用户名: 密码: 验证码:
陆地棉染色体片段代换系的构建及QTL定位初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海岛棉具有纤维品质好,纤维长、强、细,抗黄萎病等优点,如何有效地将存在于海岛棉中的优异基因转移到栽培的陆地棉中,是一项具有重要意义的工作。本研利用生产上大面积推广种植的陆地棉中221和品质优良的海岛棉栽培品系海1杂交,并与陆地棉高代回交,结合分子标记辅助选择建立一套具有陆地棉背景并渐渗有海岛棉基因的染色体片段代换系。并利用BC4F1、BC4F2家系和BC4F2单株的产量及纤维品质性状数据及SSR标记检测结果,采用复合区间作图法(CIM)对纤维品质性状和产量性状进行了QTL定位研究。通过对染色体渐渗片段的分析,为进一步筛选染色体单片段代换系、优质纤维品质基因的精细定位、基因克隆和基因聚合等研究准备材料。
     1.性状表型分析
     通过两个优良品种的杂交并回交,培育了一个BC4F1、BC4F2家系群体和鉴定了一个BC4F2单株群体,获得了大量在纤维品质和产量上超过轮回亲本的材料。与轮回亲本相比较,BC4F1、BC4F2家系群体和BC4F2单株群体的纤维品质性状各指标的平均值与轮回亲本中221接近,其中在纤维长度和纤维强度上略高于中221,但各性状超亲比率很高。在纤维长度上,3个群体的超亲比例均高于50%,其中,BC4F1家系的超亲比例达到了91.38%。在纤维强度上,超亲比例均超过60%,BC4F1家系最大,为72.41%。BC4F1、BC4F2家系和BC4F2单株的马克隆值最小值相对中221下调0.9~2.1,超亲比例(指马克隆值大于3.7小于中221马克隆值的比例)分别为57.76%、72.28%和67.69%。衣分在3个群体中的超亲比例都超过了50%,最高的达到93.1%。铃重和铃数的超亲比例除BC4F2家系铃重的超亲比例较低,只有2.5%外,其它集中在17.24~48.46%之间。
     2.家系海岛棉染色体片段代换情况
     筛选了覆盖棉花基因组2347.0 cM的276个SSR标记,检测家系的染色体片段渐渗情况。导入的海岛棉片段覆盖棉花基因组最长的达到969.34cM,覆盖检测长度2347.0cM的41.3%;最小的覆盖7.7%,覆盖长度为180.7cM;平均覆盖基因组502cM,占检测长度的21.4%。每个家系中代换片段最多的55个,最少的也有15个,平均32.9个,回交4代后家系中任然保留了大量的海岛棉染色体片段。各连锁群在每个BC4F1家系中平均包含0.1~8.3个海岛棉片段,平均覆盖每个连锁群0.2-54.2cM,占每条连锁群被检测长度0.5~207cM的10.3%~35.5%。
     3.单株海岛棉代换情况的检测
     208个BC4F2单株检测结果,回到轮回亲本背景的比例高达89%-100%,平均为96.7%,接近其理论值96.9%。有3株含纯合的海岛棉单片段,16株含杂合的单片段,共19株只含有一个海岛棉的片段;18株含2个片段;其它均含3个片段以上,但主要在3~8个片段,最多的含21个片段,单株导入的总片段平均覆盖棉花基因组的3.02%,最大的覆盖11.3%。每株中海岛棉杂合片段平均总长69.4cM,最长的294.4 cM,最短只有2.3cM,覆盖比率为0.1~11.0%,平均为2.5%。导入的纯合片段平均为13 cM,最短的1cM,最长的97 cM,覆盖比率为0.1~3.6%,平均为0.5%。各连锁群含海岛棉杂合片段平均2.7cM,占各连锁群检测区域的2.7%;含纯合片段平均0.5cM,占0.5%,合计3.2cM,为3.2%。
     4.品质优良的单株海岛棉导入情况
     对选出的5个家系后代中纤维长度和纤维强度优良的12个单株海岛棉渐渗片段为1-8个;控制纤维长度和纤维强度的QTLqFL-18-5、qFL-18-18、qFS-18-5和qFS-16-1(其增效基因全部来自于海岛棉)邻近标记NAU3447b、BNL1438和BNL3932存在于这些海岛棉代换片段上,说明这些家系和单株中可能导入了较多的海岛棉优良的品质基因,为进一步获得含有优良品质性状基因的染色体单片段片段代换系、基因克隆和基因聚合等奠定了基础。
     5.QTL分析
     共检测到51个QTL,单个QTL解释表型变异6.86%~39.60%。其中控制纤维品质相关性状的有28个,控制产量及抗黄萎病相关性状的有23个。有25个QTL的增效基因来自陆地棉;26个QTL增效基因来自海岛棉。所有QTL分布在15条染色体上,发现10组(25个)QTL在染色体上的特定位置成簇分布。3个QTL(qFS-24-4、qBW-5-9和qUN-3-9)在两个群体中被检测到,可进一步用于标记辅助选择。
The fiber quality of G. bardadense cultivars is generally superior with longer, stronger, and finer fiber than G. hirsutum. It is important to introgress fiber quality genes from G. bardadense to G. hirsutum. In the study, a cotton population with genetic background of G.hirsutum and some chromosome segments of G. barbadense were developed from advanced backcrosses between the recipient parent, CCRI221, a commercial cotton cultivar, and donor parent, hail,a barbadense cotton line by microsatellite marker-assisted selection (MAS). QTL analysis of yield-related trait and fiber quality using the phenotype and the genotype data in BC4F1, BC4F2 lines and BC4F2 individuals were proceeded by the Composite Interval Mapping method, which will provide a number of germplasm resources for further developing single segment substitution lines,locating accurately QTL,cloning genes and genes pyramiding.
