用户名: 密码: 验证码:
siRNA干扰CDKs对细胞周期和细胞凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分CDK1 siRNA干扰对细胞周期和细胞凋亡的影响
     目的:研究CDK1 siRNA干扰抑制CDK1的表达及其对细胞周期和凋亡的影响。材料和方法:以人宫颈癌细胞株Hela细胞和人结肠癌细胞株SW480细胞为研究对象,脂质体转染CDK1 siRNA,分别用realtime-PCR、westernblot检测CDK1基因和蛋白的表达,AnnexinV/PI法检测转染细胞的凋亡,流式细胞术分析细胞周期阻滞,细胞进行瑞氏-姬姆萨染色后镜下观察其形态学变化结果:转染CDK1 siRNA后CDK1基因和蛋白的表达都下降。转染后24小时,CDK1蛋白表达已经下降,到转染后48小时、60小时,CDK1基因与蛋白都明显降低。转染CDK1 siRNA 48和60小时后的细胞周期G2/M期比例明显增加,而细胞凋亡率与对照相比没有明显升高。转染细胞经瑞氏-姬姆萨染色后,显微镜下看到双核细胞增多。结论:CDK1 siRNA干扰导致的CDK1表达降低只引起细胞周期G2/M期阻滞,细胞增殖减慢,没有导致细胞凋亡。
     第二部分CDK1 siRNA干扰在Taxol诱导细胞凋亡中的作用
     目的研究转染CDK1 siRNA在Taxol诱导细胞凋亡过程中的对细胞周期和凋亡的影响,探讨CDK1在细胞凋亡中的确切作用方法以人宫颈癌细胞株Hela细胞和人结肠癌细胞株SW480细胞为研究对象,脂质体转染CDK1 siRNA,转染后48小时加Taxol(20g/ml)刺激,实验设空白对照(未处理)、阴性对照(转染阴性siRNA)、空白对照加Taxol、阴性对照加Taxol、转染CDK1 siRNA、转染CDK1 siRNA加Taxol实验组。加药12小时后收集细胞,用AnnexinV/PI方法检测细胞的凋亡;流式细胞仪检测细胞DNA含量,分析细胞周期的变化;westernblot检测CDK1、BCL2蛋白的表达。结果CDK1蛋白表达水平在转染siRNA组都有明显降低。Taxol(20ug/ml)刺激12小时细胞出现明显G2/M期和S期阻滞以及细胞凋亡。细胞转染CDK1 siRNA后再用Taxol刺激,G2/M、S期阻滞效应和细胞的凋亡反应都没有明显改变。抗凋亡蛋白BCL2也只在加Taxol刺激组表达下降。结论siRNA干扰导致的CDK1表达降低对紫杉醇Taxol所诱导的细胞周期阻滞和细胞凋亡作用没有影响。
     第三部分共转染CDK1、CDK2 siRNA对细胞周期和细胞凋亡的影响
     目的研究共转染CDK1、CDK2 siRNA同时抑制CDK1、CDK2蛋白表达对细胞周期和凋亡的影响,探讨细胞周期主要调控分子在细胞凋亡中的确切作用。方法以人宫颈癌细胞株Hela细胞和人结肠癌细胞株SW480细胞为研究对象,用脂质体lipofactamihe2000同时转染CDK1和CDK2 siRNA。在转染后48、60小时收集细胞,用westernblot检测CDK1、CDK2蛋白的表达和抗凋亡蛋白Bcl2的表达,AnnexinV/PI检测转染细胞的凋亡,流式细胞术DNA含量检测分析细胞周期阻滞。AnnexinV/PI标记的细胞同时在激光共聚焦显微镜下观察凋亡细胞的形态;另外转染细胞进行瑞氏-姬姆萨染色后在普通光学显微镜下观察其形态变化。结果共转染CDK1、CDK2siRNA后48小时和60小时,WesternBlot结果显示CDK1和CDK2蛋白的表达都同时降低。共转染CDK1、CDK2 siRNA后,细胞周期在S期和G2/M期都出现阻滞,转染细胞经瑞氏-姬姆萨染色后在显微镜下可见双核或多核细胞增多;AnnexinV结果显示共转染CDK1、CDK2 siRNA的细胞在48小时和60小时都发生了明显的凋亡,激光共聚焦显微镜下的形态学观察也可见到早期凋亡和晚期凋亡的细胞,但westernblot结果显示凋亡蛋白Bcl2的含量没有明显改变。结论siRNA干扰导致的CDK1、CDK2表达同时降低不仅导致细胞周期S期和G2/M期的阻滞,抑制了细胞生长,也诱导了细胞凋亡。也间接说明CDK2可以替代CDK1的部分功能。
Part OneTHE INFLUENCE OF CDK1 siRNA INTERFERENCE ON CELL CYCLE AND APOPTOSIS
     Abstract BACKGROUND & OBJECTIVE: It is widely accepted fact that the balancebetween cell proliferation and apoptosis is important for tissue homeostasis. What is lesswell known, however, is that the molecular mechanism regulate the balance between cellproliferation and apoptosis. The family of cyclin-dependent kinase complexes (Cdks) arewell known for their role in the cell division cycle,but the precise role of Cdks in apoptosisremains to be defined. In order to investigate the relationship of the master regulators ineukaryotic cell cycle with apoptosis, in the present report, CDK1 siRNA was transfectedinto cells to inhibit the CDK1 gene expression and invesgate its influence on the cell cycleand cell apoptosis. METHODS: The siRNA targeting CDK1 gene was chemicallysynthesized and transfected into Hela cells or SW480 cell by lipofectamine2000. CDK1gene and protein expression level were examined by real-time PCR and westernblot,respectively. In order to demonstrate the change of the cell cycle and apoptosis aftertransfected, we used flow cytometry to detect the cell cycle and used Annexin V/P1technique to study on apoptosis. The morphological change of transfected cell wereexamined under microscopy by Wright-Giemsa stain. RESULTS: CDK1 gene wassuccessfully silenced by siRNA and the CDK1 protein expression level decreasedsignificantly, especially from 48 hour to 60 hour after transfection. The DNA contentanalysis showed that transfection of CDK1 siRNA leaded to cells accumulating in G2/Mphase. No apoptosis happened after transfection of CDK1 siRNA 48h or 60h. More doublenucleus or multi-nucleus cells could be seen under microscopy among the transfected cells.
