用户名: 密码: 验证码:
P型衬底a-Si:H/c-Si异质结太阳能电池背面场和界面性质数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
P型衬底a-Si:H/c-Si异质结太阳能电池具有重要的科学意义和应用价值。特别是,由于异质结独特的性质,使得它可以制作薄层化或硅材料用量少以及稳定性高的高效率硅太阳能电池,在光伏领域有重要的用途。本文通过数值模拟方法对P型衬底a-Si:H/c-Si异质结太阳能电池中背面场和界面性质展开研究,获得了一些创新性的研究结果。
     首先,以能带理论,复合理论和载流子传输理论、半导体与光的相互作用理论为基础,研究了背面场对电池基本参数的影响机理。当背面场材料具有较好导电性时,电池的填充因子随之提高。进一步研究发现,背面场对短波长光的吸收增大了电池的短路电流密度;背面场的空穴激活能以及背面场与衬底基层材料之间的导带阶、价带阶影响了电池的开路电压。这对选择合适的背面场材料有特别的应用。
     然后,以类c-Si界面缺陷态模型为基础,研究了背界面缺陷态与衬底电阻率的相互作用机理和界面缺陷态对电池基本参数的影响机理。第一,当衬底电阻率较大时,界面缺陷态中载流子的复合基本不受影响;当衬底电阻率足够小时,载流子在界面缺陷态中的表面复合会有较大增强。另外,在衬底电阻率减小过程中,衬底中空间电荷区宽度的减少和同时发生的窗口层中的空间电荷区宽度的增大改变了原有光谱吸收结构和光吸收特性。第二,异质结前界面缺陷态主要影响电池的开路电压,对电池短路电流基本没有作用;异质结背界面缺陷态主要影响电池的短路电流,同时对电池的开路电压有一定影响。进一步研究发现,当衬底电阻率很小时,电池开路电压由于载流子在异质结前界面缺陷态中的表面复合加强,产生较大衰减;同时,由于载流子在异质结背界面缺陷态中表面复合加强,电池短路电流也产生一定衰减。这一特性对于选取合适的衬底电阻率和界面缺陷态密度有重要的应用。
It is of great scientific importance and practical value for investigation of a-Si: H/c-Si heterojunction solar cells on p-type crystalline silicon. Especially, because of the unique features of heterojunction, it can be effectively used to make high-performance silicon solar cells using mush little silicon materials and with higher stability. Therefore, it has important applications in the field of photovoltaics. In this paper, properties of back face field and hetero-interface are investigated numerically using computer simulation tools, and some innovative research results have been obtained.
     Firstly, based on energy band theory and recombination theory and charge carrier transmission theory and the interactional theory between solar light and semiconductor, the formation condition of effective back surface filed and the action mechanism of back surface filed on solar cell basic parameters are investigated numerically. When back surface filed has good conductivity, the fill factor can be improved. Furthermore, it can be found out that the short-circuit current can be improved by the enhanced spectra response in the short wavelength light absorbed by back surface filed and the open-circuit voltage can be influnced by the activation energy of back surface filed and the conduction band offset and the valence band offset between back surface and substrate. The phenomenon exhibits particular application for selecting appropriate back surface filed metarials.
     Secondly, based on the quasi- c-Si model, the action mechanism of the hetero-interface defect states on the substrate resistivity and the hetero-interface defect states on the solar cell basic parameters are investigated numerically. When the substrate resistivity is big, surface recombination in the hetero-interface defect states can not be affected. But this will change when the the substrate resistivity is very small and surface recombination in the hetero-interface defect states will be enhanced greatly. On the other hand, the absorbed spectra structure and the optical properties can be changed by the shrunken space charge room of the c-Si side and the expansile space charge room of the a-Si: H side during the decreasing of the substrate resistivity. It can be found out that there are different action mechanism between the front hetero-interface defect states and the rear hetero-interface defect states. The front hetero-interface defect states mainly make the open-circuit voltage decaying while the latter are mainly responsible for the decay of the short-circuit current. Fourthermore, it can be also found out that, when the substrate resistivity is very small, enhanced surface recombination in the shrunken space charge room of the front c-Si side and the rear c-Si side can effectively reduce the the open-circuit voltage and the short-circuit current respectively. The phenomenon exhibits particular application for selecting appropriate substate resistivity and hetero-interface defect states density.
