR进行了多态性筛选,并结合TP-M13-SSR技术建立了适合中国小麦条锈菌群体遗传研究的微卫星分子标记体系,具有多态性丰富、灵敏度高、重复性好、高效简捷等优点,为进行大规模高通量的群体遗传研究奠定了基础。
     3.利用微卫星分子标记体系对17个小麦条锈菌模式生理小种和致病类型的遗传多样性分析显示,微卫星分子标记对中国小麦条锈菌生理小种的分析揭示出较高的遗传多样性水平,可为群体遗传研究提供宝贵的标记资源,研究证明两种标记特征相关性不显著。
     4.本研究首次利用微卫星分子标记对中国9个省市的20个种群共980份小麦条锈菌个体进行了大规模、大范围的群体遗传分析,获得了以下结论:
     (1)从分子水平上明确了中国小麦条锈菌保持着较高的遗传多样性水平,各种群间存在着差异,其中天水种群是中国小麦条锈菌遗传多样性水平最高的种群,襄樊种群最低。
     (2)中国小麦条锈菌群体间和群体内都存在着一定的遗传分化(Gst=0.2335,Fst=0.2215),遗传变异主要存在于群体内部,不同种群间分化水平有所差异,个别种群间分化水平相对较大。研究发现种群间遗传距离与地理距离极显著相关(P<0.001),符合隔离分化模型。20个种群间基因流(Nm)为0.8787,说明种群间的基因流相对较弱,基因流的阻断可能是导致遗传分化的主要原因。
     (3)基于微卫星分子标记进行的UPGMA聚类分析结果呈现一定的地理区域性,20个种群被分为5个类群,最大的一个中心类群聚集了12(60%)个种群,其中除昭通种群外,包括了我国最主要的小麦条锈菌越夏区一西北和川西北2个越夏区,以及与两个越夏区相邻的3个盆地一关中盆地、陕西南部和四川盆地的所有种群。其余8个种群较为分散,被分为4个类群,主要来源于四川盆地以南区域和东部地区。
     (4)根据聚类结果及种群所在区域的地理分布特点,将20个种群分为6个不同地理区域的群体,分别为西北-川西北越夏区群体、关中盆地群体、陕南盆地群体、四川盆地群体、四川盆地以南群体和东部地区群体。明确了西北—川西北越夏区是中国小麦条锈菌遗传多样性最为丰富的地区,即为病原菌遗传多样性的中心区域,东部地区最低。各区域群体内种群间遗传分化程度最大是东部地区群体,最小的为陕南盆地群体。
     (5)证明了西北越夏区和川西北越夏区存在着一定的基因交流,种群间的遗传关系与其所属的地理区划并不完全相关,同时明确了西北-川西北越夏区种群与3个相邻盆地的群体遗传关系,其中关中盆地与平凉和天水,四川盆地与阿坝、陕南盆地与陇南的小麦条锈菌群体遗传关系最近。
     (6)获得了中国小麦条锈菌部分种群间个体共享分子指纹的结果,提供了中国小麦条锈菌远距离传播的分子证据,并结合群体基因流强度参数和种群间遗传分化关系,在分子水平上为传统流行学对一些地区间存在菌源关系的推断提供了证据,如平凉与关中盆地间、汉中与安康间等;同时也发现了目前尚未报道过的一些地区间存在菌源交流的可能,如西北越夏区种群与四川盆地以南种群之间。
Puccinia striiformis f.sp. tritici (PST) is an obligate biotrophic pathogen, causing wheat yellow rust (stripe rust), one of the most economical important diseases of wheat (Triticum aestivum). Spores of fungal plant pathogens may be spread by wind over long distances, thereby enhancing disease epidemics across large areas. It is very essential for the development of more effective disease control to understand the population genetic structure in the regions wheat stripe rust occurs frequently. A great deal of valuable theory was obtained through continual study on population biology of pathogens since 1950s in China, which play an important role to prevent and control diseases epidemic. However, the inferring results about the epidemiological study of pathogens over a large area were mainly based on traditional methods of virulence identification and observation for disease degree, and some of relation between the regions is still unknown. So those need to be approved and complemented using the molecular population genetic methods. Our goal of the present research is to establish a system of SSR molecular marker and then to analyze the genetic diversity and population genetic structure and to infer the dispersal relations of pathogens according to the information of gene flow and shared fingerprints among the regions. The main results are summarized as following:
     1. The frequency and characteristics of SSR derived from ESTs by sequencing complementary DNA (cDNA) library of PST were analyzed. Of the 1307 nonredundant EST sequences, 170 SSR loci distribute in 135 ESTs (10.33%). The average length of EST-SSR searched is 16.48 bp and the average distance of distribution is 1/3.69 kb. The trinucleotide repeat is the dominant types with repeat motif GTT/CAA being the most common. These results lay the foundation for the future development and application of EST-SSR markers in PST.