     CONCLUSION: The decreased CDK1 expression by gene silence leaded to cell cyclearrest in mitosis, but not induced apoptosis.
     THE ROLE OF CDK1 siRNA INTERFERENCE IN TAXOL INDUCED APOPTOSIS
     Abstract BACKGROUND & OBJECTIVE: The cell cycle and the cell apoptosis wereintertwined. It was known from our research findings that after receiving apoptosis strikingonly those cells which were during cell cycle progression but not the GO phase cellunderwent apoptosis, we suppose maybe there are some molecular mechanism in cell cycleto regulate the cell apoptosis. This hypothesis prompted us to investigate the relationship ofthe master regulators in eukaryotic cell cycle with apoptosis. In the present report, CDK1siRNA was transfected into cells to interfere the CDK1 expression and invesgate itsinfluence on the taxol induced cell apoptosis, and elucidate the precise role of CDK1 in cellapoptosis. METHODS: The siRNA targeting CDK1 gene was chemically synthesized andtransfected into Hela cells or SW480 cell by lipofectamine2000. To make apoptosis striking,after 48 hours, the transfected cells were treated with 20ug/ml Taxol. Six experimentalgroups have been designed as follows: blank control which has not been treated、negativecontrol in which negative siRNA has been transfected、blank control stimulated byTaxol、negative control stimulated by Taxol、siRNA interfered CDK1、CDK1 silenced bysiRNA and then treated with Taxol. To detect cell cycle changes and apoptosis, we collectedthe cells 12 hours after drug treatment, used Annexin V/PI technique to study apoptosis,and flow cytometry to detect DNA content, thus the change of the cell cycle can be analyzed.The cell lysis were subjected to westernblot analysis for CDK1 and Bcl2 protein expressionchanging. RESULTS: CDK1 protein expression decreased in all siRNA transfected groups significantly. 20ug/ml taxol treatment induced cell apoptosis obviously and cell-cyclearrest in S phase、G2/M phase as early as 12h after addition of drug, while the degree ofits cell cycle arrest and apoptosis were not changed by CDK1 siRNA interference.Furthermore, the anti-apoptotic protein, Bcl-2 protein reduced only when apoptosis-inducing drug was added, but remained constant after transfection. The decrease of Bcl-2protein level related only with taxol treatment regardless of CDK1 siRNA transfection.
     CONCLUSION: The decreased CDK1 activity by gene silencing did not change theinfluence of Taxol on cell cycle arrest and on apoptosis. It seems likely that Cdk1 mightnot be universally required for apoptosis in the same way that Cdk1 are universally requiredfor the cell cycle.