引文
[1]我国成为世界第二大能源消费国,http://finance.sina.com.cn,2004211204.
    [2]International Energy Agency,世界能源展望 2002 第一版,朱起煌等译,北京:中国石化出版社,2004:3-7.
    [3]李传统,新能源与可再生能源技术 第一版,南京:东南大学出版社,2005:1-2.
    [4]吴兑,温室气体与温室效应 第一版,北京:气象出版社,2003:2-6.
    [5]李安定,太阳能光伏发电系统工程 第一版,北京:北京工大学出版社,2001:6-9.
    [6]A.E.Becquerel,C.R.Acad.Sci.9(1839) 561.
    [7]D.M.Chapin,C.S.Fuller,G.L.Pearson,A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,J.Appl.Phys.1954(25):676-677.
    [8]Martin A.Green,Keith Emery,David L.King,Sanekazu Igari,Wilhelm Warta,Solar cell efficiency tables(version 17),Prog.Photovoltaics Res.Appl.2001(9):49-56.
    [9]Dietl J,Helmreich D,Sirtl E,Crystals:Growth,Properties and Applications,Vol.5,Springer 1981:57.
    [10]Green MA,High efficiency solar cells,Trans.Tech.Publications 1987:170.
    [11]Lammert MD,Schwartz RJ,The interdigitated back contact solar cell-A silicon solar cell for use in concentrated sunlight,IEEE TED.1977(31):337-342.
    [12]Swanson RM,Backwith.S.K,Point-contact silicon solar cells,IEEE TED.1984(31):661-664.
    [13]RA Sinton,Y Kwark,JY Gan,RM Swanson,27.5-percent silicon concentrator solar cells,IEEE Electron Dev.Lett.1986(7):567-569.
    [14]Hezel R,Sol.En.Mat.Solar Cells 74(2002) p.25
    [15]Wenham SR,Honsberg CB,Green MA,Sol.En.Mat.Solar Cells 34(1994) p.11
    [16]Schneiderlochner E,Preu R,Ludemann R,Glunz SW,Laser-fired rear contacts for crystalline silicon solar cells,Prog.Photovolt.Res.Appl.2002(10):29-34.
    [17]H.F.Sterling and R.C.G.Swann,Chemical vapour deposition promoted by r.f.discharge,Solid-State Electron 1965(8):653-654.
    [18]W.Spear and P.LeComber,Substitutional doping of amorphous silicon,Solid State Comm.1993(88):1015-1018.
    [19]D.E.Carlson and C.R.Wronski,Amorphous silicon solar cell,Appl.Phys.Lett.1976(28):671-673.
    [20]Y.Hamakawa,H.Okamoto,Y.Nitta,A new type of amorphous silicon photovoltaic cell generating more than 2.0 V,Appl.Phys.Lett.1979(35):187-189.
    [21]R.R.Arya and D.E.Carlson,Amorphous silicon PV module manufacturing at BP Solar,Progr.Photovolt.Res.Appl.2002(10):69-76.
    [22]E.Maruyama,S.Okamoto,A.Terakawa,W.Shinohara,M.Tanaka and S.Kiyama,Toward stabilized 10% efficiency of large-area ( 5000 cm2) a-Si/a-SiGe tandem solar cells using high-rate deposition, Sol. En. Mat. Sol. Cells 2002(74): 339-349.
    [23] Y. Ichikawa, T. Yoshida, T. Hama, H. Sakai and K. Harashima, Production technology for amorphous silicon-based flexible solar cells, Sol. En. Mat. Sol. Cells 2001(66): 107-115.
    [24] S. Guha, J. Yang and A. Banerjee, Amorphous silicon alloy photovoltaic research - present andfuture, Progr.Photovolt. Res. Appl. 2000(8): 141-150.