     2. The SSRs markers derived from PST cDNA library and three others Puccinia species reported were tested for molecular polymorphism by isolates sampled from different geographical regions. The fluorescent labeling system of TP-M13-SSR (simple sequence repeat with tailed primer M13) was established based on polymorphic markers screened and the fluorescent labeling technique of TP-M13. The results showed that the TP-M13-SSR approach is of high polymorphism, sensitivity and good steady. The new system molecular marker provides technological support for large-scale and high-throughput population genetic analysis.
     3. The 17 physiological races and pathotypes were tested for diversity using the TP-M13-SSR system. The results showed that there is much diversity revealed by SSR markers. However, there is no significant correspondence between two measures of labeling. These molecular markers would become the useful labeling resources for population genetic research of PST.
     4. The 980 isolates grouped into 20 different geographical populations sampled from nine provinces in China were analyzed for the population genetic structure of PST using the TP-M13-SSR system. The results as followed:
     (1) Results showed that the genetic diversity level of PST in China is relatively high and is different from each other among 20 populations. The highest one was found in Tianshui population which means the central population of diversity and the lowest in Xiangfan population.
     (2) The results of genetic differentiation among 20 natural populations showed that it could be found within and among populations (Gst=0.2335, Fst=0.2215). The majority of genetic variation occurred within populations. But the level of differentiation was different from each other between two populations and parts of it were higher. The mantle test showed significant correlation between genetic and geographic distances among natural populations(P <0.001). Gene flow among natural populations was relatively weak (Nm=0.8787), which might have caused the genetic differentiation among the populations.
     (3) The 20 natural populations were clustered into five groups by UPGMA method according to their genetic distances. The largest group included 12(60%) populations which were mainly sampled from the oversummer zone of PST in northwest China and northwest Sichuan province and three neighboring basins except for Zhongtong population collected from Yunnan province. Eight others populations were clusterd into four groups, which were mostly from south of Sichuan basin and eastern China.
     (4) The 20 natural populations were divided into six zones according to their geographic distribution. These were the oversummer zone of PST in northwest China and northwest Sichuan province, GuanZhong basin, Southern Shaanxi province basin, Sichuan basin, south of Sichuan basin and eastern China zones, respectively. On the one hand, the genetic diversity of oversummer zone is highest among six zones, which showed the central zone of genetic diversity in China, and the lowest in eastern China zone. On the other hand, the maximal genetic differentiation was found among populations within eastern China zone and the minimum one within Southern Shaanxi province basin zone.
     (5) The evidence of gene flow between the two oversummer zones in northwest China and northwest Sichuan province was obtained, which showed that genetic relationship among populations located in two regions was not correlative with their geographical attribution. The genetic relationship of PST among the populations within the oversummer zone of PST in northwest China and northwest Sichuan province and the three neighboring basins was also clarified. The closest genetic relationships were found between GuanZhong basin and Pingliang, Sichuan basin and Aba, Southern Shaanxi province basin and Longnan populations, respectively.
     (6) The direct molecular evidence for long-distance dispersal in PST was obtained according to the finding of some identical fingerprints between and among different geographical populations. Parts of results about migration direction in PST inferred using traditional methods of virulence identification were proved. For instance, the relations of pathogens dispersal occurred between Pingliang and GuanZhong basin, also between Hanzhong and Ankang regions. The strong possibility of pathogens dispersal was found for the first time over very long distances like between the oversummer zone in northwest China and south of Sichuan basin regions.
引文
[1].Eriksson,J.Uber die Spezialisierung des Parasitismus beiden Getreiderostpilzen[J].Ber.Dtsch.Bot. Ges.,1894,12:292-331.
    [2].Newton M,Johnson T.Identified two physiologic races in Canada[J].Sci.Agric.Abstr.,8:464-469.
    [3].Bever W W.Physiologic specializationin Puccinia glumerum in the United States[J].Phytopathology, 1934,24:686-688.
    [4].Gassner G,Straib W.Die Bestimmung derBiologischen Rassen des Weizengelbrostes[Puccinia glumarum tritici(Schmidt).Erikss.u.Henn.][J].Arb.Biol.Reichsanst.Land-Forstwirtsch,1932,20:141-163.