     Part ThreeTHE INFLUENCE OF COTRANSFECTION CDK1 AND CDK2siRNA ON CELL CYCLE AND APOPTOSIS
     Abstract BACKGROUND & OBJECTIVE: Investigate of the influence of CDK1 andCDK2 siRNA cotransfection on cell cycle and apoptosis, to explore exact role of cell cyclemaster regulator in apoptosis. METHODS: The siRNA targeting the CDK1 and CDK2genes were synthesized and simultaneously cotransfected into Hela and SW480 cells bylipofectamine2000.48 and 60 hours after the cotransfection, CDK1 and CDK2 or Bcl2protein expressions were examined by westernblot. Cell cycle arrest was analyzed by flowcytometry. We detected apoptosis via the Annexin V/PI method. Study transfected cellmorphological changes under a microscope after Wright-Giemsa Stain. Laser scanningconfocal microscope (LSCM) was used to observe the morphologic changes of theapoptosis cells. RESULTS: CDK1 and CDK2 protein expression was depressed 48 and 60hours after cotransfection. Cotransfection of CDK 1 and CDK2 siRNA led to accumulationof cells in S and G2/M phases and severely triggered apoptosis. An increase of binucleate andmultinucleate cells was observed under the microscope.The morphological change of earlyphase and late phase apoptotic cells could be seen by LSCM,but the anti-apoptotic Bcl2protein level is constant. CONCLUSION: The decreased activities of CDK1 and CDK2 bygene silencing led not only to cell cycle arrest in S phase and G2/M phase, but also inducedapoptosis. It was indirectly tested that CDK2 could compensates for the functionof CDK1 when CDK1 was silenced by siRNA.
引文
1. Subbareddy Maddika, Sudharsana Rao Ande, Soumya Panigrahi, Ted Paranjothy, Kazimierz Weglarczyk et al. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy. Drug Resistance Updates. 2007,10, p13-29
    2. Adamsen, B. L., et al., Apoptosis, cell cycle progression and gene expression in TP53-depleted HCT116 colon cancer cells in response to short-term 5-fluorouracil treatment. Int J Oncol, 2007. 31(6): p. 1491-500
    3. Vermeulen, K., Z.N. Berneman, and D.R. Van Bockstaele, Cell cycle and apoptosis. Cell Prolif, 2003. 36(3): p. 165-75
    4. Mikhail V. Blagosklonny Apoptosis, proliferation, differentiation: in search of the order. Seminars in Cancer Biology. 2003, Vol 13(2), p. 97-105
    5. Moon-Taek Park and Su-Jae Lee. Cell Cycle and Cancer. Journal of Biochemistry and Molecular Biology. 2003, 36. (1), pp. 60-65
    6. Evan GI and Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001,411: 342-9.
    7. Garber K. Beyond the Nobel Price: cell cycle research offers new view on cancer. J Natl Cancer Inst. 2001, 93: 1766-7.
    8. 何小军 肖田 王尊 葛军娜 黄丹 徐惠婷 李小兰 肖徽 陶德定 龚建平.人重组Fas配体体外诱导细胞周期特异性凋亡模型的建立.华中科技大学学报:医学版,2007年36卷3期385-388
    9. Feng Y, Wu J, Feng X, Tao D, Hu J, Qin J, L i X, Xiao H, k. Gardner, S. I. V. Judge, J Gong. Timing of apoptosis onset depends on cell cycle progression in peripheral blood lymphocytes and lymphocytic leukemia cells. oncol rep, 2007,17: 1437-1444
    10. Antonsson. J. -C. Martinou. The Bcl-2 protein family. Exp. Cell Res. 2000, 256: 50-57
    11. L. Burke, D. B. Flieder, D. G. Guinee, E. Brambilla, A. N. Freedman, W.P. Bennett, R.T. Jones, A. Borkowski, N.A. Caporaso and M. Fleming et al., Prognostic implications of molecular and immunohistochemical profiles of the Rb and p53 cell cycle regulatory pathways in primary non-small cell lung carcinoma, Clin. Cancer Res. 2005, (11) : 232-241
    12. Michael Karin, Anning Lin. NF-(?)B at the crossroads of life and death.Nature Immunology. 2002,3: 221 - 227
    13. Green DR, Evan GI. A matter of life and death. Cancer Cell, 2002, 1:9-30
    14. D.0. Morgan. Principles of CDK regulation. Nature (1995) 374:131-134
    15. Borgne A, Golsteyn RM. The role of cyclin-dependent kinases in apoptosis Prog Cell Cycle Res. 2003;5:453-9
    16. Golsteyn RM. Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis: a role beyond the cell cycle. Cancer Lett. 2005 Jan 20;217(2):129-38