    [25] J. Meier, S. Dubail, R. Fl'uckiger, D. Fischer, H. Keppner, A. Shah, Intrinsic microcrystallinesilicon - a promising new thin film solar cell material, in: Proceedings of the 1st World Conferenceon Photovoltaic Energy Conversion, Hawai,1994: 409-412.
    [26] J. Meier, S. Dubail, J. Cuperus, U. Kroll, R. Platz, P. Torres, J.A. Anna Selvan, P. Pernet, N. Beck,N. Pellaton Vaucher, Ch. Hof, D. Fischer, H. Keppner, A. Shah, Recent progress in micromorphsolar cells, J. Non-Cryst. Solids 1998(227-230): 1250-1256.
    
    [27] K.Yamamoto, M.Yoshimi,Y. Tawada,Y. Okamoto, A. Nakajima, Thin film Si solar cell fabricatedat low temperature, J. Non-Cryst. Solids 2000(266-269): 1082-1087.
    [28] J. Meier, U. Kroll, S. Dubail, S. Golay, S. Fay, J. Dubail, A. Shah, Efficiency enhancement of amorphous silicon p-i-n- solar cells by LP-CVD ZnO, in: Proceedings of the 28th IEEEPhotovoltaicSpecialist Conference, 2000: 746-749.
    [29] J. Muller, G. Schope, O. Kluth, B. Rech, B. Syszka, T. Hoing, V. Sittinger, X. Jiang, G.Brauer, R. Geyer, P. Lechner, H. Schade, M. Ruske, Large area mid-frequency magnetron sputtered ZnO films as substrates for silicon, in: Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, 2001: 2876-2879.
    [30] J. Meier, U. Kroll, J. Spitznagel, S. Bengagli, T. Roschek, G. Pfanner, Ch. Ellert, G.Androutsopoulos, A. Hugli, G. Buchel, D. Plesa, A. Buchel, A. Shah, Thin film silicon solar cell up-scaling by large-area PECVD KAI systems, in: Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition, Paris, 2004, 3BP1.2.
    [31] S. Wieder, J. Liu, T. Repmann, R. Carius, J. Kuske, and U. Stephan, Large area deposition of amorphous and microcrystalline silicon - new tools for industrial applicable mass production,in: Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition,Paris, 2004: 3AO.8.3.
    [32] D. Bonnet and H. Rabenhorst, New results on the development of a thin film p-CdTe/n-CdS heterojunction solar cell, in: Proceeding of 9th IEEE Photovoltaic Specialists Conference,IEEE, New York, 1972: 129-131.
    [33] X. Wu, J. Keane, R. Dhere, C. DeHart, A. Duda, T. Gessert, S. Asher, D. Levi and P. Sheldon, 16.5 %-efficient CdS/CdTe polycrystalline thin film solar cell, in: Proceeding of 17th European Photovoltaic Solar Energy Conference, Munich, 2002: 995-1000.
    
    [34] D. Bonnet, H. Richter and K.H. Jager, The CTS thin film solar module-closer to production, in: Proc. 13th European Photovoltaic Solar Energy Conference, Stephens & Associates, UK,1996:1456-1460.
    [35] D. Bonnet and M. Harr, Manufacturing of CdTe solar cells, in Proceeding of 2nd World Conference on Photovoltaic Energy Conversion (Vienna, Austria, July 1998), JRC, European Commission 1998: 397-402.
    [36] M. Harr and D. Bonnet, Production of advanced thin film solar modules, in: Proceeding of 17th European Photovoltaic Solar Energy Conference, Munich, 2002: 1001-1004.
    [37] D. Rose, R. Powell, U. Jayamaha, M. Maltby, D. Giolando, A. McMaster, K. Kormanyos, G.Faykosh, J, Klopping and G. Dorer, R&D of CdTe-absorber photovoltaic cells, modules, and manufacturing equipment: plan and progress 10-100 MW/yr, in: Proceeding of 28th IEEE Photovoltaic Specialists Conference, New York, 2000: 428-431.
