用户名: 密码: 验证码:
低品质米糠原位制备脂肪酸甲/乙酯研究及其综合利用设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界能源危机和环境问题的加剧,寻找可再生新能源已成为各国战略发展的必然趋势。在这样的大背景下,从上世纪末至今,生物柴油受到了广泛的关注,且正以破竹之势蓬勃发展。此外,如何科学地、可持续发展地利用资源、保护环境也成为新世纪之初的重要议题和未来资源利用的大方向。
     本论文基于上述的背景,针对目前生物柴油存在的问题,设计研究了一套利用低品质原料油制备生物柴油的方法,并对其中的废水、废渣进行了合理的利用,制得了高附加值的纳米碳酸钙产品。同时,我们将该方法改良应用于米糠原位提油制备生物柴油的研究。利用同步除水和酸碱逐步过渡两个关键技术,成功地将米糠提油和生物柴油的制备融为一体,缩短了工艺流程。该工艺以甲醇或乙醇为酯化/醇解剂,以石油醚为提油溶剂和反应介质,以硫酸为催化剂,在提油过程中实现米糠油中游离脂肪酸的原位酯化。在除水剂存在下,通过逐步加碱实现体系的酸碱过渡,从而使米糠油中的甘油酯醇解为生物柴油的主要成分脂肪酸甲酯或乙酯。该方法环境友好、具有一定的普适性,可应用于其它含油作物原位提油制备生物柴油。通过对提油过程、酯化过程和酯交换过程的考察,我们进一步设计并提出了米糠综合利用的工艺流程。初步的试验证实了该工艺的可行性,为米糠的综合利用探明了方向。
Under the pressure of energy and environment crisis, finding renewable environmentally friendly energy is becoming a great trend of the world. In this situation, bioengery such as fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE) has attracted a lot of attention. FAME and FAEE have similar molecular structure and combustibility with the fossil diesel oil. They are typical renewable environmentally friendly energy, and usually called biodiesel. Besides, they could also be used as substitute of some traditional toxic organic solvent, because they have good solubility and resolvability. However, with the development of biodiesel industry, the problem of raw material has become a major constraint to the further development of this industry. Because the cost of the oil-containing material takes more than 70% cost of the biodiesel product, a lot of researches focus on the cheap raw materials. In another aspect, China produces more than 10,000,000 tons of rice bran annually and most of the rice bran is utilized unreasonably. As realized the problems of these two areas, we used low quality rice bran to produce FAME and FAEE in this dissertation, which is killing two birds with one stone. Based on the research, we made integrated strategies of rice bran utilization, too.
     Firstly, we need to design a process which could produce FAME and FAEE from low quality feedstock oil. Traditionally, the typical method using low quality oil to produce FAME and FAEE is two-step process. The first step is an acid catalyzed process, which esterifies free fatty acids (FFAs), and the second step is an alkaline catalyzed process, which transesterifies the glycerides in the feedstock. However, the intermediate treatment process between esterification and transesterificaion processes is a tedious procedure including neutralization of acid catalyst, removal of water and impurities, evaporation of alcohol or settlement for phase-separation, et al. The tedious work not only wastes a lot of time, but also produces waste water which is unfriendly to the environment. In our work, we evolved a simple route for the production of FAME and FAEE, by using the mixture of soybean oil and oleic acid (OA) as feedstock to imitate low quality lipids with substantial FFAs content. The merit of our route is that the intermediate process could be eliminated based on our designed experimental apparatus, thus acid and alkaline catalyzed processes performed without intervals. The water in the reaction system was eliminated simultaneously when it was formed by introduction of CaO powder to Soxhlet apparatus. On considering the environmental character of the whole strategy, the waste water and CaO residue were used as raw materials to produce value-added nano-CaCO3 byproduct via carbonation method at room temperature. Based on our strategy, the production process of FAME and FAEE could be simplified and the production cost could be reduced. It was an economical route for FAME and FAEE production.
     Secondly, based on the designed process, we studied the production of FAEE from low quality rice bran. The effects of solvent, acid and alkaline catalysts on the yield rate, esterification rate and transesterification rate were studied. 12.29% ( w FAEE / wrice?bran) of FAEE was obtained when absolute ethanol was used as solvent to extract rice bran oil. The esterification rate and transesterification rate reached 97.90 % and 82.78 %, respectively. With the aid of petroleum ether, the yield rate of FAEE could be improved to 15.50% ( w FAEE / wrice?bran), and the esterification rate and transesterification rate reached 98.89% and 85.94%. Moreover, we found that the petroleum ether could restrain saponification in the case of FAEE production.
     Thirdly, we further studied the production of FAME from low quality rice bran. The oil extraction process and the effect of petroleum ether on the esterification and transesterification processes were investigated. Besides, the moister resistance of the system was investigated, too. The results approved that the designed process was feasible. It was different from FAEE that we found there was a synergistic effect between methanol and petroleum ether. Less methanol and acid catalyst could be used because of this effect. When 50 g of rice bran, 75 mL of absolute methanol, 150 mL of petroleum ether, 0.75 g of concentrated sulfuric acid and 0.71 g of sodium hydroxyl were used, 16.69% ( w FAME / wrice?bran) of FAME was obtained. The esterification rate and the transesterification rate reached 98.83% and 80.47%.
     Finaly, on considering the environmental character of the whole strategy, we investigated the utilization of the waste water and CaO residue from FAME and FAEE production. In this chapter, value-added calcium carbonate (CaCO3) with micro/nanostructures was produced via carbonation method at ambient temperature. The results showed that the CaCO3 obtained was hydrophobic (contact angle, 111o) and had broccoli-like morphology. It was made up of many uniform nano-rods, and each rod was composed of smaller particles with diameters about 50 nm. The idea of wastes utilization could make the FAME/FAEE production process environmentally friendly, and the income of the produced CaCO3 could further compensate the cost of FAME/FAEE production.
     The integrated utilization of rice bran is a promising project. As a result, at the end of the dissertation, we designed some technical flows for the further investigation of rice bran and hope it would be useful for the coming works.
引文
[1]亦森.脂肪酸酯特性及其最近应用动向[J].粮食与油脂,1997(01):52-54.
    [2]罗永宗.菜油脂肪酸甲酯的生产和应用[J].中国油脂,1989(02):42-58.
    [3]刘琦,杜海燕.高级脂肪酸甲酯的合成及其应用研究进展[J].天津化工,2006,20(3):27-30.
    [4]陈登龙,丁以钿,温秀珍,刘五连.生物柴油高附加值的开发应用——替代脂肪酸或豆油用于醇酸树脂的生产[J].中国资源综合利用,2006,24(8):35-36.
    [5]陈登龙,温秀珍,丁以钿,刘五连.生物柴油在精细化学品汇领域的应用[J].精细与专用化学品,2006,14(13):1-13.
    [6]于朝云.洗涤剂脂肪酸甲酯磺酸钠盐的制备简介[J].化工之友,2007,13:48.
    [7]脂肪酸甲酯的开发应用[EB/OL].(2008-11-27)[2009-06-22]. http://news.biox.cn/content/200811/20081127093924_19380.shtml
    [8]崔建华.脂肪酸甲酯制备表面活性剂的研究与生产现状[J].河南化工,2009,4(26):3-6.