    17. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998, 391:806-811
    18. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptionalgene silencing in plants. Science. 1999,286: 950-952
    19. Danesh Moazed .Small RNAs in transcriptional gene silencing and genome defence. Nature. 2009, 457: 413-420
    1. Evan GI and Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001, 411: 342-9
    2. Adamsen, B. L., et al., Apoptosis, cell cycle progression and gene expression in TP53-depleted HCT116 colon cancer cells in response to short-term 5-fluorouracil treatment. Int J Oncol, 2007. 31(6): 1491-500
    3. Vermeulen, K., Z. N. Berneman, and D. R. Van Bockstaele, Cell cycle and apoptosis. Cell Prolif, 2003. 36(3): 165-75
    4. Senderowicz AM. Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr Opin Cell Biol. 2004 Dec;16(6):670-8
    5. L. Burke, D. B. Flieder, D. G. Guinee, E. Brambilla, A. N. Freedman, W. P.Bennett, R. T. Jones, A. Borkowski, N. A. Caporaso and M. Fleming et al.,Prognostic implications of molecular and immunohistochemical profiles of the Rb and p53 cell cycle regulatory pathways in primary non-small cell lung carcinoma, Clin. Cancer Res. 2005, (11): 232-241
    6. Michael Karin, Anning Lin. NF-(?)B at the crossroads of life and death.Nature Immunology. 2002,3: 221-227
    7. Adams JM, Cory S. Life-or-death decisions by the Bc1-2 protein family.Trends Biochem Sci, 2001; 26:61-66
    8. Nurse P. Universal control mechanism regulating onset of M phase [J].Nature, 1990, 344(6266):503-508
    9. Hartwell LH and Kastan KB. Cell cycle control and cancer.Science,1994;266:1821
    10. Nasmyth K. Viewpoint: putting the cell cycle in order.Science. 1996,274:1643
    11. Borgne A, Golsteyn RM. The role of cyclin-dependent kinases in apoptosis Prog Cell Cycle Res. 2003;5:453-9
    12. Golsteyn RM. Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis: a role beyond the cell cycle. Cancer Lett. 2005 Jan 20;217(2):129-38
    13. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998,391 :806-811
    14. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptionalgene silencing in plants. Science. 1999,286: 950-952
    15. Fadok VA, Voelker DR, Cammpbell PA, Cohen JJ, Bratton DL, Henson PM.Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol.1992, 148:2207-2216
    16. Koopman G, Reutelingsperger CPM, Kuijten GAM, Keehnen RMJ, Pals ST, van Oers MHJ. Annexin V for flow cytometric detection of phosphatidylserine expression of B cells undergoing apoptosis. Blood. 1994,84: 1415-1420
    17. Moon-Taek Park and Su-Jae Lee. Cell Cycle and Cancer. Journal of Biochemistry and Molecular Biology. 2003, 36(1): 60-65
    18. Weinstein, I. B. and Zhou, P. Defects in cell cycle control genes in human cancer. Encyclopedia of Cancer: Bertino, J. 1997: 256-267
    19. Gambato, A., Flamini, G., Cittadini, A. and Weinstein, I. Abnormalities in cell cycle control in cancer and their clinical implications.Tumori. 1998, 84 :421433
    20. Buhler, M. & Moazed, D. Transcription and RNAi in heterochromatic gene silencing. Nature Struct. Mol. Biol. 2007,14:1041-1048
    21. Shi L, Nishioka WK, Th' ng J, et al. Premature p34cdc2 activation required for apoptosis. Science, 1994,263:1143-1145
    22. L. T. Vassilev, C. Tovar, S. Chen, D. Knezevic, X. Zhao, H. Sun, D. C.Heimbrook and L. Chen. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1, Proc. Natl. Acad. Sci.U.S. A. 2006, 103:10660-10665
    23. Lawrence L'Italien , Marcel Tanudji , Loren Russell , Xiao Min Schebye. Unmasking the Redundancy Between Cdk1 and Cdk2 at G2 Phase in Human Cancer Cell Lines. Cell Cycle.2006, 5(9):984-993
    1. G. Brouckaert, M. Kalai, X. Saelens and P. Vandenabeele. Apoptotic Pathways and Their Regulation. In: M. Los and S.B. Gibson, Editors, Apoptotic Pathways as Target for Novel Therapies in Cancer and Other Diseases. Springer Academic Press, New York 2005.
