用户名: 密码: 验证码:
SsNHX1基因在紫花苜蓿中的表达及其耐盐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究应用RACE方法成功的从盐生植物-猪毛菜(Salsola soda)中克隆了液泡膜型Na+/H+逆向转运蛋白全基因序列,构建了该基因的植物表达载体并转化紫花苜蓿,并对获得大量转基因苜蓿材料进行了耐盐性研究。
     猪毛菜液泡膜型Na+/H+逆向转运蛋白全基因(SsNHXl)序列全长为1934 bp,包含一个长度为1680 bp的开放阅读框(open reading frame,ORF),编码559 aa个氨基酸残基。液泡膜型Na+/H+逆向转运蛋白的高度保守区-抑制剂氨氯吡嗪脒结合位点,Na+/H+交换泵(Na+/H+ exchanger; NHE)和液泡膜型Na+/H+逆向转运蛋白特有的12段跨膜疏水结构域在蛋白序列中被发现。氨基酸序列多重比对分析表明,该蛋白与来自盐爪爪(Kalidium foliatum)、北滨藜(Atriplex gmelini)、紫花苜蓿(Medicago sativa)、棉花(Gossypium hirsutum)、拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、大麦(Hordeum vulgare)和玉米(Zea mays)的液泡膜型Na+/H+逆向转运蛋白相比,相似性分别达到了90%,87%,77%,76%,7.5%,74%,73%和72%。进化树分析表明,该蛋白与其他液泡膜型Na+/H+逆向转运蛋白亲缘关系较近,而与质膜型Na+/H+逆向转运蛋白亲缘关系较远。在液泡膜型Na+/H+逆向转运蛋白中,与盐生植物-盐爪爪、北滨藜亲缘关系较近,而与甜土植物亲缘关系较远。该基因在酵母中表达能够提高酵母的生长速率,在烟草中表达能够有效的提高T1代转基因种子在含盐培养基中的发芽率,并且生物量和株高都比对照有明显的提高,充分验证了该基因抗盐功能。总之,SsNHXl基因是液泡膜型Na+/H+逆向转运蛋白基因家族的一个全新成员,同时,在植物中过表达此基因能够明显的提高转基因植株的耐盐碱能力。
     苜蓿的基因型是影响苜蓿遗传转化的关键因素,只有很少的栽培品种适合建立高效的再生体系。本研究以14份国内外主栽品种作为供试品种,通过比较品种间的诱导能力,筛选到公农1号为最佳的基因型。在此基础上,以公农1号的嫩叶为外植体,建立了一套高效的农杆菌介导苜蓿遗传转化体系,成功将猪毛菜液泡膜型Na+/H+逆向转运蛋白基因导入苜蓿基因组中。Southern杂交证实有6个独立转化系为转基因阳性株系,最终获得了203株阳性植株。
     本研究以来自6个独立转化系的苜蓿植株作为耐盐试验材料,进行盐胁迫试验。Northern杂交证实外源基因-猪毛菜液泡膜型Na+/H+逆向转运蛋白基因,在逆境胁迫启动子调控下,随着盐处理浓度的增高而表达量也逐渐增高。耐盐试验表明,与对照相比转基因植株具有明显耐盐能力,最高耐盐能力达到400 mM,而对照在200 mM的条件下逐渐死亡。并且转基因耐盐植株中具有更高Na+,K+的含量。生理分析表明,在盐胁迫条件下,转基因耐盐植株受到的伤害要比对照植株轻的多。转基因植株的超氧化物歧化酶(SOD)活性变化趋势小和脯氨酸含量增长幅度小,另外,转基因植株的相对电导率(REL)变化也较小,这些生理数据表明,猪毛菜液泡膜型Na+/H+逆向转运蛋白基因的表达能帮助转基因植物抵抗盐胁迫,有效的提高了转基因植株的耐盐能力。
In this study, a putative complete vacuolar-type Na+/H+ antiporter gene (SsNHX1) gene was isolated from the halophyte Salsola soda by using the rapid amplification of cDNA ends (RACE) method. The SsNHX1 was constructed into a plant expression vector and transformed to alfalfa(Medicago sativa L.). And we studied on the salt tolerance for transgenic plants.