     1. Analysis of trait phenotype
     We got a number of better fiber quality and higher yield CSSLs than their parents through intercross advanced backcrosses between two superior cultivars. Means of fiber quality in BC4F1, BC4F2 lines and BC4F2 individuals is near to that of CCRI 221 and means of fiber length and strength is a little better than that of CCRI 221. The rate of lines and individuals with longer fiber than CCRI 221 in the three populations is over 50%, specially, the rate is 91.38% in BC4F1. More than 60% of lines and individuals in each population are better than CCRI 221 for fiber strength, and specially, the rate is 72.41% in BC4F1. The minimum of fiber micronaire of BC4F1, BC4F2 lines and BC4F2 individuals is lower with decreasing 0.9-2.1 than that of CCRI 221,and the rate of lines and individuals with lower micronaire than CCRI221 is 57.76%, 72.28% and 67.69%. The rate of lines and individuals with higher lint percentage than CCRI 221 in the three populations is 50%-93.1%. The rate of better lines and individuals in boll weight and number of boll per plant than CCRI 221 in the three populations is 17.24~48.46%, but the rate of boll weight in BC4F2 lines is 2.5%.
     2. Chromosome segment substitution of G. barbadense in lines
     A total of 450 pairs of SSR primers were, selected with a marker erery 5 cM from 25 linkage groups developed by molecule breeding lab of cotton research institute of Chinese Academy of Agricultural Science to screen polymorphism between CCRI 221 and Hail, which resulted in 276 pairs of polymorphic primers, covered a total genetic distance of 2347.0 cM, approximately 52.7% of cotton genome. And maximum distance of the neighboring markers was 47.51 cM, the minimum distance was 1.2 cM, the average distance of neighboring markers was 7.4 cM.116 BC4F1 lines were screened using the 276 pairs of SSR primers. There are 15 to 55 donor segments of G barbadense in the lines with average of 32.92,which cover 180.7 cM to 969 cM of cotton genome. Average size of cotton genome covered by substitution seg-ments is 502 cM, covered 21.4% of cotton genome detected. Average donor segments are 0.1-8.3 in each linkage group in every BC4F1 line, which covered from 0.2 cM to 54.2 cM, with 10.3-35.5% of the average distance screened of each linkage group in every lines.
     3. chromosome segment substitution of G. barbadense in the individuals
     208 BC4F2 individuals, originated from 5 lines of BC4F1 (about 40 individuals in every line), were screened using the primers with polymorphism in the related line. The rate of chromosome of the recurrent parent, CCRI 221, was high, about 89%-100%, the average is 96.7%, near to theoretical value 96.9%. There are three individuals with a homozygous chromosome segment of G. barbadense,16 individuals with a heterozygous chromosome segment of G barbadense, and 18 individuals with only two chromosome segments of G. barbadense, and the others with more than 3 chromosome segments of G. barbadense, mainly about 3-8 chromosome segments, and maximum of 21 chromosome segment of G barbadense, which averaged coverage of 3.02% of cotton genome with the maximum of 11.3%. the average length of heterozygous chromosome segment of G. barbadense in every individual is 69.4 cM, ranged from 2.3 cM to 294.4 cM, which cover 0.1-11.0% of cotton genome, the average rate is 2.5%. The average length of homozygous chromosome segment of G. barbadense in every individual is 13 cM, ranged from 1 cM to 97 cM, which cover 0.1-3.6% of cotton genome with average of 0.5. The average length of heterozygous chromosome segment of G barbadense in every linkage group is 2.7 cM, covered 2.7% of every linkage group region screened. The average length of homozygous chromosome segment of G barbadense in every linkage group is 0.5 cM about 0.5% of cotton genome.The total of all chromosome segment substitution of G. barbadense is 3.2 cM, about 3.2% of cotton genome.
     4. Analysis of QTL
     51 QTL were mapped in BC4F1, BC4F2 lines and BC4F2 individuals by Composite Interval Mapping method with the software of Windows QTL Cartographer 2.5, which accounted for 6.86%-39.60% of phenotypic variance. There were 28 QTL for fiber quality traits and 23 QTL for yield-related and resistance to verticillium wilt. There were 26 QTL with positive additive effect, which indicated the additive genes from G. barbadense.10 groups of QTL were mapped assembly in special region of chromosome.3 QTL (qFS-24-4,qBW-5-9 and qUN-3-9) were found in two populations, which should be used for marker assisted selection.