    2. Dbatin KM. Activation of apoptosis pathways by anticancer drugs. Adv Exp Med Biol. 1999; 457: 237-244
    3. Vaux DLStrasser A. The molecular biology of apoptosis. Proc Natl Acad Sci USA. 1996: 932239-2244.
    4. Adamsen, B.L., et al., Apoptosis, cell cycle progression and gene expression in TP53-depleted HCT1l6 colon cancer cells in response to short-term 5-fluorouracil treatment. Int J Oncol, 2007. 31(6):1491-500
    5. Vermeulen, K., Z.N. Berneman, and D.R. Van Bockstaele, Cell cycle and apoptosis. Cell Prolif, 2003. 36(3):165-75
    6. Lim, C.U., Y. Zhang, and M.H. Fox, Cell cycle dependent apoptosis and cell cycle blocks induced by hyperthermia in HL-60 cells. Int J Hyperthermia, 2006. 22(1): 77-91
    7. R. Kim, M. Emi and M. Tanabe, Role of mitochondria as the gardens of cell death, Cancer Chemother. Pharmacol. 2006, 57:545-553
    8. Steiner P, Rudolph B, Muller D, Eilers M. The functions of Myc in cell cycle progression and apoptosis. Prog Cell Cycle Res. 1996; 2:73-82
    9. Blagosklonny MV. A node between proliferation, apoptosis, and growth arrest. Bioessays. 1999, 21(8): 704-9
    10. Evan G, Littlewood T. A matter of life and cell death. Science. 1998; 281: 1317-1322
    11. Wu J, Feng Y, Xie D, et al. Unscheduled CDK1 activity in G1 phase of the cell cycle triggers apoptosis in X-irradiated lymphocytic leukemia cells. Cell Mol Life Sci. 2006 Nov;63(21):2538-45
    12.何小军,肖田,王尊等.人重组Fas配体体外诱导细胞周期特异性凋亡模型的建立.华中科技大学学报:医学版,2007,36(3):385-388
    13. Feng Y, Wu J, Feng X, Tao D, Hu J , Qin J, L i X, Xiao H , k. Gardner , S.I. V. Judge, J Gong. Timing of apoptosis onset depends on cell cycle progression in peripheral blood lymphocytes and lymphocytic leukemia cells, oncol rep, 2007,17:1437-1444
    14. Green DR, Evan GI. A matter of life and death. Cancer Cell, 2002; 1:9-30.
    15. Alenzi FQB. Links between apoptosis, proliferation and the cell cycle.British J Biomed Sci, 2004; 61(2):99-102
    16. Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology. 2002 Dec 27;181-182:475-81
    17. L. Shi, W. K. Niskioka, J. Th'ng, et al. Premature p34cdc2 activationrequired for apoptosis, Nature (1994) 263:1143-1145
    18. L. Shi, G. Chen, D. He, D. G. Bosc, D. W. Litchfield, A. H. Greenberg,Granzyme B induces apoptosis and cyclinA-associated cyclin-dependent kinase activity in all stages ofthe cell cycle, J. Immunol. (1996)157:2381-2385
    19. S. Hsu, S. Yin, M. Liu, U. Reichert, W. L. Ho, Involvement of cycl in-dependent kinase activities in CD437-induced apoptosis, Exp. Cell Res. 1999, 252: 332-341
    20. Tirado 0M, Mateo-Lozano S, Notario V. Roscovitine is an effective inducer of apoptosis of Ewing's sarcoma family tumor cells in vitro and in vivo.Cancer Res. 2005 Oct 15;65(20):9320-7
    21. I. N. Hahntow, F. Schneller, M. Oelsner, et al. Cyclin-dependent kinase inhibitor roscovitine induces apoptosis in chronic lymphocytic leukemia cells, Leukemia, 2994, 18: 747-755
    22. Markus Lobrich and Penny A. Jeggo. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nature reviews,2007, 7: 861-869
    1. James M. Roberts. Evolving ideas aboutcyclins. cell, 1999, 98:129-132
    2. Hunter T. Braking the cycle. Cell, 1993;75:839
    3. Nasmyth K. Viewpoint: putting the cell cycle in order. Science, 1996, 274:1643]
    4. Lawrence L'Italien, Marcel Tanudji, Loren Russell, Xiao Min Schebye.Unmasking the Redundancy Between Cdkl and Cdk2 at G2 Phase in Human Cancer Cell Lines. Cell Cycle. 2006, 5:9, 984-993
    5. Toczyski, D. P., Galgoczy, D. J. & Hartwell, L. H. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell. 1997, 90: 1097-1106
    6. Markus Lobrich and Penny A. Jeggo. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nature reviews,2007, 7: 861-869
    7. I.N. Hahntow, F. Schneller, M. Oelsner, et al. Cyclin-dependent kinase inhibitor roscovitine induces apoptosis in chronic lymphocytic leukemia cells. Leukemia. 2004, 18: 747-755