    [38] D. Bonnet and P. Meyers, Cadmium telluride - material for thin film solar cells, J. Mater.Res. 1998(13): 2740-2753.
    [39] B. McCandles, L. Moulton and R. Birkmire, Recrystallisation and sulphur diffusion in CdC12-treated CdTe/CdS thin films, Prog. Photovolt. Res. Appl. 1997(5): 249-260.
    [40] J. P. Ponpon, A review of ohmic and rectifying contacts on cadmium telluride, Solid-State Electronics 1985(28): 689-706.
    [41] D. Kraft, B. Spath, J. Fritsche, A. Thien, A. Klein and W. Jaegermann, Metal contacts to CdTe and ZnTe, in: Proceeding of the European Materials Research Society Conference,Strasbourg, France, 2004: 24-28.
    [42] K. Dobson, I. Visoly-Fisher, G. Hodes and D. Cahen, Stabilizing CdTe/CdS solar cells with Cucontaining contacts to p-CdTe, Adv. Mat. 2001(13), 1495-1499.
    [43] D. Batzner, A. Romeo, M. Terheggen, M. Dobeli, H. Zogg and A. Tiwari, Stability aspects in CdTe/CdS solar cells, Thin Solid Films 2004(451-452): 536-543.
    [44] V. Fthenakis, S. Morris, P. Moskowitz and D. Morgan, Toxicity of cadmium telluride, copper indium diselenide, and copper gallium diselenide, Prog. Photovolt. Res. Appl. 1999(7):489-497.
    [45] D. Bonnet and M. Harr, Manufacturing of CdTe solar cells, in: Proceeding of 2nd World Conference on Photovoltaic Energy Conversion, Vienna, Austria, 1998: 397-402.
    [46] Katsumi Ku Shiya , Satoru Ku Riya Gawa ,Takah isa Kae, Muneyori Tachiyuki, Ich iro Su Giyama , Yasuhiko Sa Toh,Masao Sa Toh and Hiro shi Ta Keshita , The role of Cu(InGa)(SeS)_2 surface layer on a graded bandgap Cu(InGa)Se_2 thin film so lar cell prepared by two stage method, in: Proceeding of 25th IEEE PV SC, 1996.
    [47] Young D L, Keane J, Duda A, J ehad A. M. A bushama, C. L. Perkins, M. Romero and R.Noufi, Improved performance in ZnO/CdS/C uGaSe2 thin film solar cells, Prog. Photovolt. Res. Appl. 2003(11): 535-541.
    [48] Miguel A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas, R.Noufi, Progress in Photovoltaics : Research and Applications , 2005(13): 209-216.
    [49] M. Altosaar, M. Danilson, M. Kauk, J. Krustok, E. Mellikov, J. Raudoja, K. Timmo and T.Varema . Further developments in CIS monograin layer solar cells technology, Solar Energy Materials & Solar Cells, 2005(87): 25-32.
    [51]Rafat N H,Habib S E D.The limiting efficiency of band gap graded solar cells,Solar Energy Materials and Solar Cells,1998(55):341-361.
    [52]张晓旭.电沉积法制备铜铟硒薄膜.哈尔滨:哈尔滨工业大学,2006.(硕士学位论文)
    [53]Makoto Tanaka,Shingo Okamoto,Sadaji Tsuge,Development of HIT solar cells with more than 21%conversion efficiency and commercialization of highest performance HIT modules.In:WCPEC-3 abstracts for the technical program.Osaka,Japan,2003:223.
    [54]Tanaka M,Development of New a-Si/c-Si Heterojunction Solar Cells:ACJ-HIT(Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer),Japanese Journal of Applied Physice 1992(31):3518-3522.
    [55]K.v.Maydell,H.Windgassen,W.A.Nositschka,U.Rau,P.J.Rostan,J.Henze,J.Schmidt,M.Scherff,W.Fahrner,D.Borchert,S.Tardon,R.Briiggemann,H.Stiebig,and M.Schmidt,Basic electronic properties and technology of TCO / a-Si:H(n) / c-Si(p)heterojunction solar cells,in:Proceedings of the20th European Photovoltaic Solar Energy Conference,Barcelona,Spain,2005:822-825.