    [9]蒋顺英,马传国,程亚芳.新型工业溶剂——大豆油甲酯[J].中国油脂,2007,32(7):53-55.
    [10]马传国,蒋顺英,张晶,董学工.大豆油甲酯制备清洗剂的研究[J].中国油脂,2008,33(4):28-31.
    [11]王鑫,陈蕴智,田福祯,王明亮.大豆油脂肪酸乙酯的制备及其在印刷油墨中的应用[J].中国油脂,2008,33(2):60-62.
    [12]火双红,蒋炜,鲁厚芳,梁斌.生物柴油及其柴油混合物的溶解性和橡胶兼容性研究[J].中国油脂,2009,34(6):54-57.
    [13]刘琦.高级脂肪酸甲酯合成非离子表面活性剂及其抗CO2腐蚀性能研究[D].江西:江西理工大学,2007.
    [14]林国良.环氧植物油酯的合成及其在PVC中的应用研究[D].福建:福建师范大学,2008.
    [15]金传玲.生物柴油及其衍生物烷醇酰胺的制备和应用[D].山东:中国石油大学,2008.
    [16]马超.以生物柴油为替代溶剂制备拟除虫菊酯类农药微乳剂[D].山东:山东农业大学,2008.
    [17]刘跃群,李艳芳,郭天娥,刘峰.生物柴油作为精喹禾灵乳油中二甲苯替代溶剂的应用初探[J].农药学学报,2009,11(1):131-136.
    [18]鲁梅.甲酯化植物油类助剂对除草剂增效作用的研究[D].山东:山东农业大学,2005.
    [19]王秋霞.甲酯化大豆油助剂的制备及其对除草剂增效作用的研究[D].黑龙江:东北农业大学,2003.
    [20] VAUGHN S F, HOLSER R A. Evaluation of biodiesels from several oilseed sources as environmental friendly contact herbicides [J]. Ind Crop Prod, 2007, 26: 63-68.
    [21] FOLEY D H, FRANCES S P. Laboratory evaluation of methylated coconut oil as a larvicide for anopheles farauti and culex annulirostris [J]. J Am Mosquito Contr, 2005, 21 (4): 477-479.
    [22] SALEHPOUR S, DUBéM A. Biodiesel: a green polymerization solvent [J]. Green Chem, 2008, 10: 321-326.
    [23] SALEHPOUR S, DUBéM A. The use of biodiesel as a green polymerization solvent at elevated temperatures [J]. Polym Int, 2008, 57: 854-862.
    [24] SALEHPOUR S, DUBéM A, MURPHY M. Solution polymerization of styrene using biodiesel as a solvent: effect of biodiesel feedstock [J]. The Can J Chem Eng, 2009, 87: 129-135.
    [25] HU J, DU Z, TANG Z, MIN E. Study on the solvent power of a new green solvent: biodiesel [J]. Ind Eng Chem Res, 2004, 43: 7928-7931.
    [26] NASIRI M, ASHRAFIZADEH S N. Synthesis of a novel ester-based drilling fluid applicable to high temperature conditions [J]. J Energ Resour-ASME, 2009, 131: 1-10.
    [27] Georgogianni K G, Katsoulidis A K, Pomonis P J, Manos G, Kontominas M G. Transesterification of rapeseed oil for the production ofbiodiesel using homogeneous and heterogeneous catalysis [J]. Fuel Process Technol, 2009, 90: 1016-1022.
    [28] LIM Y, LEE H, LEE Y W, HAN C. Design and economic analysis of the process for biodiesel fuel production from transesterificated rapeseed oil using supercritical methanol [J]. Ind Eng Chem Res, 2009, 48: 5370-5378.
    [29] VERZIU M, COJOCARU B, HU J C, RICHARDS R, CIUCULESCU C, FILIP P, PARVULESCU V I. Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts [J]. Green Chem, 2008, 10: 373-381.
    [30] SUN H, HU K, LOU H, ZHENG X. Biodiesel production from transesterification of rapeseed oil using KF/Eu2O3 as a catalyst [J]. Energ Fuel, 2008, 22: 2756-2760.
    [31] MA H, LI S, WANG B, WANG R, TIAN S. Transesterification of rapeseed oil for synthesizing biodiesel by K/KOH/gamma-Al2O3 as heterogeneous base catalyst [J]. J Am Oil Chem Soc, 2008, 85: 263-270.
    [32] RASHID U, ANWAR F. Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil [J]. Fuel, 2008, 87: 265-273.
    [33] YAN S L, LU H F, LIANG B. Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production [J]. Energ Fuel, 2008, 22: 646-651.
    [34] KOPCHEV V, PAVLIKIANOVA A, KOPCHEV P. Possibilities for alkaline transesterification of rapeseed oil for biodiesel fuel production [J]. Bulg Chem Commun, 2007, 39: 20-25.
    [35] SHU Q, ZHANG Q, XU G, NAWAZ Z, WANG D, WANG J. Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst [J]. Fuel Process Technol, 2009, 90: 1002-1008.
    [36] QIAN J, WANG F, LIU S, YUN Z. In situ alkaline transesterificationof cottonseed oil for production of biodiesel and nontoxic cottonseed meal [J]. Bioresource Technol, 2008, 99: 9009-9012.
    [37] AHMAD M, ZAFAR M, KHAN M A, HASAN A, SULTANA S. Methanolysis of cottonseed oil for biodiesel: As renewable source of energy [J]. Asian J Chem, 2008, 20: 4565-4570.
    [38] GEORGOGIANNI K G, KONTOMINAS A G, POMONIS P J, AVLONITIS D, GERGIS V. Alkaline conventional and in situ transesterification of cottonseed oil for the production of biodiesel [J]. Energ Fuel, 2008, 22: 2110-2115.
    [39] JOSHI H C, TOLER J, WALKER T. Optimization of cottonseed oil ethanolysis to produce biodiesel high in gossypol content [J]. J Am Oil Chem Soc, 2008, 85: 357-363.
    [40] DEMIRBAS A. Studies on cottonseed oil biodiesel prepared in non-catalytic SCF conditions [J]. Bioresource Technol, 2008, 99: 1125-1130.
    [41] CUI L, XIAO G, XU B, TENG G Y. Transesterification of cottonseed oil to biodiesel by using heterogeneous solid basic catalysts [J]. Energ Fuel, 2007, 21: 3740-3743.
    [42] MENEGHETTI S A P, MENEGHETTI M R, SERRA T A, BARBOSA D C, WOLF C R. Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and castor oils [J]. Energ Fuel, 2007, 21: 3746-3747.
    [43] WU Q, CHEN H, HAN M, WANG J, WANG D, JIN Y. Transesterification of cottonseed oil to biodiesel catalyzed by highly active ionic liquids [J]. Chinese J Catal, 2006, 27: 294-296.
    [44] XU L, LI W, HU J, YANG X, GUO Y. Biodiesel production from soybean oil catalyzed by multifunctionalized Ta2O5/SiO2-[ H3PW12O40/R] (R = Me or Ph) hybrid catalyst [J]. Appl Catal B-Environ, 2009, 90: 587-594.
    [45] MAHAMUNI N N, ADEWUYI Y G. Optimization of the synthesis of biodiesel via ultrasound-enhanced base-catalyzed transesterification ofsoybean oil using a multifrequency ultrasonic reactor [J]. Energ Fuel, 2009, 23: 2757-2766.