    8. Sugiyama, K., Akiyama, T., Shimizu, M., Tamaoki, T., Courage, C., Gescher,A., and Akinaga, S. Decrease in susceptibility toward induction of apoptosis and alteration in G1 checkpoint function as determinants of resistance of human lung cancer cells against the antisignaling drug UCN-01 (7-Hydroxystaurosporine). Cancer Res., 1999, 59:4406-4412
    9. Koniaras, K., Cuddihy, A. R., Christopoulos, H., Hogg, A., and O'Conncll,M. J. Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene, 2001, 20: 7453-7463
    10. Hosing AS, Kundu ST, Dalai SN .14-3-3 Gamma is required to enforce both the incomplete S phase and G2 DNA damage checkpoints. Cell Cycle.2008;7(20):3171-9
    11. Atsushi H, Kong Y Y, Matsuoka S, et ol. DNA damage-induced activation of p53 by the checkpoint kinase chk2. Science, 2000, 287: 1824-1827
    12. Akiyamna, T.,Sugiyama, K., Shimizu, M., Tamaoki, T., and Akinaga, S.Gl-checkpoint function including a cycl in -dependent kinase 2 regulatory Pathway as potential determinant of 7-hydroxystaurosporine (UCN-01) -induced apoptosis and G1-phase accumulation. Jpn. J. Cancer Res.,1999; 90:1364-1372
    13. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity.Nature Rev. Cancer 2003, 3: 155-168
    14. Lukas, J., Lukas, C. & Bartek, J. Mammalian cell cycle checkpoints:signalling pathways and their organization in space and time. DNA Repair (Amst.) 2004, 3: 997-1007
    15. Syljuasen, R. G., Jensen, S., Bartek, J. & Lukas, J. Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res.2006, 66: 10253-10257
    16. Deckbar, D. et al. Chromosome breakage after G2 checkpoint release. J.Cell Biol. 2007, 176: 748-755
    17. Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 2007, 19: 238-245
    18. Linke, S. P., Clarkin, K. C. & Wahl, G. M. p53 mediates permanent arrest over multiple cell cycles in response to gamma-irradiation. Cancer Res.1997, 57: 1171-1179
    19. Huang, L. C., Clarkin, K. C. & Wahl, G. M. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc. Natl Acad. Sci USA 1996, 93: 4827-4832
    1. Adamsen, B. L., et al., Apoptosis, cell cycle progression and gene expression in TP53-depleted HCT116 colon cancer cells in response to short-term 5-fluorouracil treatment. Int J Oncol, 2007. 31(6): 1491-500
    2. Vermeulen, K., Z. N. Berneman, and D. R. Van Bockstaele, Cell cycle and apoptosis. Cell Prolif, 2003. 36(3): 165-75
    3. Subbareddy Maddika, Sudharsana Rao Ande, Soumya Panigrahi, Ted Paranjothy,Kazimierz Weglarczyk et al. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy. Drug Resistance Updates. 2007, 10:13-29
    4. Moon-Taek Park and Su-Jae Lee. Cell Cycle and Cancer. Journal of Biochemistry and Molecular Biology. 2003, 36(1):60-65
    5. Senderowicz AM. Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr Opin Cell Biol. 2004, 16(6):670-8
    6. Evan GI and Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001,411: 342-9
    7. Antonsson. J. -C. Martinou. The Bc1-2 protein family. Exp. Cell Res. 2000,256: 50-57
    8. Burke L., D. B. Flieder, D. G. Guinee, E. Brambilla, A. N. Freedman, W. P.Bennett, R.T. Jones, A. Borkowski, N. A. Caporaso and M. Fleming et al.,Prognostic implications of molecular and immunohistochemical profiles of the Rb and p53 cell cycle regulatory pathways in primary non-small cell lung carcinoma, Clin. Cancer Res. 2005, (11) : 232-241
    9. Dobashi, Cell cycle regulation and its aberrations in human lung carcinoma,Pathol.Int. 2005,55:95-105
    10. K. Okamoto and C. Prives, A role of cyclin G in the process of apoptosis,Oncogene. 1999,18:4606 - 4615
    11. G. Salazar, A. Joshi, D. Liu, H. Wei, J. L. Persson and D. J. Wolgemuth,Induction of apoptosis involving multiple pathways is a primary response to cyclin Al-deficiency in male meiosis, Dev. Dyn. 2005,234:114- 123
    12. P. Palozza, S. Serini, N. Maggiano, M. Angelini, A. Boninsegna, F. Di Nicuolo, F. 0. Ranelletti and G. Calviello, Induction of cell cycle arrest and apoptosis in human colon adenocarcinoma cell lines by beta-carotene through down-regulation of cyclin A and Bc1-2 family proteins,Carcinogenesis.2002,23: 11-18