    [56]E.Conrad,K.v.Maydell,H.Angermann,C.Schubert,M.Schmidt,Optimization of interface properties in a-Si:H/c-Si hetero-junction solar cells,in:Conference Record of the 2006 IEEE 4~(th) World Conference on Photovoltaic Energy Conversion,Berlin,Germany,2006:1263-1266.
    [57]T.H.Wang,M.R.Page,E.Iwaniczko,D.H.Levi,Y.Yan,H.M.Branz,V.Yelundur,A.Rohatgi,G.Bunea,A.Terao,and Q.wang,Toward Better Understanding and Improved Performance of Silicon Heterojunction Solar Cells:Preprint,in Proceeding of 14~(th) Workshop on Crystalline Silicon Solar Cells & Modules:Materials and Processes,Winter Park,Colorado,USAAug.8-11,2004.
    [58]Martin A.Green,太阳电池工作原理、工艺和系统的应用第一版,李秀文,谢鸿礼,赵海滨等译,北京:电子工业出版社,1987.
    [59]Antonio Luque,Steven Hegedus,Handbook of PV Science and Engineering,England:Wiley Press,2003:92-95.
    [60]ARC Centre for Advanced Silicon Photovoltaics and Photonics,Applied Photovoltaic Second Edition,London,2008:58-62.
    [61]刘恩科,朱秉升,罗晋生,半导体物理学 第六版,北京:电子工业出版社,2003:280-286.
    [62]Sze.S.M,Semiconductor Devices Physics and Technology Second Edition,New York:John Wiley & Sons Press,2002:72-74.
    [63]Toru Sawada,Norihiro Terada,Sadaji Tsuge,Toshiaki Baba,Tsuyoshi Takahama,Kenichiro Wakisaka,Shinya Tsuda and Shoichi Nakano,High-efficiency a-Si:H/c-Si heterojunction solar cells,in:Proceedings of the First WCPEC Conference,Hawaii,USA,1994:1219-1226.
    [64]R.Hussein,D.Borchert,G.Grabosch,W.R.Fahrner,Dark I-V-T measurements and characteristics of(n) a-Si/(p) c-Si heterojunction solar cells,Solar Energy Materials & Solar Cells 2001(69):123-129.
    [65]Y.Veschetti,J.-C.Muller,J.Damon-Lacoste,P.Roca i Cabarrocas,A.S.Gudovskikh,J.-P.Kleider,P.-J.Ribeyron,E.Rolland,Optimization of amorphous and polymorphous thin silicon layers for the formation of the front-side of heterojunction solar cells on p-type crystalline silicon substrates,Thin Solid Films 2006(511-512):543-547.
    [66]M.T ucci,M.della Noce,E.Bobeico,F.Roca,G.de Cesare,F.Palma,Comparison of amorphous/crystalline heterojunction solar cells based on n-and p-type crystalline silicon,Thin Solid Films 2004(451-452):355-360.
    [67]Q.Wang,M.R.Page,E.Iwaniczko,Y.Q.Xu,L.Roybal,R.Bauer,B.To,H.C.Yuan,A.Duda,and Y.F.Yan,Crystal silicon heterojunction solar cells by hot-wire cvd,Presented at the 33rd IEEE Photovoltaic Specialists Conference,San Diego,California,2008:
    [68]C.Voz,D.Munoz,M.Fonrodona,I.Martin,J.Puigdollers,R.Alcubilla,J.Escarre,J.Bertomeu,J.Andreu,Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV,Thin Solid Films 2006(511-512):415-419.
    [69]Ying Xu,Zhihua Hu,Hongwei Diao,Yi Cai,Shibin Zhang,Xiangbo Zeng,Huiying Hao,Xianbo Liao,Elvira Fortunato,Rodrigo Martins,Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers,Non-Cryst.Solids,2006(352):1972-1975.