    [46] GEORGOGIANNI K G, KATSOULIDIS A P, POMONIS P J, KONTOMINAS M G. Transesterification of soybean frying oil to biodiesel using heterogeneous catalysts [J]. Fuel Process Technol, 2009, 90: 671-676.
    [47] LIANG X, GAO S, WU H, YANG J. Highly efficient procedure for the synthesis of biodiesel from soybean oil [J]. Fuel Process Technol, 2009, 90: 701-704.
    [48] DE GUZMAN R, TANG H, SALLEY S, NG K Y S. Synergistic effects of antioxidants on the oxidative stability of soybean oil- and poultry fat-based biodiesel [J]. J Am Oil Chem Soc, 2009, 86: 459-467.
    [49] CHAND P, REDDY C V, VERKADE J G, WANG T, GREWELL D. Thermogravimetric quantification of biodiesel produced via alkali catalyzed transesterification of soybean oil [J]. Energ Fuel, 2009, 23: 989-992.
    [50] WAN T, YU P, WANG S, LUO Y. Application of sodium aluminate as a heterogeneous base catalyst for biodiesel production from soybean oil [J]. Energ Fuel, 2009, 23: 1089-1092.
    [51] MATASSOLI A L F, CORREA I N S, PORTILHO M F, VELOSO C O, LANGONE M A P. Enzymatic synthesis of biodiesel via alcoholysis of palm oil [J]. Appl Biochem Biotech, 2009, 155: 347-355.
    [52] LIN C Y, CHIU C C. Effects of oxidation during long-term storage on the fuel properties of palm oil-based biodiesel [J]. Energ Fuel, 2009, 23: 3285-3289.
    [53] SIM J H, KAMARUDDIN A H, BHATIA S. Effect of mass transfer and enzyme loading on the biodiesel yield and reaction rate in the enzymatic transesterification of crude palm oil [J]. Energ Fuel, 2009, 23: 4651-4658.
    [54] ALAMU O J, WAHEED M A, JEKAYINFA S O. Determination of optimum temperature for the laboratory preparation of biodiesel from nigerian palm kernel oil [J]. Energ Source Part A, 2009, 31: 1105-1114.
    [55] HAMEED B H, LAI L F, CHIN L H. Production of biodiesel from palm oil (Elaeis guineensis) using heterogeneous catalyst: An optimized process [J]. Fuel Process Technol, 2009, 90: 606-610.
    [56] CANAKCI M, OZSEZEN A N, ARCAKLIOGLU E, ERDIL A. Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil [J]. Expert Syst Appl, 2009, 36: 9268-9280.
    [57] KANSEDO J, LEE K T, BHATIA S. Biodiesel production from palm oil via heterogeneous transesterification [J]. Biomass Bioenerg, 2009, 33: 271-276.
    [58] THAMSIRIROJ T, MURPHY J D. Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed? [J]. Appl Energ, 2009, 86: 595-604.
    [59] CHIN L H, HAMEED B H, AHMAD A L. Process optimization for biodiesel production from waste cooking palm oil (elaeis guineensis) using response surface methodology [J]. Energ Fuel, 2009, 23: 1040-1044.
    [60] BENJUMEA P, AGUDELO J, AGUDELO A. Effect of altitude and palm oil biodiesel fuelling on the performance and combustion characteristics of a HSDI diesel engine [J]. Fuel, 2009, 88: 725-731.
    [61] FREIRE L M S, BICUDO T C, ROSENHAIM R, SINFRONIO F S M, BOTELHO J R, CARVALHO J R, SANTOS I M G, FERNANDES V J, ANTONIOSI N R, SOUZA A G. Thermal investigation of oil and biodiesel from Jatropha curcas L. [J]. J Therm Anal Calorim, 2009, 96: 1029-1033.
    [62] SAHOO P K, DAS L M. Process optimization for biodiesel productionfrom Jatropha, Karanja and Polanga oils [J]. Fuel, 2009, 88: 1588-1594.
    [63] SAHOO P K, DAS L M, BABU M K G, ARORA P, SINGH V P, KUMAR N R, VARYANI T S. Comparative evaluation of performance and emission characteristics of jatropha, karanja and polanga based biodiesel as fuel in a tractor engine [J]. Fuel, 2009, 88: 1698-1707.
    [64] EL DIWANI G, EL RAFIE S, HAWASH S. Protection of biodiesel and oil from degradation by natural antioxidants of Egyptian Jatropha [J]. Int J Environ Sci Technol, 2009, 6: 369-378.
    [65] GANAPATHY T, MURUGESAN K, GAKKHAR R P. Performance optimization of Jatropha biodiesel engine model using Taguchi approach [J]. Appl Energ, 2009, 86: 2476-2486.
    [66] ABDELGADIR H A, JOHNSON S D, VAN STADEN J. Effect of foliar application of plant growth regulators on flowering and fruit set in Jatropha curcas - A potential oil seed crop for biodiesel [J]. S Afr J Bot, 2009, 75: 391-391.
    [67] ABDELGADIR H A, JOHNSON S D, VAN STADEN J. Promotion of seedling growth in Jatropha curcas - a potential oil seed crop for biodiesel [J]. S Afr J Bot, 2009, 75: 429-429.
    [68] LU H, LIU Y, ZHOU H, YANG Y, CHEN M, LIANG B. Production of biodiesel from Jatropha curcas L. oil [J]. Comput Chem Eng, 2009, 33: 1091-1096.
    [69] WANG Y, NIE X, YAO X, CHANG X. The preparation and optimization technique of biodiesel produced from residual oil of camellia oleifera seeds [J]. Forest Res, 2009, 22: 325-329.
    [70] GURU M, ARTUKOGLU B D, KESKIN A, KOCA A. Biodiesel production from waste animal fat and improvement of its characteristics by synthesized nickel and magnesium additive [J]. Energ Convers Manage, 2009, 50: 498-502.
    [71] DIAS J M, ALVIM-FERRAZ M C M, ALMEIDA M F. Mixtures of vegetable oils and animal fat for biodiesel production: Influence on product composition and quality [J]. Energ Fuel, 2008, 22: 3889-3893.
    [72] CANOIRA L, RODRIGUEZ-GAMERO M, QUEROL E, ALCANTARA R, LAPUERTA M, OLIVA F. Biodiesel from low-grade animal fat: production process assessment and biodiesel properties characterization [J]. Ind Eng Chem Res, 2008, 47: 7997-8004.
    [73] TANG H, SALLEY S O, NG K Y S. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends [J]. Fuel, 2008, 87: 3006-3017.
    [74] ANON. Supercritical method of converting chicken fat and tall oil into biodiesel [J]. Clean-Soil Air Water, 2008, 36: 14.
    [75] IKURA M, KOUCHACHVILI L, CARAVAGGIO G. Production of biodiesel from waste fat and grease [J]. Lecture Notes on Energy and Environment (Energy and Environmental Engineering Series), 2007: 25-30.
    [76] NEBEL B A, MITTELBACH M. Biodiesel from extracted fat out of meat and bone meal [J]. Eur J Lipid Sci Tech, 2006, 108: 398-403.
    [77] REDDY C, REDDY V, OSHEL R, VERKADE J G. Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides [J]. Energ Fuel, 2006, 20: 1310-1314.