    [5].Newton M,Johnson T.Stripe rust,Puccinia glumarum in Canada[J].Can.J.Res.Sect.C,Bot.Sci., 1936,14:89-108.
    [6].Line R F,Sharp E L,Powelson R L.A system for differentiating races of Puccinia striiformis in the United States[J].Plant Dis Report,1970,54:992-994.
    [7].De Vallavieille-Pope C,Line R F.Virulence of North American and European races of Puccinia striiformis on North American,world,and European differential wheat cultivars[J].Plant Dis.,1990,74 739-743.
    [8].Fang Z D.Physiological specialization of Puccinia glumarum Erikss and Henn in China[J].Phytopath, 1944,34:1020-1024.
    [9].陆师义,范桂芳等.小麦条锈菌的专化性研究[J].植物病理学报,,1956,2(2):153-166.
    [10].Wan A M,Zhao Z H,Chen X M,et al.Wheat stripe rust epidemic and virulence of Puccinia striiformis f.sp.Tritici in China in 2002[J].Plant Disease,2003,88(8):896-904.
    [11].万安民.小麦条锈菌鉴别寄主和小种命名现状[J].植物病理学报,2003,33(6):481-486.
    [12].Ibrahim K M,Nichols R A,Hewitt G M.Spatial patterns of genetic variation generated by different forms of dispersal during range expansion[J].Heredity,1996,77:282-291.
    [13].Bayles R A,Flath K,Hovm(?)ller M S,et al.Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe-A case study by the yellow rust sub-group of COST817[J].Agronomie,2000, (20):805-811.
    [14].Hovm(?)ller M S,Justesen A F,Brown J K M.Clonality and long-distance migration of Puccinia striiformis f.sp.tritici in north-west Europe[J].Europe Plant Pathology,2002,51(1):24-32.
    [15].李振岐.我国小麦品种抗条锈性丧失原因及其解决途径[J].中国农业科学,1980,13(3):72-76.
    [16].Stubbs R W.Roelfs A P,Bushnell W R,et al.The Cereal Rusts,Vol.2,Diseases,Distribution, Epidemiology,and Control[M].Orlando:Academic Press,1985.
    [17].Wellings C R,Mc Intosh R A.Puccinia striiformis f.sp.tritici in Australia:Pathogenic changes during the first 10 years[J].Plant Pathology,1990,39:316-325.
    [18].Travison M,Lenski R E.Long-term experimental evolution in Escherichia coli.Ⅳ.Targets of selection and the specificity of adaptation[J].Genetics,1996,143:15-26.
    [19].康振生,李振岐,商鸿生.小麦条锈菌异核新菌系的筛选及核游离试验研究[J].植物病理学报1994,24(2):101-105.
    [20].李振岐,曾士迈.中国小麦锈病[M].北京:中国农业出版社,2002.
    [21].吴立人,牛永春.我国小麦条锈病持续控制的策略[J].中国农业科学,2000,33(5):46-54.
    [22].王保通.中国小麦条锈菌优势种群预测及主要流行菌系的AFLP指纹分析[D].西北农林科技大学博士论文,2007.
    [23].Taylor J W,Jacobson D J,Fisher MC.The evolution of asexual fungi:Reproduction,speciation and classification[J].Annual Review of Phytopathology,1999,37:197-246.
    [24].Gottelli D,Sillero-Zubiri C,Applebaum G D,et al.Molecular genetics of the most endangered canid: The Ethiopian wolf Canissi mensis[J].Molecular Ecology,1994,3(4):301-312.
    [25].Wimmer B,Kappeler P M.The effects of sexual selection and life history on the genetic structure of red fronted lemur,Eulemur fulvus rufus groups[J].Animal Behaviour,2002,64(4):557-568.
    [26].张惠文,张倩茹,周启星,等.分子微生物生态学及其研究进展[J].应用生态学报,2003,14(2):286-292.
    [27].Wright S.The genetical structure of population[J].Ann.Eugen.,1951,15:323-354.
    [28].Wright S.Evolution in Mendelian populations[J].Genetics,1931,16:97-159.
    [29].Malcolm L,Hunter J R.Foundments of Conservation Biology.London:Blackwell Science Inc,1996, 79.
    [30].Mayr E.Change of genetic environment and evolution.In J.Huxley,A.C.Hardy,and E.B.Ford (eds.)[M].Evolution as a Process.Allen and Unwin,London,1954,157-180.