    13. S. Mazumder, B. Gong, Q. Chen, J. A. Drazba, J. C. Buchsbaum and A. Almasan,Proteolytic cleavage of cyclin E leads to inactivation of associated kinase activity and amplification of apoptosis in hematopoietic cells,Mol. Cell. Biol. 2002, 22: 2398-2409
    14. H. Biliran Jr., Y. Wang, S. Banerjee, H. Xu, H. Heng, A. Thakur, A. Bollig,F. H. Sarkar and J. D. Liao, Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line, Clin.Cancer Res. 2005,11: 6075-6086
    15. L. A. Porter, I. H. Cukier and J. M. Lee, Nuclear localization of cyclin B1 regulates DNA damage-induced apoptosis, Blood. 2003,101: 1928-1933
    16. L. A. Porter, G. Singh and J. M. Lee, Abundance of cyclin Bl regulates gamma-radiation-induced apoptosis, Blood. 2000,95: 2645-2650
    17. L. Shi , W. K. Niskioka , J. TV ng , et al. Premature p34cdc2 activationrequired for apoptosis, Nature. 1994, 263: 1143-1145
    18. L. Shi, G. Chen, D. He, D. G. Bosc, D. W. Litchfield, A.H. Greenberg,Granzyme B induces apoptosis and cyclinA-associated cyclin-dependent kinase activity in all stages ofthe cell cycle, J. Immunol. 1996, 157:2381 - 2385
    19. S. Hsu, S. Yin, M. Liu, U. Reichert, W. L. Ho, Involvement of cycl in-dependent kinase activities in CD437-induced apoptosis, Exp. Cell Res. 1999, 252:332-341
    20. I.N. Hahntow, F. Schneller, M. Oelsner, et al. Cyclin-dependent kinase inhibitor roscovitine induces apoptosis in chronic lymphocytic leukemia cells. Leukemia. 2004, 18: 747-755
    21. M. Mihara, S. Shintani, K. Nakashiro, H. Hamakawa, Flavopiridol, a cycl in dependent kinase (CDK) inhibitor, induces apoptosis by regulating Bc1-x in oral cancer cells, Oral Oncol. 2003,39: 49-55
    22. A. Hakem, T. Sasaki, I. Kozieradzki and J. M. Penninger, The cyclin-dependent kinase Cdk2 regulates thymocyte apoptosis, J. Exp. Med.1999, 189: 957-968
    23. E. Latres, M. Malumbres, R. Sotillo, J. Martin, S. Ortega, J.Martin-Caballero, J.M. Flores, C. Cordon-Cardo and M. Barbacid, Limited overlapping roles of P15(INK4b) and P18(IMK4c) cell cycle inhibitors in proliferation and tumorigenesis, EMBO J. 2000, 19: 3496-3506
    24. Deng, C. Deng, P. Zhang, J. W. Harper, S. J. Elledge and P. Leder, Mice lacking p21CIPl/WAFl undergo normal development, but are defective in G1 checkpoint control, Cell. 1995, 82: 675-684
    25. M. Los, C. Stroh, R. U. Janicke, I.H. Engels and K. Schulze Osthoff,Caspases: more than just killers?, Trends Immunol. 2001, 22: 31-34
    26. A. L. Gartel, The conflicting roles of the cdk inhibitor p21(CIP1/WAF1)in apoptosis, Leuk. Res. 2005, 29: 1237-1238
    27. S. G. Kim, S. N. Kim, H. S. Jong, et al. Caspase-mediated Cdk2 activation is a critical step to execute transforming growth factor-betal-induced apoptosis in human gastric cancer cells, Oncogene. 2001, 20: 1254 - 1265
    28. Y. H. Kwon, A. Jovanovic, M.S. Serfas, A. L. Tyner, The Cdk inhibitor p21 is required for necrosis, but it inhibits apoptosis following toxin-induced liver injury, J. Biol. Chem. 2003, 278: 30348-30355
    29. M. A. Al-Mohanna, P. S. Manogaran, Z. A. Al-Mukhalafi, et al. The tumor suppressor pl6(INK4a) gene is a regulator of apoptosis induced by ultraviolet light and cisplatin, Oncogene. 2004, 23: 201-212
    30. EdamatsuH, GauCL, NemotoT, GuoL, Tamanoi F.Cdk inhibitors, Roscovitine and olomoucine, synergize with farnesyl-transferase inhibitors(FTI) to induce effcient apoptosis of human cancer cell lines. Oncogene 2000; 19:3059-306
    31. M. Mihara, S. Shintani, K. Nakashiro, H. Hamakawa, Flavopiridol, a cyclin dependent kinase (CDK) inhibitor, induces apoptosis by regulating Bcl-x in oral cancer cells, Oral Oncol. 2003, 39: 49-55
    32. L. E. Finlan and T. R. Hupp, The life cycle of p53: a key target in drug development. In: M. Los and S. B. Gibson, Editors, Apoptotic Pathways as Target for Novel Therapies in Cancer and Other Diseases, Springer Academic Press, New York (2005).33. L. E. Giono and J. J. Manfredi, The p53 tumor suppressor participates in multiple cell cycle checkpoints, J. Cell. Physiol. 2006, 209: 13-20