    [78] SEIDEL B, ALM M, PETERS R, KORDELL W, SCHAFFER A. Safety evaluation for a biodiesel process using prion-contaminated animal fat as a source [J]. Environ Sci Pollut R, 2006, 13: 125-130.
    [79] ALMEIDA C, VILAS J C, MARTEL A, SUAREZ S, REINA G G. Microalgae strain selection for biodiesel production in a simple and low-cost photobioreactor design [J]. Phycologia, 2009, 48: 2-3.
    [80] LEE A K, LEWIS D M, ASHMAN P J. Harvesting of a marine microalgae for the production of biodiesel by microbial flocculation [J].Phycologia, 2009, 48: 72.
    [81] SIALVE B, BERNET N, BERNARD O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable [J]. Biotechnol Adv, 2009, 27: 409-416.
    [82] CHENG Y, ZHOU W, GAO C, LAN K, GAO Y, WU Q. Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides [J]. J Chem Technol Biot, 2009, 84: 777-781.
    [83] CHISTI Y. Biodiesel from microalgae [J]. Biotechnol Adv, 2007, 25: 294-306.
    [84] DE PAOLA M G, RICCA E, CALABRO V, CURCIO S, IORIO G. Factor analysis of transesterification reaction of waste oil for biodiesel production [J]. Bioresource Technol, 2009, 100: 5126-5131.
    [85] YU L, ZHAO T, ZHANG X, ZHAN W. Biodiesel from waste pigskin oil-a two-step process [J]. J Soc Leath Tech Ch, 2009, 93: 149-151.
    [86] RADU R, PETRU C, EDWARD R, GHEORGHE M. Fueling an DI agricultural diesel engine with waste oil biodiesel: Effects over injection, combustion and engine characteristics [J]. Energ Convers Manage, 2009, 50: 2158-2166.
    [87] MACEIRAS R, VEGA M, COSTA C, RAMOS P, MARQUEZ M C. Effect of methanol content on enzymatic production of biodiesel from waste frying oil [J]. Fuel, 2009, 88: 2130-2134.
    [88] BRITO A, BORGES M E, GARIN M, HERNANDEZ A. Biodiesel production from waste oil using Mg-Al layered double hydroxide catalysts [J]. Energ Fuel, 2009, 23: 2952-2958.
    [89] ANGELO C. PINTO, LILIAN L. N. GUARIEIRO, MICHELLE J. C. REZENDE, NúBIA M. RIBEIRO, EDNILDO A. TORRES, WILSON A. LOPES, PEDRO A. DE P. PEREIRA, JAILSON B. DE ANDRADE. Biodiesel: An overview [J]. J Brazil Chem Soc, 2005, 16: 1313-1330.
    [90] ZHANG Y, DUBE M A, MCLEAN D D, KATES M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment [J]. Bioresource Technol, 2003, 89: 1-16.
    [91] ZHANG Y, DUBE M A., MCLEAN D D, KATES M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis [J]. Bioresource Technol, 2003, 90: 229-240.
    [92] FREEDMAN B, BUTTERFIELD R O, PRYDE E H. Transesterification kinetics of soybean oil [J]. J Am Oil Chem Soc, 1986, 63: 1375-1380.
    [93] CANAKCI M, VAN GERPEN J. Biodiesel production via acid catalysis [J]. Trans. ASAE, 1999, 42: 1203-1210.
    [94] KEYES D B. Esterification processes and equipment [J]. Ind Eng Chem, 1932, 24 (10): 1096-1103.
    [95] CRABBE E, NOLASCO-HIPOLITO C, KOBAYASHI G, SONOMOTO K, ISHIZAKI A. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties [J]. Process Biochem, 2001, 37: 65-71.
    [96] NYE M J, WILLIANSON T W, DESHPANDE S, SCHRADER J H, SNIVELY W H, YURKEWICH T P, FRECH C R. Conversion of used frying oil to diesel fuel by transesterification: preliminary test [J]. J Am Oil Chem Soc, 1983, 60: 1598-1601.
    [97] MIAO X L, LI R X, YAO H Y. Effective acid-catalyzed transesterification for biodiesel production [J]. Energ Convers Manage, 2009, 50: 2680-2684.
    [98] SRIDHARAN R, MATHAI I M. Transesterification reactions [J]. Sci Ind Resour, 1974, 33: 178-187.
    [99] LOTERO E, LIU Y, LOPEZ D E, SUWANNAKARN K, BRUCE D A, GOODWIN J G, JR. Synthesis of biodiesel via acid catalysis [J]. Ind Eng Chem Res, 2005, 44: 5353-5363.
    [100] VICENTE G, MARTíNEZ M, ARACIL J. Integrated biodiesel production:a comparison of different homogeneous catalysts systems [J]. Bioresource Technol, 2004, 92: 297-305.
    [101] MA F, CLEMENTS L D, HANNA M A. The effects of catalyst, free fatty acids, and water on transesterification of beef tallow [J]. Tran. ASAE, 1998A, 41: 1261-1264.
    [102]盛梅,李为民,邬国英.生物柴油研究进展[J].中国油脂, 2003(4): 66-70.
    [103] ALCANTARA R, AMORES J, CANOIRA L, FIDALGO E, FRANCO M J, NAVARRO A. Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow [J]. Biomass Bioenerg, 2000, 18: 515-527.
    [104]邬国英,林西平,巫淼鑫,张有春,刘勇.棉籽油甲酯化联产生物柴油和甘油[J].中国油脂,2003(4):70-73.
    [105]盛梅,郭登峰,张大华.大豆油制备生物柴油的研究[J].中国油脂,2002(1):70-72.
    [106] SCHUCHARDT U, VARGAS R M, GELBARD G. Alkylguanidines as catalysts for transesterification of rapeseed oil [J]. J Mol Catal A-Chem, 1995, 99: 65-70.
    [107] SCHUCHARDT U, VARGAS R M, GELBARD G. Transesterification of vegetable oils: A review [J]. J Brazil Chem Soc, 1998, 9(1): 199-210.
    [108] EL-MASHAD H M, ZHANG R, AVENA-BUSTILLOS R J. A two-step process for biodiesel production from salmon oil [J]. Biosyst Eng, 2008, 99: 220-227.
    [109] BERCHAMANS H J, HIRATA S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids [J]. Bioresource Technol, 2008, 99: 1716-1721.
    [110] RAMADHAS A S, JAYARAJ S, MURALEEDHARAN C. Biodiesel production from high FFA rubber seed oil [J]. Fuel, 2005, 84: 335-340.
    [111] TIWARI A K, KUMAR A, RAHEMAN H. Biodiesel production from jatrophaoil (Jatropha curcas) with high free fatty acids: An optimized process [J]. Biomass Bioenerg, 2007, 31: 569-575.
    [112] WANG Y, OU S, LIU P, XUE F, TANG S. Comparison of two different processes to synthesize biodiesel by waste cooking oil [J]. J Mol Catal A-Chem, 2006, 252: 107-112.
    [113] ABDULLAH A Z, RAZALI N, MOOTABADI H, SALAMATINIA B. Critical technical areas for future improvement in biodiesel technologies [J]. Environ Res Lett, 2007, 2, 034001, doi: 10.1008/1748-9326/2/3/034001.