     The sequence of SsNHX1 was 1934 bp in whole length which had one open reading frame (ORF) of 1680 bp, encoding 559 amino acid residues. Highly conserved regions of plant vacuolar Na+/H+ antiporter, including amiloride-binding domain, NHE (Na+/H+ exchanger) domain and 12 transmembrane segments, were found in the deduced amino acid sequence of SsNHX1. Multiple alignment of vacuolar Na+/H+ antiporters showed SsNHX1 shared high identity with vacuolar Na+/H+ antiporters of Kalidium foliatum, Atriplex gmelini, Medicago sativa, Gossypium hirsutum, Arabidopsis thaliana, Oryza sativa, Hordeum vulgare, and Zea mays, the similarity was 90%,87%,77%,76%,75%,74%,73%, and 72%, repectively. Phylogenetic relationship analysis indicated that SsNHX1 had closer affinity with vacuolar Na+/H+ antiporter group, while they were far with plasma membrane Na+/H+ antiporter group. Meanwhile, the SsNHX1 was more closely related to halophyte, Kalidium foliatum and Atriplex gmelini, and it's relationship was far related to glycophyte. The expression of SsNHX1 could improve growth rate of transgenic yeast under salt tolerance. Additionlly, the expression of SsNHX1 could increase the germination rate of T1 seeds of transgenic tabacco, and increase the height and productivity significantly compared with control plants. These results confirmed the salt-tolerant function of SsNHX1. Taken together, these results suggest that SsNHX1 is a new member of the vacuolar Na+/H+ antiporter family, and the overexpression of this gene could obviously enhanced the salt tolerance ability in plant. The genotype of alfalfa was the key factors in genetic transformation, therefore, there were only a few cultivars suitable for the establishment of high efficient regeneration system. In this study,13 main cultivars were selected for expriment among domestic and foreign species. The experiment showed that Gong-Nong 1 was the best genotype for transformation by comparing the inducing capacity. And based on this conclusion, a high efficiency Agrobacterium-mediated genetic transformation of alfalfa system was established and optimized with leaf of Gong-Nong 1 as explants. Moreover, we have successfully transferred the vacuolar Na+/H+ antiporter gene of Salsola soda into alfalfa genome. The Southern blot analysis showed that there were 6 independent transformed lines were positive. Finally, we obtained 203 positive plants in this study.
     The six independent transformation lines were taken as material for salt tolerance test. The Northern-blot demonstrated that the expression of SsNHX1 driven by the stress inducible promoter was increased with the treating salt concentration. Salt-stress test showed that the salt-tolerant ability of transgenic alfalfa was enhanced up to 400 mM NaCl compared to control plants died at the stress condition of 200 mM NaCl. And there were higher Na+, K+ content in transgenic plants. The physiological analysis showed that the transgenic alfalfa caused less damage under salt stress compare to control plants. For example, the changes trend of the superoxide dismutase (SOD) activity of transgenic plants was smaller than that of control plants, and proline content was smaller too. In addition, the changes trend of the rate of electrolyte leakage (REL) of transgic plants was also smaller than that of control plants. All these results indicated that the expression of SsNHX1 was much helpful for transgenic plants to resistant to the salt stress, and it could enhance the salt-tolerant ability of transgenic alfalfa effectively.
引文
[1]Fao. Global Network on Integrated Soil Management for Sustainable Use of Salt-affected Soils [DB]. http://www.fao.org/ag/agl/agll/spush,2007,10-20.
    [2]李建东,郑慧莹.松嫩平原盐碱化草地的改良治理的研究[J].东北师大学报,1995,(1):110-116.
    [3]耿华珠.中国苜蓿[M].北京:中国农业出版社,1995.
    [4]陈宝书.牧草饲料作物栽培学[M].北京:中国农业出版社,2001.
    [5]Downes R W. New herbage cultivars Medicago sativa.CV, Alfalfa. Tropical Grasslands,1994, (28):191-192.
    [6]杨青川,孙彦,苏加楷,等.紫花苜蓿耐盐育种及耐盐遗传基础的研究进展[J].中国草地,2001,(23):59-62.
    [7]Winicov I, Bastola D R. Transgenic overexpression of the transcription factor Alfinl enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants[J]. Plant Physiol,1999,120:473-480.