     5. Chromosome segment substitution of G. barbadense in 12 individuals with superior fiber quality
     There were 1 to 8 chromosome substitution segments of G. barbadense in 12 BC4F2 individuals with longer and stronger fiber than CCRI 221. And there were 3 makers of NAU3447b,BNL1438 and BNL3932, which linked to the QTL qFL-18-5 of qFL-18-18, qFS-18-5 and qFS-16-1 for fiber length and strength in these chromosome segment, which indicated that we have introgressed fiber quality genes from G. bardadense to G. hirsutum. This will provide a number of germplasm resources for developing single segment substitution lines, accurately locating QTL, cloning and pyramiding genes.
引文
[1]黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999,4:4~6.
    [2]BotsteinB, WhiteRL, SkolnickM, et al. Construction of agenetic linkage map using restrietion fragment length polymorphism[J]. Am J Hum Genet,1980,32: 314~331.
    [3]Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene [J]. Am J Hum Genet, 1989,44:397-401.
    [4]Lemieux B. overview of DNA chip technology [J]. Mol Breed,1998,4:277~289.
    [5]Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP and SSR markers for germplasm analysis [J]. Molecular Breeding,1996,2: 225-238.
    [6]康乐.利用水稻选择导入系对产量及其相关性状进行遗传剖析[D].北京,中国农科院作物所博士论文,2008.
    [7]刘树兵.小麦近等基因导入系的建立及高大山羊草与小麦杂交后代的鉴定[D].北京,中国农科院作物所博士后论文,2005.
    [8]Tanksley S D, Nelson J C. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTL from unadapted germplasm into elite breeding lines [J]. Theoretical and Applied Genetics,1996,92:191~203.
    [9]Xiao J, Grandillo S, Ahn SN. Genes from wild rice improve yield [J]. Nature, 1996,384:223~224.
    [10]Li ZK, Fu BY, Gao YM, et al. Genome-wide Introgression Lines and their Use in Genetic and Molecular Dissection of Complex Phenotypes in Rice(Oryza sativa L.)[J]. Plant Molecular Biology,2005,59:33~52.
    [11]Terwilliger JD and Weiss KM. Linkage disequilibrium mapping of complex disease:fantasy or reality? [J]. Current Opinion in Biotechnology,1998,9: 578~594.
    [12]郑天清.水稻高代回交导入系选择群体的选择响应与遗传重叠研究[博士论
    文],南京,南京农业大学,2006,5~10.
    [13]何风华,席章营,曾瑞珍等.利用高代回交和分子标记辅助选择建立水稻单片段代换系[J].遗传学报,2005,32(8):825~831.
    [14]张丽霞,刘丕庆,刘学义,等.染色体单片段代换系的构建及应用于QTL精细定位[J].分子植物育种,2004,2:743~746.
    [15]Akshay Talukdar, Guiquan Zhang. Construction and characterization of 3-S Lines, an alternative population for mapping studies in rice(Oryza sativa L.)[J]. Euphytica,2007,6(2):15~20.
    [16]严长杰,顾铭洪.高代回交QTL分析与水稻育种[J].遗传,2000,22(6):419~422.
    [17]Law CN, Worland AJ. Inter-varietal chromosome substitution lines in wheat revisited, Euphytica,1996,89:1~10.
    [18]杨武云,胡晓蓉,毛沛.采用桥梁单体培育小麦品种间染色体代换系的新方法[J].华北农学报,1997,22(4):23-27.
    [19]ESHED Y, ZAM IR. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapp ing of yield-associated QTL[J]. Genetics,1995,141:1147~1162.
    [20]ZAM IR. Impoving plant breeding with exotic genetic libraries[J]. Nature reviews genetics,2001, (2):983-989.
    [21]MONFORTE AJ, TANKSLEY SD. Development of a set of near isogenic and backcross recombinant inbredlines containing most of the lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapp ing and gene discovery[J]. Genome,2000,43:803~813.
    [22]SOBR IZAL K, IKEDA K, SANCHEZ P L, et al. Development of Oryza glum aeaula in trogression lines in rice [J]. Rice genet, Newsl,1999,16:101~108.
    [23]KURAKAZU T, SOBR IZAL K, IKEDA P L, et al. Oryza meridionalis chromosomal segment introgression lines in cultivated rice [J]. Rice Genet.Newsl.2001,18:81~82.
    [24]AIDA Y, TSUNZMATSU H, DO I K, et al. Development of a series of introgression lines of japonica in thebackground of indica rice [J]. Rice Genet, 1997,14:41~43.
    [25]RAMSAY LD, JENN INGS DE, BOHUON E JR, etal. The construction of a substittion library of recombi-nant backcross lines in B rassica oleracea for the p recision mapp ing of quantitative trait loci [J]. Genome,1996,39:558~567.
    [26]HOWELL PM, MARSHALL DF, LYD IATE DJ. Towards developing intercarietal substitution lines in B as-sica napus using maker-assisted selevtion[J]. Genome,1996,39:248~358.