    [114] YUAN X, LIU J, ZENG G, SHI J, TONG J, HUANG G. Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology [J]. Renew Energ, 2008, 33: 1678-1684.
    [115] WANG Y, OU S, LIU P, ZHANG Z. Preparation of biodiesel from waste cooking oil via two-step catalyzed process [J]. Energ Convers Manage, 2007, 48: 184-188.
    [116] GHADGE S V, RAHEMAN H. Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology [J]. Bioresource Technol, 2006, 97: 379-384.
    [117] NAIK M, MEHER L C, NAIK S N, DAS L M. Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil [J]. Biomass Bioenerg, 2008, 32: 354-357.
    [118]杨继国,林炜铁,吴军林.酶法合成生物柴油的研究进展[J],化工环保.2004(2):116-120.
    [119] KAMINI N R, LEFUJI H. Lipase catalyzed methanolysis of vegetable oils in aqueous medium by Cryptococcus spp. S-2 [J]. Process Biochem, 2001, 37(4): 405-410.
    [120] K?Se ?, TüTER M, AKSOY H A. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-freemedium [J]. Bioresource Technol. 2002, 83(2): 125-129.
    [121] WATANABE Y, SHIMADA Y, SUGIHARA A, TOMINAGA Y. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B-Enzym, 2002, 17(3-5): 151-155.
    [122] WATANABE Y, SHIMADA Y, SUGIHARA A, TOMINAGA Y. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing [J]. J Mol Catal B-Enzym, 2002, 17(3-5): 133-142.
    [123] MATSUMOTO T, TAKAHASHI S, KAIEDA M, UEDA M, TANAKA A, FUKUDA H, KONDO A. Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production [J]. Appl Microbiol Biot, 2001, 57(4): 515-520.
    [124] BAN K, KAIEDA M, MATSUMOTO T, KONDO A, FUKUDA H. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles [J]. Biochem Eng J, 2001, 8(1): 39-43.
    [125] MATSUMOTO T, FUKUDA H, UEDA M, TANAKA A, KONDO A. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain [J]. Appl Environ Microb, 2002, 68(9): 4517-4522.
    [126]戴维·加维·布鲁克·布考克由甘油三酸酯与脂肪酸的混合物制备脂肪酸甲基酯的单相方法:中国,CN 1370140(WO01/12581)[P].2002-09-18.
    [127] BOOCOCK D G B, KONAR S K, MAO V, SIDI H. Fast one-phase oil-rich processes for the preparation of vegetable oil methyl esters [J]. Biomass Bioenerg, 1996, 11(1): 43-50.
    [128] ZOU W, KONAR S K, BOOCOCK D G B. Ethyl esters from the single-phase base-catalyzed ethanolysis of vegetable oils [J]. J Am Oil Chem Soc, 2003, 80(4): 367-371.
    [129] Zhou W. Production of sunflower oil ethyl ester for use as a biodiesel fuel [D]. Canada: Toronto University, 2000.
    [130] QUINTANA E E B. Optimization Studies for the alkaline transesterification biodiesel reaction using ultrasound mixing [D]. USA: Proquest Imformation and Learning Company, 2002.
    [131]鞠庆华,曾吕风,郭卫军,张利雄,徐南平.酯交换法制备生物柴油的研究进展[J].化工进展,2004,23(10):1053-1057.
    [132] GRYGLEWICZ S. Rapeseed oil methyl esters preparation using heterogeneous catalysts [J]. Bioresource Technol, 1999 , 70: 249-253.
    [133]吕亮,吾国强,汪金良,杨金女,段雪,李峰.新型固体碱催化剂在油脂酯交换反应中的应用[J].皮革化工,2001(3):37-40.
    [134] STERN R ,HILLION G ,ROUXEL J, LEPORQ S. Process for the production of esters from vegetable oils or animal oils alcohols: US, 5908946 [P], 1999-06-01.
    [135] SUPPES G J, DASARI M A, DOSKOCIL E J, MANKIDY P J, GOFF M J. Transesterification of soybean oil with zeolite and metal catalysts [J]. Appl Catal A-Gen, 2004, 257: 213-223.
    [136]埃克哈特.韦德纳,汉斯-彼得.纽纳,鲁特.甘斯温特用醇解方法使生物来源的脂肪和/或油进行酯交换的工艺:中国,CN 1327472 [P],2001-12-19[2005-11-23].
    [137] SCHUCHARDT U, VARGAS R M, GELBARD G. Transesterification of soybean oil catalyzed by alkylguanidines heterogenized on different substituted polystyrenes [J]. J Mol Catal A-Chem,1996,109: 37-44.
    [138] SAKA S, KUSDIANA D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol [J]. Fuel, 2001, 80: 225-331.
    [139] SASAKI T, SUZUKL T, OKADA F. Method for preparing fatty acid esters and fuel comprising fatty acid esters: US 6187939 [P],2001-02-13.
    [140] WARABI Y, KUSDIANA D, SAKA S. Reactivity of triglycerides and fattyacids of rapeseed oil in supercritical alcohols [J]. Bioresource Technol,2004, 91: 283-287.
    [141] KUSDIANA D, SAKA S. Effects of water on biodiesel fuel production by supercritical methanol treatment [J]. Bioresource Technol, 2004, 91: 289-295.
    [142] TATENO T, SAKAKI T. Process for producing fatty acid esters and fuels comprising fatty acid ester: US, 6818026 [P],2004-11-16.
    [143] JACKSON M A, KING J W. Methanolysis of seed oils in flowing supercritical carbon dioxide [J]. J Am Oil Chem Soc, 1996, 73: 353-356.
    [144] MADRAS G, KOLLURU C, KUMAR R. Synthesis of biodiesel in supercritical fluids [J]. Fuel, 2004,83: 2029-2033.
    [145] KHALIL C N, LEITE L C F. Process for producing biodiesel: US 20050011112 [P], 2005-01-20.
    [146]王君,严庆收,姜明,冯子宪,徐晔,李芳棉籽直接制取生物柴油的方法:中国,CN 101050374[P].2007-10-10.
    [147] BOOCOCK D G B. Single-phase process for production of fatty acid methyl esters from mixtures of triglycerides and fatty acids: US, 6642399 [P], 2003-11-04.
    [148] BOOCOCK D G B. Process for production of fatty acid methyl esters from fatty acid triglycerides: US 6712867 [P], 2004-03-30.
    [149] BALAT M, BALAT H. A critical review of bio-diesel as a vehicular fuel [J]. Energ Convers Manage, 2008, 49: 2727-2741.
    [150] 07年度欧盟生物柴油产量达1,020万吨[EB/OL].(2007-07-18)[2009-07-01]. http://www.sugarinfo.net/front/infosend/colligate/topicsClickAction.do?topicsID=48117.
    [151]生物柴油生产企业信息[EB/OL]. ( 2009 ) [2009-03-07]. http://www.sino-biodiesel.com/zqhb/scjyxx/scjyxx.html.
    [152]吴谋成,生物柴油[M].北京:化学工业出版社,2008.
    [153]倪蓓.生物柴油欧美发展动态及在我国的前景[J].当代石油石化,2005, 13 (6): 21-27.
    [154] YOU Y, SHIE J, CHANG C, HUANG S, PAI C, YU Y. Chunfang Ho Chang, Economic cost analysis of biodiesel production: Case in soybean oil [J]. Energ Fuel, 2008, 22: 182-189.