    [31].Hamrick J L.Isozymes and the analysis of genetic structure in plant populations.In D.E.Soltis,and P. S.Soltis(eds.),Isozyme in plant biology[M].Dioscorides press.Portland.Oregon,1989,87-105.
    [32].Futuyma D J.Evolutionary biology.Sinauer Associates,Inc.Sunderland,Massachusettes,1986.
    [33].Schaal,BA.Measurement of gene flow in Lupinus texensis.Nature,1980,284:450-451.
    [34].Slatkin M.Gene flow and the geographic structure of natural population.Science,1987,236: 787-792.
    [35].Anderson N O.The distribution of the genus Lilium with reference to its evolution.Herbertia,1986, 42:1-18.
    [36].Mayr E.Mechanisms of evolution.In N.A.Campbell,Biology[M].The Benjamin/Cummings. Publishing Compancy,Inc.1993,416.
    [37].Hedrick P W.Population biology:The evolution and ecology of populations[M].Jones And Bartlett, Inc.U.S.A.1984,445.
    [38].Lehman N.Conservation biology:genes are not enough[J].Current Biology,1998,8(20):722-724.
    [39]万安民,牛永春,吴立人,等.1991~1996年我国小麦条锈菌生理专化研究[J].植物病理学报,1999,29(1):15-21.
    [40].Taylor A C,Sherwin W B,Wayne R K.Genetic variationof microsatellite loci in a bottlenecked species:The northern hairy-nosed wombatLasiorhinus krefftii[J].Molecular Ecology,1994,3(4): 277-290.
    [41].Newton A C,Caten C E,Johnson R.Variation for isozymes and double-stranded RNA among isolates of Puccinia striiformis and two other cereal rusts[J].Plant Pathology,1985,34(2):235-247.
    [42].Chen X,Line R F,Leung H.Relationship between virulence variation and DNA polymorphism in Puccinia striiformis[J].Phytopathology,1993,83(12):1489-1497.
    [43].Shan W X,Chen S Y,Kang Z S,et al.Genetic diversity in Puccinia striiformis Westend.f.sp.tritici revealed by pathogen genome-specific repetitive sequence[J].Canadian Journal of Botany,1998,76:587-595.
    [44].郑文明,陈受宜,康振生,等.PSR(Puccinia striiformis Repeat)序列的基因组特性和指纹遗传稳定性研究[J].植物病理学报,2000,30(3):222-225.
    [45].郑文明,陈受宜,康振生,等.甘肃天水地区小麦条锈菌自然群体DNA指纹分析[J].菌物学报,24(2):199-206.
    [46].Steele K A,Humphreys E,Wellings C R,et al.Support for a stepwise mutation model for pathogen evolution in Australasian Puccinia striiformis f.sp.tritici by use of molecular markers[J].Plant Pathology,2001,50(2):174-180.
    [47].Zheng W M,Liu F,Kang Z S,et al.AFLP fingerprinting of Chinese epidemic strains of Puccinia striiformis f.sp.tritici[J].Progress in N atural Sciences,2001,11(8):586-593.
    [48].Roose-Amsaleg C,Vallavieille-Pope C,Brygoo Y,et al.Characterisation of a length polymorphism in the two intergenic spacers of ribosomal RNA in Puccinia striiformis f.sp.tritici,the causal agent of wheat yellow rust[J].Mycological Research,2002,106:918-924.
    [49].Enjalbert J,Duan X,Giraud T,et al.Isolation of twelve microsatellite loci,using an enrichment protocol in the phytopathogenic fungus Puccinia striiformis f.sp.tritici[J].Molecular Ecology Notes, 2002,2:563-565.
    [50].Burdon J J,Roelfs A P.Isozyme and virulence variation in asexually reproducing populations of Puccinia graminis and P.recondite on wheat[J].Phytopathology,1985,75:907-913.
    [51].王风乐,商鸿生,李振岐.中国小麦条锈菌生理小种同工酶分析[J].植物病理学报,1995,25(2):101-105.
    [52].Zhang R.,Dickinson M J,Pryor A.Double-stranded RNAs in the rust fungi[J].Annu Rev Phytopathology,1994,32:115-133.
    [53].Dickinson M J,Wellings C R,Pryor A.Variation in the double-strand RNA phenotype between and within different rust species.Canadian Journal of Botany,1990,68:599-604.
    [54].韦革宏,朱铭羲.分子生物学新方法在根瘤菌分类中的应用[J].西北农业大学学报,1999,27:85-89.