    [27]Wangzhen Guo, Caiping Cai, Tianzhen Zhang, etal. A microsatellite base, gene rich linkage map reveals genome structure function and evolution in gossypium [J]. Genetics,2007,176:527~541.
    [28]TEMNYKH S, PAR WD, AYRES N, et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.) [J]. Theor App 1 Genet,2000, 100:697~712.
    [29]TEMNYKH S, DECLEREK G, LUKASHOVA A, etal. Computational and experimental analysis of micro-satellites in rice (Oryza sativa L.):Frequency, length variation, transposon associations, and genetic marker potential [J]. Genome Res,2001,11:1441~1452.
    [30]刘冠明,李文涛,增瑞珍,等.水稻亚种间单片段替换系的建立[J].中国水稻科学,2003,17(3):201~204.
    [31]阿克沙.水稻单片段替换系群体的建立及QTL定位[J].分子植物育种,2003,1(4):565~568.
    [32]KUBO T, NAKAMURA K, YOSH IMURA A. Development of a series of indica chromosome segment substi-tution lines in japonica background of rice [J]. Rice Genet. Newsl,1999,16:104~105.
    [33]余四斌,穆俊祥,赵胜杰,等.以珍汕97B和9311为背景的导入系构建及其筛选鉴定[J].分子植物育种,2005,3(5):629~636.
    [34]RICK CM. Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: seg-regation and recombination [J]. Genetics,1969, 62:753~768.
    [35]WEIDE R, VAN W MF, KLZEIN LR, et al. Integration of the classical and molecular linkage map s of tomato chromosome 6 [J]. Genetics,1993,135:1175-1186.
    [36]B.C.Y. Collard, M.Z.Z. Jahufer E.C.K.Pang, etal. An introduction to markers,quantitative trait loci(QTL) mapping and marker-assisted selection for crop improvement: The basic concepts [J]. Euphytica,2005,142:169~196.
    [37]Young ND, Tanksley SD. Restiction fragment length polymorphism maps and the concept of graphical genotypes [J]. TheorAppl Genet,1989,77:95~101.
    [38]李文涛,曾瑞珍,张泽民,张桂权.F1花粉不育性近等基因系导入片段的分析[J].中国水稻科学,2003.17(2):95-99.
    [39]江玲,曹雅君,王春明,等.利用RIL和CSSL群体检测水稻种子休眠性QTL[J].遗传学报,2003,30(5):453~458.
    [40]刘冠明,李文涛,增瑞珍,等.水稻单片段代换系代换片段的QTL鉴定[J].遗传学报,2004,31(12):1395~1400.
    [41]曾瑞珍,Tulukdar A,刘芳,等.利用单片段代换系作图群体定位水稻粒形基因[J].中国农业科学,2006,39:647~654.
    [42]万向元,刘世家,王春明,等.利用CSSLs群体研究稻米粒型QTL的表达稳定性[J].遗传学报,2004,31(11):1275~1283.
    [43]万建林,翟虎渠,万建民,等.利用粳稻染色体片段置换系群体检测水稻抗亚铁毒胁迫有关性状QTL[J].遗传学报,2003,30(10):893~898.
    [44]余传元,万建民,翟虎渠,等.利用CSSL群体研究水稻籼粳亚种间产量性状的杂种优势[J].科学通报,2007,32:891~896.
    [45]李玉玲,刘素贞,董永彬,等.利用高代回交方法定位爆裂玉米膨化倍数QTL[J].作物学报,2007,33(5):831~836.
    [46]Wan XY, Wan M, Jiang L, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects [J]. Theor Appl Genet,2006,112:1258~1270.
    [47]翁建峰,万向元,郭涛,等.利用CSSL群体研究稻米加工品质相关QTL表达的稳定性[J].中国农业科学,2007,40(10):2128~2135.
    [48]Liu SB, Zhou RH, Dong YC, et al. Development, utilization of introgression lines using a synthetic wheat as donor [J]. Theor. Appl. Genet.,2006,112(7): 1360~1373.
    [49]Jenkins JN, McCarty JC, Wu JX, et al. Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with upland cotton cultivars:Ⅱ fiber quality traits [J]. Crop Sci,2007,47(2):561~570.
    [50]Wu JX, Jenkins JN, McCarty JC, et al. Genetic association of lint yield with its components in cotton chromosome substitution lines [J]. Euphytica,2008, 164(1):199-207.
    [51]Lin H, Ashikari M, Yamanouchi U, et al. Identificationand characterization of a quantitative trait locus, Hd9, controlling heading date in rice [J]. Breeding Science,2002,52:35~41.
    [52]Soller M, Beckmann JS. Genetic polyphism in varietal identification and genetic improvement [J]. Theoretical and Applied Genetics,1983,67:25~33.
    [53]Tanksley SD, Medion filho H, Rick CM. Use of naturally occuring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato [J]. Heredity,1982,49:11~25.
    [54]Edwards MD, Stuber CW, Wendel JF. Molecular marker facilitated investigations of quantitative trait loci in maize Numbers, genomic distribution and types of gene action [J]. Genetics,1987,116:113~125.