    [155] SHI H, BAO Z. Direct preparation of biodiesel from rapeseed oil leached by two-phase solvent extraction [J]. Bioresource Technol, 2008, 99: 9025-9028.
    [156] SHARMA Y C, SINGH B, UPADHYAY S N. Advancements in development and characterization of biodiesel: A review [J]. Fuel, 2008, 87: 2355-2373.
    [157] HAAS M J, MCALOON A J, YEE W C, FOGLIA T A. A process model to estimate biodiesel production costs [J]. Bioresource Technol, 2006, 97: 671-678.
    [158]韩秀丽,张如意,马晓建,张锦娅.米糠的综合利用及其前景[J].农产品加工学刊,2007,7:62-64.
    [159] SUBRAMANI S, NAGARAJAN G, RAO G L N. High free fatty acid crude rice bran oil-A renewable feedstock for sustainable energy and environment [J]. Clean-Soil Air Water, 2008, 36(10-11): 835-839.
    [160] KUMAR N. Production of biodiesel from high FFA rice bran oil and its utilization in a small capacity diesel engine [J]. J Sci Ind Res India, 2007, 66: 399-402.
    [161] LIN L, YING D, CHAITEP S, VITTAYAPADUNG S. Biodiesel production from crude rice bran oil and properties as fuel [J]. Appl Energ, 2009, 86: 681-688.
    [162]吕莹果,季慧,张晖,王立,郭晓娜,姚惠源.米糠资源的综合利用[J].粮食与饲料工业. 2009, 4, 19-22.
    [163]雷得漾,伍先云.化工小商品生产法(第十一集)[M].湖南:湖南科学技术出版社,1993.
    [164]米糠油的研究和开发[J].农业工程技术(农产品加工业), 2008, 6: 23-24.
    [165]张根旺.米糠制油及精炼进展[J].粮食科技与经济,2007,4:41-46.
    [166] ZULLAIKAH S, LAI C, VALI S R, JU Y. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil [J]. Bioresource Technol, 2005, 96: 1889-1896.
    [167]吴素萍.谷维素的生理功能及提取方法的研究现状[J].食品工业科技,2009,30:365-368.
    [168]梁少华,马传国.米糠深加工技术的分析与评价(II)——米糠油精炼及其副产品的利用[J].中国油脂,2005,30:10-15.
    [169]戴传波,李建桥,李健秀.植酸制取的研究进展[J].食品工业科技,2007,28:239-241.
    [170]肖传豪,宋文强.米糠制植酸的工艺研究和进展[J].化工时刊,2009,23:57-59.
    [1] YOU Y, SHIE J, CHANG C, HUANG S, PAI C, YU Y, CHUNFANG HO CHANG. Economic cost analysis of biodiesel production: Case in soybean oil [J]. Energ Fuel, 2008, 22: 182-189.
    [2] SHI H, BAO Z. Direct preparation of biodiesel from rapeseed oil leached by two-phase solvent extraction [J]. Bioresource Technol, 2008, 99: 9025-9028.
    [3] SHARMA Y C, SINGH B, UPADHYAY S N. Advancements in development and characterization of biodiesel: A review [J]. Fuel, 2008, 87: 2355-2373.
    [4] HAAS M J, MCALOON A J, YEE W C, FOGLIA T A. A process model to estimate biodiesel production costs [J]. Bioresource Technol, 2006, 97: 671-678.
    [5] NAIK M, MEHER L C, NAIK S N, DAS L M. Production of biodiesel from high free fatty acid Karanja ( Pongamia pinnata) oil [J]. Biomass Bioenerg, 2008, 32: 354-357.
    [6] EL-MASHAD H M, ZHANG R, AVENA-BUSTILLOS R J. A two-step process for biodiesel production from salmon oil [J]. Biosyst Eng, 2008, 99: 220-227.
    [7] BERCHMANS H J, HIRATA S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids [J]. Bioresource Technol, 2008, 99: 1716-1721.
    [8] RAMADHAS A S, JAYARAJ S, MURALEEDHARAN C. Biodiesel production from high FFA rubber seed oil [J]. Fuel, 2005, 84: 335-340.
    [9] TIWARI A K, KUMAR A, RAHEMAN H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process [J]. Biomass Bioenerg, 2007, 31: 569-575.
    [10] WANG Y, OU S, LIU P, XUE F, TANG S. Comparison of two different processes to synthesize biodiesel by waste cooking oil [J]. J MolCatal A-Chem, 2006, 252: 107-112.
    [11] WANG Y, OU S, LIU P, ZHANG Z. Preparation of biodiesel from waste cooking oil via two-step catalyzed process [J]. Energ Convers Manage, 2007, 48: 184-188.
    [12] GHADGE S V, RAHEMAN H. Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology [J]. Bioresource Technol, 2006, 97: 379-384.
    [13] KULKARNI M G, DALAI A K. Waste cooking oil-an economical source for biodiesel: a review [J]. Ind Eng Chem Res, 2006, 45: 2901-2913.
    [14] MA F, HANNA M A. Biodiesel production: a review [J]. Bioresource Technol, 1999, 70: 1-15.
    [15] LEUNG D Y C, WU X, LEUNG M K H. A review on biodiesel production using catalyzed transesterification [J]. Appl Energ, 2010, 87: 1083-1095.
    [16]杜晓刚.生物柴油——甘油联产工艺及甘油含量测定方法的研究[D].南京:南京理工大学应用化学专业,2004.
    [17]李虹,李明光.高碘酸法测定油脂中甘油一酸酯含量[J].中国油脂,1982,6:56-59.
    [18]迟云超,张相育,于桂云.高碘酸氧化法测肌醇和甘油含量[J].哈尔滨科学技术大学学报,1994,18:94-98.
    [19]顾锡芳,施念康.聚合甘油分析方法[J].日用化学工业,1986,4:48-49.
    [20]刘伟伟,苏有勇,张无敌,刘士清,夏朝凤.生物柴油中甘油含量测定方法的研究[J].可再生能源,2005,3:14-20.
    [21]王赫麟,张无敌,尹芳.生物柴油中甘油含量测定及甘油分离提纯工艺研究[J].安徽农学通报,2007,17 (12):181-182.
    [22]贺平,彭红星,旷申昌.生物柴油中游离甘油、总甘油的测定[J].河北化工,2008,31:60-72.
    [23]郭瓶梅,黄庆德.生物柴油中游离甘油和总甘油测定方法研究[J].粮食与油脂,2003,8:41-42.
    [24] GB/T 132166甘油试验方法甘油含量的测定.
    [25] ISO 1066-1975肥皂分析.甘油含量的测定.滴定法.
    [26] AOCS Cd 3d-63 Acid Value.
    [27] GB5530-85植物油脂检验酸价测定法.
    [28] WANG C, SHENG Y, HARI-BALA, ZHAO X, ZHAO J, MA X, WANG Z. A novel aqueous-phase route to synthesize hydrophobic CaCO3 particles in situ [J]. Mater Sci Eng C, 2007, 27: 42-45.
    [29] FLANAGAN J, KORTEGAARD K, PINDER D N, RADES T, SINGH H. Solubilisation of soybean oil in microemulsions using various surfactants [J]. Food Hydrocolloid, 2006, 20: 253-260.