    [55].阎培生,罗信昌,周启.木耳属真菌rDNA特异性扩增片段的RFLP研究[J].菌物系统,1999,18(2):206-213.
    [56].Martin F,Selosse M A,Le T F.The nuclear rDNA intergenic spacer of the ectomycorrhizal basidiomycete Laccaria bicolor:structural analysis and allelic polymorphism[J].Microbiology,1999, 145:1605-1611.
    [57].Celine R A,Claude V P,Yves B,Caroline L.Characterisation of a length polymorphism in the two intergenic spacers of ribosomal RNA in Puccinia striiformis f.sp.tritici,the causal agent of wheat yellow rust[J].Mycol.Res,2002,106(8):918-924.
    [58].单卫星,陈受宜,吴立人,等.中国小麦条锈菌流行小种的RAPD分析[J].中国农业科学,1995,28:1-7.
    [59].单卫星,陈受宜,张耕耘,等.小麦条锈菌一个中度重复DNA序列家族的鉴定[J].中国科学(C辑),1997,27:241-246..
    [60].Hovmoller M S,Justesen A F,Brown J K M.Clonality and long-distance migration of Puccinia striiformis in NW-Europe[J].Plant Pathol,2002,51:24-32.
    [61]. Enjalbert J, Duan X, Leconte M, et al. Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp. tritici) within France[J]. Molecular Ecology, 2005, 14: 2065-2073.
    [62]. Weber J L. Informativeness of human (dC-dA)r, (dGdT)-polymorphisms[J]. Genomics, 1990, 7: 524-530.
    [63]. Reddy K D, Abraham E G, Nagaraju J. Microsatellite in the silkworm, Bombyx mori: abundance, polymorphism and strain characterization[J]. Genome, 1999, 42: 1057-1065.
    [64]. Weber J L, Wong C. Mutation of human shot tandem repeats. Hum[J]. Mol. Genet., 1993, 2: 1123-1128.
    [65]. Levinson C Z, Gutman G A. High frequencies of short frame shifts in poly-CA/TG tandem repeats bonreby bacteriophage M13 in Escherichia coli K-12[J]. Nucleic Acids Res, 1987, 15: 5323-5338.
    [66]. Jarman A P, Wells R A. Hypervariable mini satellites: Recombinators on innocent bystanders[J]. Trends Genet, 1989, 5: 367-371.
    [67]. Schloterer C, Tautz D. Slippage synthesis of simple sequence DNA[J]. Nucleic Acids Res, 1992, 20: 211-215.
    [68]. Strand M, Prolla T A, Liskay R M, et al. Destabilisation of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair[J]. Nature, 1993, 365:274-276.
    [69]. Johnson R E, Henderson S, Petes T D, et al. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitives equences in the genome[J]. Mot.Cell.Biol., 1992, 12: 3807-3818.
    [70]. Viard F, Franck P, Dubois M P, et al. Variation of microsatellite size homoplasy across electromorphs, loci, and populations in three invertebrate species[J]. J Mol Evol,1998, 47: 42-51.
    [71]. Blanquer-Maumont A, Crouau-Roy B. Polymorphism, monomorphism, and sequences in conserved microsatellites in primate species[J]. J Mot Evol, 1995, 41: 492-497.
    [72]. Grimaldi M C, Crouau-Roy B. Microsatellite Allelic Homoplasy Due to Variable Flanking Sequences[J]. J Mol Evol, 1997, 44: 336-340.
    [73]. FitzSimmons N N, Moritz C, Moore S S. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution[J]. Mol Biol Evol, 1995, 12: 432-440.
    [74]. Orti G, Pearse D E, Avise J C. Phylogenetic assessment of length variation at a microsatellite locus[J]. Proc.Nad.Acad.Sci., 1997, 94:10745-10749.
    [75]. Colson I, Goldstein D S. Evidence for complex mutations at microsatellite loci in Drosophila[J]. Genetics, 1999, 152:617-627.
    [76]. Palsboll P J, Berube M, Jorgensen H. Multiple levels of single-strand slippage at cetacean tri-and tetranucleotide repeat microsatellite loci[J]. Genetics, 1999, 151: 285-296.
    [77]. Ohta T, Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population[J]. Genet. Res., 1973, 22: 201-204.
    [78]. Kimura M, Crow J E. The number of alleles that can be maintained in a finite population[J]. Genetics, 1964,49:725-738.
    [79]. Dirienzo A, PetersonA C, Garza J C, et al. Mutational processes of simple-sequence repeat loci in human populations[J]. Proc.Nad.Acad.Sci., 1994, 91: 3166-3170.