    [55]Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics,1989,121:185~199.
    [56]Rodolphe F, Lefort MA. Multi marker model for detecting chromosomal segments displaying QTL activity[J]. Genetics,1993,134:1277~1288.
    [57]Jansen RC. Cont rolling the type I and type II errors in mapping quantitative t rait loci[J]. Genetics,1994,138:871~881.
    [58]Zeng ZB. Precision mapping of quantitative trait loci[J]. Genetics,1994,136: 1457~1468.
    [59]Zeng ZB. Theoretical basis of separation of multiple linkage gene effects on mapping quantitative trait loci [J]. Proc. Natl. Sci. USA,1993,90: 10972~10976.
    [60]Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative traits [J]. Proceedings of International Conference on Mathematical Biology, 1998:321~330.
    [61]高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175~179.
    [62]Luo ZW, Kearsey MJ. Maximum likelihood estimation of linkage between a marker gene and a quantitative locus [J]. Heredity,1989,63:401~408.
    [63]Luo ZW, Kearsey MJ. Maximum likelihood estimation of linkage between a marker gene and a quantitative locus. II. Application to backcross and doubled haploid populations [J]. Heredity,1991,66:117~124.
    [64]Darvasi A,Weller JI. On the use of the moments method of estimation to obtain approximate maximum likelihood estimates of linkage between a genetic marker and a quantitative locus [J]. Heredity,1992,68:43~46.
    [65]Luo ZW, Woolliams JA. Estimation of genetic parameters using linkage between a marker gene and a locus underlying a quantitative character in F2 populations [J]. Heredity,1993,70:245~253.
    [66]Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines [J]. Thero. Appl. Genet.,1976,47:35~39.
    [67]Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci [J]. Theor. Appl. Genet.,1989,78: 613~618.
    [68]Knapp SJ, Bridges WC, Brikes D. Mapping quantitative trait loci using molecular marker linkage maps [J].Theor. Appl. Genet.,1990,79:583~592.
    [69]Haley CS, Knott SA. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers [J]. Heredity,1992,69:315~324.
    [70]Martinez O, Curnow R N.Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers [J]. Theor Appl Genet.,1992,85: 480~488.
    [71]Xu SZ. A comment on the simple regression method for interval mapping [J]. Genetics,1995,141:1657~1659.
    [72]Jiang CJ, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci [J]. Genetics,1995,140:1111~1127.
    [73]Kao CH, Zeng ZB. General formulae for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm[J]. Biometrics,1997,53:653~665.
    [74]Wendel JF, Schnabel A, Seleman T. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression [J]. Molecular Phylogenetics and Evolution,1995,4(3):298~313.
    [75]Jonathan F, Wendel, Richard C. Cron polyploidy and the evolutionary history of cotton[J]. Advances in Agronomy,2003,78:139~186.
    [76]Junkang Rong, Colette Abbey, John E. et al. A 3347-locus genetic recombination map of sequence tagged sites reveals features of genome organization, transmission and evolution of cotton(Gossypium) [J]. Genetics,2004,166: 389~417.
    [77]Baker RJ, Longmire JL, Van den Bussche RA. Organization of repetitive dements in the upland cotton genome(Gossypium hirsutum) [J]. Journal of Heredity, 1995,86:178~185.
    [78]Zhao Xinping, Wing RA, Paterson AH. Cloning and characterization of the majority of repititive DNA in cotton(Gossypium L.)[J]. Genome,1995,38(6): 1177~1188.
    [79]Shappley ZW, Jenkins JN, Meredith WR, et al. An RFLP linkage map of upland cotton, Gossypium hirsutum L.[J]. Theor. Appl. Genet.,1998,97:756~761.
    [80]Shappley ZW, Jenkins JN, Zhu J, et al. Quantitative trait loci associated with agronomic and fiber traits of upland cotton [J]. Journal of Cotton Science,1998, 2(4):153~163.
    [81]Jiang C.X., Wright R. J., K.M. El-Zik, et al. Polyploid formation created unique convenues for response to selection in Gossypium (cotton) [J]. Proc. Natl. Sci. 1998,95:4419~4424.
    [82]方卫国,张正圣,李先碧,等.棉花铃重AFLP标记的初步研究[J].棉花学 报,2000,12(4):176~179.
    [83]Ulloa M, Cantrell RG, Pency RG, et al. QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton [J]. Journal of Cotton Science,2000, (4):10~18.
    [84]易成新,张天真,郭旺珍.陆地棉衣分QTL的形态和RAPD分子标记筛选[J].作物学报,2001,27(6):781~786.
    [85]殷剑美,武耀廷,朱协飞,等.陆地棉产量与品质性状的主基因与多基因遗传分析[J].棉花学报,2003,15(2):67~72.
    [86]REN LiHua, GUO WangZhen, ZHANG TianZhen. Identification of Quantitative Trait Loci (QTL) Affecting Yield and Fiber Properties in Chromosome 16 in Cotton Using Substitution Line [J]. Acta Botanica Sinica,2002,44 (7):815~820.