    34. Mashima and T. Tsuruo, Defects of the apoptotic pathway as therapeutic target against cancer, Drug Resist. 2005, Updates 8:339-343
    35. E. S. Knudsen and K. E. Knudsen, Retinoblastoma tumor suppressor: where cancer meets the cell cycle, Exp. Biol. Med. 2006, 231: 1271-1281
    36. J.K. Hsieh, D. Yap, D. J. 0' Connor, V. Fogal, L. Fall is, F. Chan, S. Zhong and X. Lu, Novel function of the cyclin A binding site of E2F in regulating p53-induced apoptosis in response to DNA damage, Mol. Cell Biol. 2002,22: 78-93
    37. P. Steiner, B. Rudolph, D. Muller and M. Eilers, The functions of Myc in cell cycle progression and apoptosis, Prog. Cell Cycle Res. 1996,2:73-82
    38. L. Desbarats, A. Schneider, D. Muller, A. Burgin and M. Eilers, Myc: a single gene controls both proliferation and apoptosis in mammalian cells,Experientia. 1996, 52: 1123-1129
    39. G. C. Prendergast, Mechanisms of apoptosis by c-Myc, Oncogene. 1999, 18:2967 - 2987
    40. R. P. Bissonnette, F. Echeverri, A. Mahboubi and D. R. Green, Apoptotic cell death induced by c-myc is inhibited by bc1-2, Nature. 1992, 359: 552 - 554
    41. X. Deng, F. Gao and W. S. May Jr., Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS, Blood. 2003, 102: 3179-3185
    42. G. Vairo, T. J. Soos, T. M. Upton, J. Zalvide, J. A. DeCaprio, M. E. Ewen,A. Koff and J.M. Adams, Bcl-2 retards cell cycle entry through p27(Kipl),pRB relative p130, and altered E2F regulation, Mol. Cell. Biol. 2000, 20:4745-4753
    43. L C. Cantley, The phosphoinositide 3-kinase pathway, Science. 2002, 296: 1655 - 1657
    44. B. Vanhaesebroeck and D. R. Alessi, The PI3K-PDK1 connection: more than just a road to PKB, Biochem. J. 2000, 346: 561-576
    45. S. R. Datta, H. Dudek, X. Tao, S. Masters, H. Fu, Y. Gotoh and M. E. Greenberg,Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery, Cell. 1997, 91: 231-241
    46. M. H. Cardone, N. Roy, H. R. Stennicke, G. S. Salvesen, T. F. Franke, E.Stanbridge, S. Frisch and J. C. Reed, Regulation of cell death protease caspase-9 by phosphorylation, Science. 1998, 282: 1318-1321
    47. L. P. Kane, V. Shapiro, D. Stokoe and A. Weiss, Induction of NF-kappaB by the Akt/PKB kinase, Curr. Biol. 1999, 9: 601-604
    48. L. D. Mayo and D. B. Donner, A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus, Proc.Natl. Acad. Sci. U.S.A. 2001, 98: 11598-11603
    49. J. A. Diehl, M. Cheng, M. F. Roussel and C. J. Sherr, Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization, Genes Dev. 1998,12: 3499-3511
    50. M. A. Gregory, Y. Qi and S. R. Hann, Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization, J. Biol.Chem. 2003, 278: 51606-51612
    51. S. B. Lee, E. S. Cho, H. S. Yang, H. Kim and H. D. Urn, Serum withdrawal kills U937 cells by inducing a positive mutual interaction between reactive oxygen species and phosphoinositide 3-kinase, Cell Signal. 2005, 17:197 - 204
    52. B. Lu, L. Wang, C. Stehlik, D. Medan, C. Huang, S. Hu, F. Chen, X. Shi and Y. Rojanasakul, Phosphatidylinositol 3-kinase/Akt positively regulates Fas (CD95)-mediated apoptosis in epidermal C141 cells, J.Immunol. 2006,176: 6785-6793
    53. D. Nimbalkar, M. K. Henry and F. W. Quelle, Cytokine activation of phosphoinositide 3-kinase sensitizes hematopoietic cells to cisplatin-induced death, Cancer Res. 2003, 63: 1034-1039
    54. Adjei AA. Blocking oncogenic Ras signaling for cancer therapy. J. Natl Cancer Inst. 2001,93: 1062
    55. Hagemann C, Rapp UR . Isotype-specific functions of Raf kinases. Exp. Cell Res. 1999, 253: 34
    56. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P,Downward J, Evan G. Suppression of c-Myc-induced apoptosis by Ras signaling through PI(3)K and PKB. Nature 1997,385: 544

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700