    [30] ARVIDSSON A, S?DERMAN O. The microemulsion phase in the didecyldimethylammonium bromide/dodecane/water system. Phase diagram, microstructure, and nucleation kinetics of excess oil phase [J]. Langmuir, 2001, 17: 3567-3572.
    [1] ZHOU W, KONAR S K, BOOCOCK D G B. Ethyl esters from the single-phase base-catalyzed ethanolysis of vegetable oils [J]. J Am Oil Chem Soc, 2003, 80: 367-371.
    [2] MENEGHETTI S M P, MENEGHETTI M R, WOLF C R, SILVA E C, LIMA G E S, LAELSON DE LIRA SILVA, SERRA T M, CAUDURO F, LENISE G. DE OLIVERIA. Biodiesel from castor oil: A comparison of ethanolysis versus methanolysis [J]. Energ Fuel, 2006, 20: 2262-2265.
    [3] HOANG DUC HANH, NGUYEN THE DONG, KENJI OKITSU, ROKURO NISHIMURA, YASUAKI MAEDA. Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition [J]. Renew Energ, 2009, 34: 780-783.
    [4] MENEGHETTI S M P, MENEGHETTI M R, WOLF C R, SILVA E C, LIMA G E S, MASURQUEDE DE A. COIMBRA, SOLETTI J I, CARVALHO S H V. Ethanolysis of cator and cottonseed oil: A systematic study using classical catalysts [J]. J Am Oil Chem Soc, 2006, 83: 819-822.
    [5] DéBORA DE OLIVEIRA, IRAJáDO NASCIMENTO FILHO, MARCO DI LUCCIO, CARINA FACCIO, CLARISSA DALLA ROSA, JO?O PAULO BENDER, N?DIA LIPKE, CRISTIANA AMROGINSKI, CLáUDIO DARIVA, JOSéVLADIMIR DE OLIVERIA. Kinetics of enzyme-catalyzed alcoholysis of soybean oil in n-hexane [J]. Appl Biochem Biotech, 2005, 121-124: 231-242.
    [6] ROSA C D, MORANDIM M B, NINOW J L, OLIVEIRA D, TREICHEL H, OLIVEIRA J V. Lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed propane [J]. J Supercrit Fluid, 2008, 47: 49-53.
    [7] JOSHI H C, TOLER J, WALKER T. Optimization of cottonseed oil ethanolysis to produce biodiesel high in gossypol content [J]. J AmOil Chem Soc, 2008, 85: 357-363.
    [8] CABALLERO V, BAUTISTA F M, CAMPELO J M, LUNA D, MARINAS J M, ROMERO A A, HIDALGO J M, LUQUE R, MACARIO A, GIORDANO G. Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: Partial 1,3-regiospecific alcoholysis of sunflower oil [J]. Process Biochem, 2009, 44: 334-342.
    [9]毕艳兰,刘润哲,王宏雁,王业涛,李培真.相应面法优化脂肪酸乙酯的制备[J].河南工业大学学报(自然科学版),2008,29:6-9.
    [10] DIAS DE, MORAES SILVA REYNALDO E, HAMPTON, KARL. Continuous production process for ethyl esters (biodiesel): US, 20060069274 A1 [P].2006-03-30.
    [11]刘润哲,毕艳兰,杨国龙,王梦华,陈军丽.红花籽油醇解法制备脂肪酸乙酯[J].中国油脂,2009,34:50-53.
    [12] LU J, HOU J, NIE K, WANG F, TAN T. Study on synthesis of fatty acid ethyl esters from soybean oil by immobilized lipase Candida sp. 99-125 [C]. International conference on biomass energy technologies, Dec. 3-5, 2008: 499-504.
    [13]王鑫,陈蕴智,田福祯,王明亮.大豆油脂肪酸乙酯的制备及其在印刷油墨中的应用[J].中国油脂,2008,33:60-62.
    [14]杨永红,齐邦峰.柴油润滑性及润滑性添加剂的研究进展[J].江苏化工,2007,35:6-10.
    [15] ANASTOPOULOS G, LOIS E, ZANNIKOS F, KALLIGEROS S, TEAS C. HFRR lubricity response of an additized aviation kerosene for use in CI engines [J]. Tribol Int, 2002, 35: 599-604.
    [16]谭桂琼,陈天祥,周华东,廖岩.交酯化法合成乌桕脂肪酸乙酯[J].贵州工业大学学报(自然科学版),2003,32:71-74.
    [17]慕鸿雁,裘爱泳,赵梅.华山松子油脂肪酸乙酯化工艺研究[J].粮食与油脂,2008,6:17-19.
    [1] LOTERO E, LIU Y, LOPEZ D E, SUWANNAKARN K, BRUCE D A, GOODWIN J G, JR. Synthesis of biodiesel via acid catalysis [J]. Ind Eng Chem Res, 2005, 44: 5353-5363.
    [2] RANGANATHAN S V, NARASIMHAN S L, MUTHUKUMAR K. An overview of enzymatic production of biodiesel [J]. Bioresource Technol, 2008, 99: 3975-3981.
    [3] ?AYH G, KüSEFO ?L U S. Increased yields in biodiesel production from used cooking oils by a two step process: Comparison with one step process by using TGA [J]. Fuel Process Technol, 2008, 89: 118-122.
    [4] NGO H L, ZAFIROPOULOS N A, FOGLIA T A, SAMULSKI E T, LIN W. Efficient two-step synthesis of biodiesel from greases [J]. Energ Fuel, 2008, 22: 626-634.
    [5] SALEHPOUR S, DUBéM A. Biodiesel: a green polymerization solvent [J]. Green Chem, 2008, 10: 321-326.
    [6] HU J, DU Z, TANG Z, MIN E. Study on the solvent power of a new green solvent: biodiesel [J]. Ind Eng Chem Res, 2004, 43: 7928-7931.
    [7] SHI H, BAO Z. Direct preparation of biodiesel from rapeseed oil leached by two-phase solvent extraction [J]. Bioresource Technol, 2008, 99: 9025-9028.
    [8] KUMAR N. Production of biodiesel from high FFA rice bran oil and its utilization in a small capacity diesel engine [J]. J Sci Ind Res India, 2007, 66: 399-402.
    [9] LIN L, YING D, CHAITEP S, VITTAYAPADUNG S. Biodiesel production from crude rice bran oil and properties as fuel [J]. Appl Energ, 2009, 86: 681-688.
    [10] SUBRAMANI S, NAGARAJAN G, RAO G L N. High free fatty acid crude ricebran oil-A renewable feedstock for sustainable energy and environment [J]. Clean-Soil Air Water, 2008, 36(10-11): 835-839.
    [11] JU Y H, VALI S R. Rice bran oil as a potential resource for biodiesel: A review [J]. J Sci Ind Res India, 2005, 64: 866-882.
    [12] EINLOFT S, MAGALH?ES T O, DONATO A, DULLIUS J, LIGABUE R. Biodiesel from rice bran oil: Transesterification by tin compounds [J]. Energ Fuel, 2008, 22: 671-674.
    [13] GEORGOGIANNI K G, KONTOMINAS M G, POMONIS P J, AVLONITIS D, GERGIS V. Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel [J]. Fuel Process Technol, 2008, 89: 503-509.