    [80]. Freimer N B, Slatkin M. Microsatellites: evolution and mutational processes[J]. Ciba Found. Symp. , 1996, 197:51-72.
    [81]. Kruglyak S, Durret R T, Schug M D, et al. Equilibrium Distributions of microsatellite repeat length resulting from abalance between slippage events and point mutations[J]. Proc.Nad.Acad.Sci., 1998, 95: 10774-10778.
    [82]. Woodruf R C, Thompson J N. Have premeiotic clusters of mutation been over looked in evolutionary theory[J]. J Evol Biol, 1992, 5: 457-464.
    [83]. Edwards A, Hammond H A, Jin L, et al. Genetic variation at five trimeric and tetrameric tandem repeat loci in fourh human population groups[J]. Genomics, 1992, 12: 241-253.
    [84]. Valdes A M, Slatkin M, FreimerN. Allele frequenciesat microsatellite loci: the stepwise mutation model revisited[J]. Genetics, 1993, 133: 737-749.
    [85]. Shriver M D, Jin L, Chakraborty R, et al. VNTR allele frequency distribution under the stepwise mutation model[J]. Genetics, 1993, 134: 983-993.
    [86]. Amos W, Sawcer S J, Feakes R W, et al. Microsatellites show mutational bias and heterozygote instability[J]. Nat. Genet, 1996, 13: 390-391.
    [87]. Henderson S T, Petes T D. Instability of simple sequence DNA in Saccharomy cescerevisiae[J]. Mol.Cell.Biol., 1992, 12: 2749-2757.
    [88]. Fitzsimmons N N. Single paternity of clutches and sperm storage in the promiscuous green turtle(Chelonia mydas)[J]. Mol.Ecol, 1998, 7: 575-584.
    [89]. Gardner M G, Bull C M, Cooper S J B, et al. Microsatellite mutation sinliters of the Australian lizard Egernia stokesii[i]. J.EVOL.BIOL, 2000, 13: 551-560.
    [90]. Causse M A. Saturated molecular map of the rice genome based on an interspecific back cross population[J]. Genetics, 1994, 138: 1251-1274.
    [91]. Dib C. Comprehensive genetic map of the human genome based on 5,264 microsatellites[J]. Nature, 1996,380: 152-154.
    [92]. Blouin M S, Parsons M, Lacaille V, et al. Use of microsatellite loci to classify individuals by relatedness[J]. Mol.Ecol., 1996, 5: 393-401.
    [93]. Bowcock A M, Ruiz-Linares A, Tomfohred J, et al. High resolution of human evolutionary tree with polymorphic microsatellites[J]. Nature, 1994, 368: 455-457.
    [94]. England P R, Briscoe D A, Frankham R. Microsatellite polymorphism in a wild population of Drosophila melanogaster[J]. Genet.Res, 1996, 67: 285-290.
    [95]. Zhang D X, Hewitt G M. Nuclear DNA analysis in genetic studies of populations: practice, problems and prospects[J]. Molecular Ecology, 2003, 12: 563-584.
    [96]. Morgante M , Hanafey, Wayne Powell. Microsatellites are prefertially associated with nonrepetitive DNA in plant genomes[J]. Nat genet (letter), 2000, 30:194-200.
    [97]. 李永强, 李宏伟, 高丽锋, 等. 基于表达序列标签的微卫星标记 (EST-SSRs) 研究进展[J]. 植物遗传资源学报,2004, 5 (1) : 91-95.
    [98]. Gao L F, Tang J F, Li H W, et al. Analysis of microsatellites in major crops assessed by computational and experimental approaches[J]. Mol. Breed, 2003, 12: 245-261.
    [100]. Thiel T, Michalek W, Varshney K, et al. Exploiting EST databases for the development and characterization of genederived SSR-markers in barley (Hordeum vulgare L.)[J]. Theoretical and Applied Genetics, 2003, 106: 411-422.
    [101]. Decroocq V, Favij M G, Hagen L, et al. Development and transferability of apricot and grape EST microsatellite markers across taxa[J].Theoretical and Applied Genetics,2003,106:912-922.
    [102].Cho Y G,Ishii T,Temnykh X,et al.Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice(Oryza sativa L.)[J].Theoretical and Applied Genetics,2000,100: 713-722.
    [103].Barrett B,Griffiths A,Schreiber M,et al.A microsatellite map of white clover[J].Theor Appl Genet, 2004,109:596-608.