    [87]WU Mao-Qing, ZHANG Xian-Long, NIE Yi-Chun, et al. Localization of QTL for Yield and Fiber Quality Traits of Tetraploid Cotton Cultivar [J]. Acta Genetica Sinica,2003,30 (5):443~452.
    [88]Dao-Hua He, Zhong-Xu Lin, Xian-Long Zhang, et al. Mapping QTL of traits contributing to yield and analysis of genetic effects in tetraploid cotton [J]. Euphytica,2005,144:141~149.
    [89]Zheng-Sheng Zhang, Yue-Hua Xiao, Ming Luo, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.) [J]. Euphytica,2005,144:91~99.
    [90]张培通,郭旺珍,朱协飞,等.高产棉花品种泗棉3号产量及其构成因素的QTL标记和定位[J].作物学报,2006,32(8):1197~1203.
    [91]WANG Bao-Hua, WU Yao-Ting, HUANG Nai-Tai, et al. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton [J]. Acta Agronomica Sinica,2007,33(11): 1755~1762.
    [92]Jixiang Wu, Johnie N, Jenkins, et al. AFLP marker associations with agronomic and fiber traits in cotton [J]. Euphytica,2007,153:153~163.
    [93]Xinlian Shen, Wangzhen Guo, Tianzhen Zhang, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton [J]. Euphytica,2007,155:371~380.
    [94]IY Abdurakhmonov, ZT Buriev, S Saha, et al. Microsatellite markers associated with lint percentage trait in cotton, Gossypium hirsutum [J]. Euphytica,2007, 156:141~156.
    [95]Dao-Hua He, Zhong-Xu Lin, Xian-Long Zhang, et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense [J]. Euphytica,2007,153:181~197.
    [96]Qun Wan, Zhengsheng Zhang, Meichun Hu, et al. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance [J]. Euphytica,2007,158:241~247.
    [97]杨昶,郭旺珍,张天真.陆地棉抗黄萎病、纤维品质和产量等农艺性状的定位[J].分子植物育种,2007,5(6):797~805.
    [98]袁有禄,张天真,郭旺珍,等.棉花高品质纤维性状的主基因与多基因遗传分析[J].遗传学报,2002,29(9):827~834.
    [99]袁有禄,张天真,郭旺珍,等.棉花高强纤维性状QTL的分子标记筛选及其定位[J].遗传学报,2001,(12):151~1161.
    [100]Zhang TZ, Yuan YL, Yu J, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection [J]. Theor. Appl. Genet.,2003,106(1):62~268.
    [101]Russell Kohel, John Yu, Yong-Ha Park, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton [J]. Euphytica,2001, 121(2):163~172.
    [102]AH Paterson, Y Saranga, M. Menz, et al. QTL analysis of genotype×Environment interaction affecting cotton fiber quality [J]. Theor Appl Genet,2003,106(3):384~396.
    [103]Gerald O, Myers. An intraspecific AFLP map of G. hirsutum [C]. International Cotton Genome Initiative ICGI-2004 Workshop,1999,20(5):80~83.
    [104]沈新莲.陆地棉纤维品QTL的筛选、定位及其应用[D].南京:南京农业大 学博士学位论文,2004.
    [105]LinZ, He D, Zhang, X, et al. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD [J]. Plant Breeding,2005,124: 180~187.
    [106]Jean-Marc Lacape, Trung-Bieu Nguyen, Brigitte Courtois, et al. QTL Analysis of Cotton Quality Using Multiple Gossypium hirsutum × Gossypium barbadense Backcross Generations [J]. Crop Sci,2005,45:123~140.
    [107]Shen Xinlian, Wangzhen Guo, Xiefei Zhu, et al. Molecular Mapping of QTL for fiber qualities in three diverse lines in upland cotton using SSR Markers [J]. Molecular breeding,2005,15:169~181.
    [108]Peng Chee, Xavier Draye, Chun-Xiao Jiang, et al. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach:Ⅰ. Fiber elongation [J]. Theor Appl Genet,2005,111:757~763.
    [109]Peng W Chee, Xavier Draye, Chun-Xiao Jiang, et al. Molecular dissection of phenotypic variationbetween Gossypium hirsutumand and Gossypium barbadense (cotton) by a backcross-self approach:Ⅲ. Fiber length [J]. Theor Appl Genet,2005,111:772~781.
    [110]Xavier Draye, Peng Chee, Chun-Xiao Jiang, et al. Molecular dissection of interspecific variation between Gossypium hirsutumand and G. barbadense (cotton) by a backcross-self approach:Ⅱ. Fiber fineness [J]. Theor Appl Genet, 2005,111:764~771.
    [111]James E, Frelichowski Jr, Michael B, et al. Cotton genome mapping with new microsatellites from Acala'Maxxa' BAC-ends [J]. Mol Gen Genomics,2006, 275:479~491.
    [112]Baohua Wang, Wangzhen Guo, Xiefei Zhu, et al. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton [J]. Euphytica,2006, 152:367~378.