    [14] GEORGOGIANNI K G, KONTOMINAS M G, POMONIS P J, AVLONITIS D, GERGIS V. Alkaline conventional and in situ transesterification of cottonseed oil for the production of biodiesel [J]. Energ Fuel, 2008, 22(3): 2110-2115.
    [15] HAAS M J, SCOTT K M, MARMER W N, FOGLIA T A. In situ alkaline transesterification: An effective method for the production of fatty acid esters from vegetable oils [J]. J Am Oil Chem Soc, 2004, 81: 83-89.
    [16] HASS M J, SCOTT K M, FOGLIA T A, MARMER W N. The general applicability of in situ transesterification for the production of fatty acid esters from a variety of feedstocks [J]. J Am Oil Chem Soc, 2007, 84: 963-970.
    [17] QIAN J, WANG F, LIU S, YUN Z. In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal [J]. Bioresource Technol, 2008, 99: 9009-9012.
    [18]刘寿长.物理化学实验与技术[M].河南:郑州大学(原河南医科大学)出版社,2004.
    [19]程能林.溶剂手册(第三版)[M].北京:化学工业出版社,2002.
    [1] JOHNSON D T, TACONI K A. The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production [J]. Environ Prog, 2007, 26(4): 338-348.
    [2] WEI Z, XU C, LI B. Application of waste eggshell as low-cost solid catalyst for biodiesel production [J]. Bioresource Technol, 2009, 100: 2883-2885.
    [3] BOEY P L, MANIAM G P, HAMID S A. Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst [J]. Bioresource Technol, 2009, 100: 6362-6368.
    [4] SHI H, BAO Z. Direct preparation of biodiesel from rapeseed oil leached by two-phase solvent extraction [J]. Bioresource Technol, 2008, 99: 9025-9028.
    [5] LIN L, DONG Y, CHAITEP S, VITTAYAPADUNG S. Biodiesel production from crude rice bran oil and properties as fuel [J]. Appl Energ, 2009, 86: 681-688.
    [6] NAIK M, MEHER L C, NAIK S N, DAS L M. Production of biodiesel from high free fatty acid Karanja ( Pongamia pinnata) oil [J]. Biomass Bioenerg, 2008, 32: 354-357.
    [7] RAMADHAS A S, JAYARAJ S, MURALEEDHARAN C. Biodiesel production from high FFA rubber seed oil [J]. Fuel, 2005, 84: 335-340.
    [8]王子忱,雷洪,丁雪峰,赵旭,郭玉鹏,周兵一种原位提取米糠油制备生物柴油的新方法:中国,CN 101392181[P].2009-03-25.
    [9] LEI H, DING X, ZHANG H X, CHEN X, LI Y L, ZHANG H, WANG Z C. In situ production of fatty acid methyl ester from low quality rice bran: An economical route for biodiesel production [J]. Fuel, 2010, 89:1475-1479.
    [10] POLITI Y, LEVI-KALISMAN Y, RAZ S, WILT F, ADDADI L, WEINER S, SAGI I. Structural characterization of the transient amorphous calcium carbonate precursor phase in sea urchin embryos [J]. Adv Funct Mater, 2006, 16: 1289-1298.
    [11] Qi L, Li J, Ma J. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers [J]. Adv Mater, 2002, 14: 300-303.
    [12] QI R, ZHU Y. Microwave-assisted synthesis of calcium carbonate (vaterite) of various morphologies in water-ethylene glycol mixed solvents [J]. J Phys Chem B, 2006, 110: 8302-8306.
    [13] DALAS E, KLEPETSANIS P, KOUTSOUKOS P G. The overgrowth of calcium carbonate on poly(vinyl chloride-co-vinyl acetate-co-maleic acid) [J]. Langmuir, 1999, 15 (23): 8322-8327.
    [14] MA X, ZHOU B, SHENG Y, WANG C, PAN Y, MA S, GAO Y, WANG Z. Preparation of calcium carbonate/poly(methyl methacrylate) composite microspheres by soapless emulsion polymerization [J]. J Appl Polym Sci, 2007, 105: 2925-2929.
    [15] WANG C, ZHAO X, ZHAO J, LIU Y, SHENG Y, WANG Z. Biomimetic nucleation and growth of hydrophobic vaterite nanoparticles with oleic acid in a methanol solution [J]. Appl Surf Sci, 2007, 253: 4768-4772.
    [16] WANG C, SHENG Y, HARI-BALA, ZHAO X, ZHAO J, MA X, WANG Z. A novel aqueous-phase route to synthesize hydrophobic CaCO3 particles in situ [J]. Mat Sci Eng C, 2007, 27: 42-45.
    [17] LIN F, LI S, LI Y, LI H, ZHANG L, ZHAI J, SONG Y, LIU B, JIANG L, ZHU D. Super-hydrophobic surfaces: from natural to artificial [J]. Adv Mater, 2002, 14 (24): 1857-1860.
    [18] XIANG J, CAO H, WARNER J H, WATT A A R. Crystallization and self-assembly of calcium carbonate architectures [J]. Cryst GrowthDes, 2008, 8 (12): 4583-4588.
    [19] ZHAO N, SHI F, WANG Z, ZHANG X. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces [J]. Langmuir, 2005, 21: 4713-4716.
    [20] XIE A, SHEN Y, LI X, YUAN Z, QIU L, ZHANG C, YANG Y. The role of Mg2+ and Mg2+/amino acid in controlling polymorph and morphology of calcium carbonate crystal [J]. Mater Chem Phys, 2007, 101: 87-92.
    [21] KRALJ D, KONTREC J, BRE? VI? L, FALINI G, N?THIG-LASLO V. Effect of inorganic anions on the morphology and structure of magnesium calcite [J]. Chem Eur J, 2004, 10: 1647-1656.
    [22] LEI M, LI P G, SUN Z B, TANG W H. Effects of organic additives on the morphology of calcium carbonate particles in the presence of CTAB [J]. Mater Lett, 2006, 60: 1261-1264.
    [1]李翔.中国和日本米糠的利用比较[J].粮食储藏,2004,2:48-52.
    [2]吴素萍.谷维素的生理功能及提取方法的研究现状[J].食品工业科技,2009,30:365-368.
    [3]戴传波,李建桥,李健秀.植酸制取的研究进展[J].食品工业科技,2007,28:239-241.
    [4]肖传豪,宋文强.米糠制植酸的工艺研究和进展[J].化工时刊,2009,23,57-59.
    [5]雷得漾,伍先云.化工小商品生产法(第十一集)[M].湖南:湖南科学技术出版社,1993.
    [6]吕莹果,季慧,张晖,王立,郭晓娜,姚惠源.米糠资源的综合利用[J].粮食与饲料工业,2009,4:19-22.
    [7]张西宁,许培雅.从米糠油提取谷维素新工艺的研究[J].粮食与饲料工业,1997,9:36-37.
    [8]魏安池.萃取法提取谷维素的研究[J].中国油脂,2000,25(2):49-50.
    [9]王子涵.溶剂法萃取谷维素生产新工艺的研究[D].陕西:西北农林科技大学,2007.
    [10] KASIM N S, CHEN H, JU Y H. Recovery ofγ-oryzanol from biodiesel residue [J]. J Chin Inst Chem Eng, 2007, 38: 229-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700