    [104].Fraser L G,Harvey C F,Crowhurst R N,et al.EST-derived microsatellites from Actinidia species and their potential for mapping[J].Theor.Appl.Genet.,2004,108:1010-1016.
    [105].王艳敏,魏志刚,杨传平.白桦EST-SSR信息分析与标记的开发[J].林业科学,2008,(2): 78-84.
    [106].李小白,崔海瑞,张明龙.EST-SSR检测油菜(Brassica napus)亲本遗传多样性[J].农业生物技术学报,2007,(4):661-667.
    [107].杨成君,王军,穆立蔷,等.人参EST-SSR标记的建立[J].农业生物技术学报,2008,(1):69-73.
    [108].林范学,程水明,李安政,等.香菇基因组中EST-SSR的构成和分布[J].微生物学通报,2007,(3):358-359.
    [109].Kaye C,Milazzo J,Rozenfeld S,et al.The development of simple sequence repeat markers for Magnaporthe grisea and their integration into an established genetic linkage map[J].Fungal Genet Biol,2003,40:207-214.
    [110].朱振东,霍云龙,王晓鸣,等.从大豆疫霉菌ESTs中发掘SSR标记[J].科学通报,2004,(17):78-81.
    [111].Dracatos P M,Dumsday J L,Olle R S,et al.,Development and characterization of EST-SSR markers for the crown rust pathogen of ryegrass(Puccinia coronata f.sp.lolii)[J].Genome,2006,49: 572-583.
    [112].Litt M,Luty J.A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J].Am.J Hum.Genet,1989,44:397-401.
    [113].Oetting W S,Lee H K,Flanders D J,et al.Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers[J].Genomics,1995,30: 450-458.
    [114].Schuelke M.An economic method for the fluorescent labeling of PCR fragments[J].Nature Biotechnology,2000,18:233-234.
    [115].刘志斋,王天宇,黎裕.TP-M13-SS技术及其在玉米遗传多样性研究中的应用[J].玉米科学,2007,15(6):10-15.
    [116].Bilgen M,Karaca M,Onus A N,et al.A software program combining sequence motif searches with keywords for finding repeats containing DNA sequences[J].Bioinformatics,2004,20:3379-3386.
    [117].李成云,李进斌,周晓罡,等.稻瘟病菌基因组中微卫星序列的频率和分布[J].中国水稻科学,2004,(03):13-17.
    [118].李成云,李进斌,周晓罡,等.粗糙脉孢菌基因组中的微卫星序列的组成和分布[J].中国农业科学,2004,(06):52-56.
    [119].刘林,李成云,杨静,等.灰盖鬼伞基因组中微卫星序列的组成[J].西南农业学报,2006,(01):131-135.
    [120].Cardle L,Ramsay L,Milbourne D,et al.Computational and experimental characterization of physically clustered simple sequence repeats in plants[J].Genetics,2000,156:847-854.
    [121].Kantety R V,Rota M L,Matthews D E,et al.Data mining for simple sequence repeats in expressed sequence tags from barley,maize,rice,sorghum,and wheat[J].Plant Mol Biol,2002,48:501-510.
    [122].Benson G.Tandem repdats finder:A program to analyze DNA sequence[J].Nucleic Acids Research, 1999,27:573-580.
    [123].Rota L R,Kantety R N,Yu J K.Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice,wheat,and barly[J].BMC Genomics,2005,6:23.
    [124].Wang Xiaojie,Zheng Wenming,Heinrich Buchenauer,et al.The development of a PCR-based method for detecting Puccinia striiformis latent infections in wheat leaves[J].Eur J Plant Pathol, 2008,120:241-247.
    [125].Duan X,Enjalbert J,Vautrin D,et al.Isolation of 12 microsatellite loci,using an enrichment protocol, in the phytopathogenic fungus Puccinia triticina[J].Molecular Ecology Notes,2003,3:65-67.
    [126].Sharopova N,McMullen M D,Schultz L,et al.Development and mapping of SSR markers for maize[J].Plant Mol Biol,2002,48:463-481.
    [127].Xu Z,Dhar A K,Wyrzykowski J,et al.Identification of abundant and information microsatellit from shrimp(Penaeus monodon)genome[J].Animal Genetics,1999,30:1-7.
    [128].Masi P,Zeuli P L S,Donini P.Development and analysis of multiplex microsatellite markers sets in common bean(Phaseolus vulgaris L)[J].Mol Breed,2003,11:303-313.
    [129].Leigh F,Lea V,Law J,et al.Assessment of EST-and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat[J].Euphytica,2003,133:359-366.