    [70]H.D.Goldbach,A.Bink,R.E.I.Schropp,Thin p++ mc-Si layers for use as back surface field in p-type silicon heterojunction solar cells,Non-Cryst.Solids 2006(352):1872-1875.
    [71]P.J.Rostan,U.Rau,V.X.Nguyen,T.Kirchartz,M.B.Schubert,J.H.Werner,Low-temperature a-Si:H/ZnO/Al back contacts for high efficiency silicon solar cells,Sol.Energy Mater.Sol.Cells,2006(90):1345-1352.
    [72][72]赵雷,周春兰,李海玲,刁宏伟,王文静,a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化,物理学报 2005(57):3212-3218.
    [73]L.Zhao,C.L.Zhou,H.L.Li,H.W.Diao,W.J.Wang,Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation,Sol.Energy Materials.Sol.Cells,2008(92):673-681.
    [74]M.Taguchi,K.Kawamoto,S.Tsuge,T.Baba,HIT(TM) cells-High-efficiency crystalline Si cells with novel structure,Prog.Photovolt,2000(8):503-513.
    [75]H.Fujiwara,M.Kondo,Effects of a-Si:H layer thicknesses on the performance of a-Si:H/c-Si heterojunction solar cells,J.Appl.Phys.2007(101):054516-054524.
    [76]Stangl R,Kriegel M,AFORS-HET,Version 2.2,a numerical computer program for simulation of heterojunction solar cells and measurements,in:Proceeding of IEEE WCPEC-4,Hawaii,USA,2006.
    [77]A.Froitzheim,R.Stangl,L.Elstner,M.Kriegel,W.Fuhs,AFORS-HET:a computer-program for the simulation of heterojunction solar cells to be distributed for public use,In proceedings of WCPEC-3,Vol.1,Osaka,2003
    [78]Conrad E,Maydell K V,Development and optimization of a-Si:H/c-Si heterojunction solar cells completely processed at low temperatures,in:Proceeding of IEEE WCPEC-4,Hawaii,USA,2006.
    [79]任丙彦,张燕,郭贝,张兵,李洪源,许颖,王文静,N型单晶硅衬底上非晶硅/单晶硅异质结太阳电池计算机模拟,太阳能学报,2008(29):1112-1116.
    [80]Y.J.Song,M.R.Park,E.Guliants,W.A.Anderson,Influence of defects and band offsets on carrier transport mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells,Sol.Energy Mater.Sol.Cells,2000(64):225-240.
    [81]A.Fantoni,Y.Vigranenko,M.Fernandes,R.Schwarz,M.Vieira,Influence of the band offset on the performance of photodevices based on the c-Si_a-Si:H heterostructure,Thin Solid Films 2001(383):314_317.
    [82]M.Tucci,E.Salurso,F.Roca,F.Pslma,Dry cleaning process of crystalline silicon surface in Si:H/c-Si heterojunction for photovoltaic applications,Thin Solid Films 2002(403-404):307-311.
    [83]A.S.Gudovskikh,J.P.Kleider,R.Stangl,New approach to capacitance spectroscopy for interface characterization of a-Si:H/c-Si heterojunctions,Journal of Non-Crystalline Solids 2006(352):1213-1216.
    [84]Shigeki Imai,Masao Takahashi,Methods of observation and elimination of semiconductor defect states,Solar Energy 2006(80):645-652.
    [85]Jeff Bailey,Scott A.Mchugo,Henry Hieslmair,Eicke R.Weber,Efficiency-Limiting Defects in Silicon Solar Cell Material,Journal of Electronic Materials 1996(25):1417-1421.
    [86]Young-Woo Ok,Tae-Yeon Seong,Donghwan Kim,Sang-Kyun Kim,Jeong Chul Lee,Kyung Hoon Yoon,Jinsoo Song,Electrical and optical properties of point-contacted a-Si:H/c-Si heterojunction solar cells with patterned SiO_2 at the interface,Sol.Energy Materials.Sol.Cells,2007(91):1366-1370.