    [113]Baohua Wang, Yaoting Wu, Wangzhen Guo, et al. QTL Analysis and Epistasis Effects Dissection of Fiber Qualities in an Elite Cotton Hybrid Grown in Second Generation [J]. Crop Science,2007,47:1384~1392.
    [114]王娟,郭旺珍,张天真.渝棉1号优质纤维QTL的标记与定位[J].作物学报,2007,33(12):1915~1921.
    [115]Jixiang Wu, Osman Ariel Gutierrez, Johnie N, etal. Quantitative analysis and QTL mapping for agronomand fiber traits in an RI population of upland cotton [J]. Euphytica,2009,165:231~245.
    [116]Zheng-Sheng Zhang, Mei-Chun Hu, Jian Zhang, et al. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.) [J]. Mol Breeding,2009, 10:12~16.
    [117]Robert J, Wright P, Thaxton M, et al. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution.Genetics [J].1998,149:1987~1996.
    [118]郭旺珍,周兆华,张天真,等.RAPD鉴定棉花抗(耐)黄萎病品种(系)的遗传变异研究[J].江苏农业学报,1999,15(1):1~6.
    [119]齐俊生,马存.海岛棉品种抗黄萎病遗传规律初步研究[J].棉花学报,2000,12(4):169~171.
    [120]房卫平,许守明,孙玉堂,等.棉花黄萎病的RAPD标记[J].河南农业科学,2001(9):11~13.
    [121]高玉千,聂以春,张献龙.棉花抗黄萎病基因的QTL定位[J].棉花学报,2003,15(2):73~78.
    [122]Hingpoh Tan, Franklin E. Callahan, Xiang-Dong Zhang, et al. Identification of resistance gene analogs in cotton(Gossypium hirsutum L.) [J]. Euphytica,2003, 134:1-7.
    [123]杜威世,杜雄明,马峙英.棉花黄萎病抗性基因SSR标记研究[J].西北农林科技大学学报(自然科学版),2004,32(3):20~24.
    [124]王红梅.棉花抗黄萎病遗传及分子标记研究[D].武汉:华中农业大学博士学位论文,2005.
    [123]张保才.AB-QTL法定位海岛棉优异纤维品质基因和抗黄萎病基因[D].中 国农业科学院硕士毕业论文,北京:2006.
    [125]C. Wang, M. Ulloa, P. A. Roberts. Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rkn1) in Acala NemX cotton (Gossypium hirsutum L.) [J]. Theor Appl Genet,2006,112: 770~777.
    [126]Congli Wang, Philip A. Roberts. Development of AFLP and derived CAPS markers for root-knot nematode resistance in cotton [J]. Euphytica,2006,152: 185~196.
    [127]Xinlian Shen, Guillermo Van Becelaere, Pawan Kumar, et al. QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source [J]. Theor Appl Genet, 2006,113:1539~1549.
    [128]甄瑞,王省芬,马峙英,等.海岛棉抗黄萎病基因SSR标记研究[J].棉花学报,2006,18(5):269~272.
    [129]Jinfa Zhang, Youlu Yuan, Chen Niu, et al. AFLP-RGA Markers in Comparison with RGA and AFLP in Cultivated Tetraploid Cotton [J]. Crop Science,2007, 47:180~187.
    [130]Chen Niu, Doug J. Hinchliff e, Roy G. Cantrell, and et al. Identifi cation of Molecular Markers Associated with Root-Knot Nematode Resistance in Upland Cotton [J]. Crop Science.2007,47:951~960.
    [131]王芙蓉,刘任重,王留明,等.陆地棉品种抗黄萎病性状的分子标记及其辅助选择效果[J].棉花学报,2007,19(6):424~430.
    [132]Chang Yang, Wangzhen Guo, Guoying Li, et al. QTL mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. [J]. Plant Science,2008,174,290~298.
    [133]Wang H-M, Lin Z-X, Zhang X-L, et al. Mapping and quantitative trait loci analysis of verticillium wilt resistance genes in cotton [J]. Journal of Integrative Plant Biology,2008,50(2):174~182.
    [134]郭旺珍,张天真,潘家驹,等.棉花胞质雄性不育育性恢复基因的 RAPD-PCR标记筛选[J].科学通报,1997,42(24):2645~2647.
    [135]Cantrell R. J., Ulloa M., Liu S, et al. Concept of graphical genotypes for analyzing introgressed cotton germplasm [C]. The 2th international cotton conference, Greece,1998,2:27~32.
    [136]Altaf M.K., Steward J.M., Wajahatullah MK, et al. Molecular and morphological genetics of a tri-species F2 population of cotton [C]. Beltwide cotton conferences,1997,3(1):448~452.
    [137]R. J. Wright, P. M. Thaxton, K. M. EI-Zik, et al. Molecular Mapping of Genes Affecting Pubescence of Cotton [J]. The Journal of Heredity,1999:90(1): 215-219.
    [138]Khan MA, Myers GO, Stewart JM., et al. A addition of new markers to the tri-specific cotton map [C]. Beltwide cotton conferences,1997,3:1331~1334.