    [130].Ghislain M,Spooner D M,Rodriguez F,et al.Selection of highly informative and user-friendly microsatellites(SSRs)for genotyping of cultivated potato[J].Theor Appl Genet,2004,108: 881-890.
    [131].Matsuoka Y,Mitchell S E,Kresovich S,et al.Microsatellites in Zea-variability,patterns of mutations, and use for evolutionary studies[J].Theor Appl Genet,2002,104:436-450.
    [132].L(?)bberstedt T,Dussle C,Melchinger A E.Application of microsatellites from maize to teosinte and other relatives of maize[J].Plant Breed,1998,117:447-450.
    [133].Ayers N M,Mcclung A M,Larkin P D,et al.Microsatellite and single nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm[J].Theor Appl Genet,1997,94:773-781.
    [134].朴春根,唐文华,曾士迈,等.RAPD技术和聚类分析在小麦条锈病菌生理小种研究中的应用[J].植物病理学报,1996,26(3):205-210.
    [135].Yeh F C.,Yang R C.,Boyle T B J,et al.POPGENE,the User-friendly Sharew are for Population Genetic Analysis[J].Mol.Biol.Biotech.Center,1997,24.
    [136].Nei M.Analysis of gene diversity in subdivided populations[J].Proc.Natl Acad.Sci.,1993,70, 3321-3323.
    [137].Nei M.Molecular Evolutionary Genetics[J].New York:Columbia University Press,1987.
    [138].张富民,,葛颂.群体遗传学研究中的数据处理方法Ⅰ.—RAPD数据的AMOVA分析[J].生物多样性,2002,10(4):438-444.
    [139].Excoffier L G,Laval,Schneider.Arlequin ver.3.0:An integrated software package for population genetics data analysis[J].Evolutionary Bioinformatics Online,2005,1:47-50.
    [140].Sun C Q,Wang X K,Yoshimura A,et al.RFLP analysis of nuclear DNA in common wild rice (O.rufipogon Griff.)and cultivated rice(O.sativa L.)(In Chinese with English abstract)[J].Scientia Agric Sinica,1997,30:37-44.
    [141].单卫星.小麦条锈菌分子遗传标记的建立[D].西北农业大学博士论文,1995.
    [142].郑文明.小麦条锈菌分子群体遗传学研究[D].西北农林科技大学博士论文,1999.
    [143].张昀.生物进化[M].北京:北京大学出版社,1998.
    [144].姜玉英,曾娟.2006年西北川西北小麦条锈病越夏概况和有关问题的探索[J].中国植保导刊,2007,27(1):17-19.
    [145].Wright S.1soation by distance under diverse systems of mating[J].Genetics,1946,31:39-59.
    [146].Gassner G,Straib W.Die Bestimmung derBiologischen Rassen des Weizengelbrostes[Puccinia glumarum tritici(Schmidt).Erikss.u.Henn.[J].Arb.Biol.Reichsanst.Land Forstwirtsch,1932,20:141-163.
    [147].井金学.紫外线诱导小麦条锈病菌毒性突变的研究[D].西北农业大学博士论文,1992.
    [148].井金学,商鸿生,李振岐.60C0λ射线对小麦条锈病菌夏孢子的生物学效应[J].核农学报,,1992,6(2):116-120.
    [150].井金学,商鸿生,李振岐.紫外线照射对小麦锈菌生物学效应的研究[J].植物病理学报,1993,24(4):299-304.
    [151].商鸿生,井金学,李振岐.紫外线诱导小麦条锈菌毒性突变的研究[J].植物病理学报,1994,25(4):347-351.
    [152].Line R F,Sharp E L,Powelson R L.A system for differentiating races of Puccinia striiformis in the United States[J].Plant Dis Report,1970,54:992-994.
    [153].康振生,李振岐,商鸿生.小麦条锈菌夏孢子阶段核相状况的研究[J].植物病理学报,1994,24(1):26-31.
    [154].马青,康振生,李振岐等.小麦叶表小麦条锈菌夏孢子芽管结合现象的观察[J].西北农业大学学报,1993,21(2):45-48.
    [155].马青,康振生,李振岐.小麦条锈菌夏孢子芽管在小麦叶片上结合现象的研究[J].西北农业大学学报,1993,21(2):97-99.
    [156].Goodwin S B.The population genetics of Phytophthora[J].Phytopathology,1997,87:462-473.
    [157].Mc,Donald J M.Gene flow in plant pathosystem[J].Ann.Rev.Phytopathol,1993,31:353-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700