    [87]Mario Tucci,Rosario De Rosa,Francesco Roca,CF_4/O_2 dry etching of textured crystalline silicon surface in a-Si:H/c-Si heterojunction for photovoltaic applications,Solar Energy Materials & Solar Cells 2001(69):175-185.
    [88]J.Carabe,J.J.Ganda,Influence of interface treatments on the performance of silicon heterojunction solar cells,Thin Solid Films 2002(403-404):238-241.
    [89]Sara Olibet,Evelyne Vallat-Sauvain,Christophe Ballif,Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bond,Physical Review B 2007(76):035326.
    [90]B.Jagannathan,W.A.Anderson,J.Coleman,Amorphous silicon p-type crystalline silicon heterojunction solar cells,Sol.Energy Materials.Sol.Cells,1997(46):289-310.
    [91]A.S.Gudovskikh,J.-P.Kleider,J.Damon-Lacoste,P.Roca I Cabarrocas,Y.Veschetti,J.C,Muller,P.J.Ribeyron,E.Rolland,Interface properties of a-Si H / c-Si heterojunction solar cells from admittance spectroscopy,Thin Solid Films,2006(511-512):385-389.
    [92]L.Zhao,H.L.Li,C.L.Zhou,H.W.Diao,W.J.Wang,Optimized resistivity of p-type Si substrate for HIT solar cell with Al back surface field by computer simulation, Solar Energy,2009(83): 812-816.
    [93] N. Jensen, U. Rau, R. M. Hausner, S. Uppal, L. Oberbeck, R. B. Bergmann, J. H. Werner,Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells, J. Appl. Phys. 2000(87): 2639-2645.
    [94] A. Froitzheim , K. Brendel, L. Elstner, W. Fuhs, K. Kliefoth, M. Schmidt, Interface recombination in heterojunctions of amorphous ans crystalline silicon, J. Non-Cryst. Solids 2002(299-302): 663-667
    [95] A.S. Gudovskikh, J.P. Kleider, R. Stangl, M. Schmidt, W. Fuhs, Interface properties of a-Si H c-Si heterojunctions investigated by admittance spectroscopy, in Proceedings of 19th European Photovoltaic Solar Energy Conference, Paris, France 2004: 697-700.
    
    [96] R.Stangl, A. Froitzheim, M. Schmidt, W. Fuhs, Design criteria for amorphous/crystalline silicon heterojunction solar cells, - a simulation study, in: Proceedings of the 3~(rd) World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003: 1005-1008
    [97] A. Froitzheim, R. Stangl, L. Elstner, M. Schmidt, W. Fuhs, Interface recombination in amorphous crystalline silicon solar cells, a simulation study, Conference record of the 29~(th)IEEE Photovoltaic Specialists Conference, News Orleans, USA, 2002: 1238-1241
    [98] R. Hussein, D. Borchert, G. Grabosch, W.R. Fahrner 2001 Sol. Energy Materials. Sol. Cells 69 123-129.
    [99] Hernandez-Como. N, Morales-Acevedo. A, Hetero-junction (HIT) silicon solar cell model for AMPS-ID simulation, in: Proceedings of the 5~(th) International Conference on Electrical Engineering, Computing Science and Automatic Control, Mexico City, Mexico, 2008:449-454.
    [100] M.R. Page, E. Iwaniczko, Y. Xu, Q. Wang, Y. Yan, L. Roybal, H.M. Branz, T.H. Wang,Well Passivated a-Si H Back Contacts for Double-Heterojunction Silicon Solar Cells,Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion , Hawaii, USA, 2006: 1485-1488.
    [101] W.J. Yang , Z.Q. Ma, X. Tang, C.B. Feng, W.G. Zhao, P.P. Shi, Internal quantum efficiency for solar cells, Solar Energy, 2008(82): 106-110.
    [102] Stefaan De Wolfa, Guy Beaucarne, Surface passivation properties of boron-doped plasma-enhanced chemical vapor deposited hydrogenated amorphous silicon films on p-type crystalline Si substrates, Appl. Phys. Lett 2006(88): 022104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700