    [139]C. Jiang, R.J. Wright, S.S. Woo, and et al. QTL analysis of leaf morphology in tetraploid Gossypium(cotton)[J].Theor Appl Genet,2000,100:409~418.
    [140]倪西源,王学德,孙志栋.棉花表型性状基因的SSR标记定位[J].棉花学报,2003,15(6):357~360.
    [141]柳李旺,朱协飞,郭旺珍,等.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因[J].分子植物种,2003,1(1):48~52.
    [142]朱美霞,李永起,戴小枫.棉酚腺体和棉酚含量的遗传分析及SSR标记[J].分子植物育种,2004,2(2):235~239.
    [143]范术丽.短季棉早熟性相关性状的遗传及其QTL定位研究[D].北京:中国农业科学院博士学位论文,2004.
    [144]Vijay N. Waghmare, Junkang Rong, Carl J. Rogers, et al. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum [J]. Theor Appl Genet,2005,111:665~676.
    [145]J.-M. LACAPE, T. B. NGUYEN. Mapping Quantitative Trait Loci Associated with Leaf and Stem Pubescence in Cotton [J]. Journal of Heredity,2005,96(4): 441~444.
    [146]宋美珍,喻树迅,范术丽,等.短季棉主要农艺性状的遗传分析[J].棉花学 报,2005,17(2):94~98.
    [147]WANG Bao-Hua, WU Yao-Ting, HUANG Nai-Tai, et al. QTL Mapping for Plant Architecture Traits in Upland Cotton Using RILs and SSR Markers [J]. Acta Genetica Sinica,2006,33 (2):161~170.
    [148]J. Yin, W. Guo, L. Yang, et al. Physical mapping of the Rf1fertility-restoring gene to a 100 kb region in cotton [J]. Thero Appl Genet,2006,112(7): 1318~1325.
    [149]宋振云,杨志敏,陈旭升.陆地棉亚红株突变体基因的初步定位作物学报[J].2007,33(3):511~513.
    [150]王沛政,秦利,苏丽,等.新疆主栽陆地棉品种形态性状的标记与定位[J].分子植物育种,2007,5(6):811~818.
    [151]Dong Cheng-Guang, DING YeZhang, GUO WangZhen, et al. Fine mapping of the dominant glandless Gene Gle2 in Sea-island cotton (Gossypium barbadense L.) [J]. Chinese Science Bulletin,2007,52(22):3105~3109.
    [152]Hong-Bin Zhang, Yaning Li, BaohuaWang, etal. Recent Advances in Cotton Genomics [J]. International Journal of Plant Genomics,2008,10:321~325.
    [153]Guifu Liu, Ruizhen Zeng, Haitao Zhu, et al. Dynamic expression of nine QTL for tiller number detected with single segment substitution lines in rice[J]. Theor Appl Genet,2009,118:443~453.
    [154]Guifu Liu, Zemin Zhang, Haitao Zhu, etal. Detection of QTL with additive effects and additive-by-environment interaction effects on panicle number in rice (Oryza sativa L.) with single-segment substitution lines [J]. Theor Appl Genet,2008,116:923-931
    [155]Zhang-Ying Xi, Feng-Hua He, Rui-Zhen Zeng, etal. ZhangCharacterization of donor genome contents of backcross progenies detected by SSR markers in rice [J]. Euphytica,2008,160:369~377.
    [156]Jeuken M, Lindhout P. The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactucas aligna (wild lettuce) germplasm [J]. Theor. Appl. Genet.,2004,109(2):394~401.
    [157]王鹏,丁业掌,陆琼娴,等.陆地棉遗传标准系TM-1背景的海岛棉染色体片段置换系的培育[J].科学通报,2008.53(9):1065~1069.
    [158]徐华山,孙永健,周红菊,等.构建水稻优良恢复系背景的重叠片段代换系及其效应分析[J].作物学报,2007,33(6):979~986.
    [159]Junkang Rong, F. Alex Feltus, Vijay N. Waghmare, et al. Meta-analysis of Polyploid Cotton QTL Shows Unequal Contributionsof Subgenomes to a Complex Network of Genes and Gene Clusters Implicated in Lint Fiber Development [J]. Genetics,2007,176:2577~2588.
    [160]李爱国.AB-QTL法定位海岛棉产量及纤维品质基因[D].长沙:湖南农业大学硕士毕业论文,2008.
    [162]Avishag Levi, Andrew H. Paterson, Vered Barak, et al. Field evaluation of cotton near-isogenic lines introgressedwith QTL for productivity and drought related traits [J]. Mol Breeding,2009,23:179~195.
    [162]Yufang Guo, Jack C. McCarty, Johnie N. Jenkins, etal. QTL for node of first fruiting branch in a cross of an upland cotton, Gossypium hirsutum L., cultivar with primitive accession Texas 701 [J]. Euphytica,2008,163:113~122.
    [163]Yufang Guo, Jack C. McCarty, Johnie N. Jenkins, et al. Genetic detection of node of first fruiting branch in crosses of a cultivar with two exotic accessions of upland cotton [J]. Euphytica,2009,166:317~329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700