    [8]Winicov I. Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa[J]. Planta,2000, 210:416-422.
    [9]陈晨,曹致中,贺顺姬,等.农杆菌介导的紫花苜蓿遗传转化体系的建立与优化[J].甘肃农业大学学报,2004,39(05):16-19.
    [10]邓程君.农杆菌介导的NTHK1基因转化苜蓿增大叶片及提高耐盐性的研究[D].[博士学位论文].北京:中国农业大学,2006.
    [11]潘竟丽.新疆盐生植物灰绿藜NHX1基因转化新疆大叶苜蓿植株再生及分子检测的研究[D].[博士学位论文].乌鲁木齐:新疆农业大学,2007.
    [12]王强龙,王锁民,张金林,等.根癌农杆菌介导AtNHX1基因转化紫花苜蓿的研究.草业科学,2006,23(12):55-59.
    [13]包爱科AVP1基因转化紫花苜蓿的初步研究[D].[硕士学位论文].兰州:兰州大学,2006.
    [14]隋昕.碱蓬液泡型Na+/H+逆向运输蛋白基因的克隆及其向苜蓿中的转化[D].[硕士学位论文].长春:吉林农业大学,2007.
    [15]Rana M. Genes and salt tolerance bringing them together[J]. New phytologist,2005,167(3): 645-663.
    [16]Wyn Jones R G, Storey R, Leigh R A, et al. A hypothesis on cytoplasmic osmoregulation[C]. In:MarrE H, Cifern 0, eds. Regulation of Cell Membrance Activities in Plants,1977,21-136.
    [17]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报,2003,21(2):177-181.
    [18]Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants. Plant J,1993, 4(2):215-223.
    [19]崔润丽,刁现民.植物耐盐相关基因克隆与转化研究进展[J].中国生物工程杂志,2005,5(8):25-30.
    [20]Kavikishor P B, Hong Z, Miao G H, et al. Overexpression of Δ-1-pyrroline-5-carboxyate synthestase increases proline production and confer osmotolerance in transgenic plant[J]. Plant Physiol,1995,108:1387-1394.
    [21]Sawahel W A, Hassan A H. Generation of transgenie wheat plants producing high level of the osmoprotectant proline[J]. Biotechnology Letters,2002,24(9):721-725.
    [22]苏金,Targolli,吴乃虎,等.在转基因植物中实现外源基因最佳表达的途径[J].生物工程学报,1999,15(4):3-6.
    [23]支立峰,陈明清,余涛,等.转化水稻细胞系的研究[J].湖北师范学院学报(自然科学版),2005,25(4):39-43.
    [24]Hong Z. Removal of feedback inhibition of 1-pyroline 5-carboxylate synthase results in increased proline accumulation and protection of plants from osmotic stress[CJ]. Plant Physio,2000,122:747-756.
    [25]Yoshbia Y, Kiyosue T, Nakashima K, et al. Regulation of levels of proline as an osmolyte in plants under water stress [J].Plant Cell Physical,1997,38:1095-1102.
    [26]吉羽洋周,篠崎和子,篠崎一雄.脯氨酸蓄积能力高的稻科植物及其生产方法[P].中国专利:01144073.
    [27]Nanjio T, Kobayashi T M, Yoshida Y, et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana [J]. FEBS Lett,1999,461: 205-210.
    [28]Roosens N H C J, Thu T T, Iskandar H M, et al. Isolation of the ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol,1998,117:263-271.
    [29]Roosens N H, Bitar F A, Loenders K, et al. Overexpression of ornithine-8-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants[J]. Mol Breeding,2002,9:73-80.
    [30]Wu L Q, Fan Z M, Guo L, et al. Overexpression of an Arobidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice[J]. Chin Sci Bull,2003,48(19):2050-2056.
    [31]Meng Y L, Wang Y M, Zhang B, et al. Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions[J]. Cell Res,2001, 11(3):187-193.
    [32]McCue K F, Hanson A D. Salt-inducible betaine aldhyde dehydrogenase from sugar beet: cDNA cloning and expression[J]. Plant Mol Biol,1992,18:1-11.
    [33]Wood A J, Saneoka H, Rhodes D, et al. Betaine aldehyde dehydrogenase in sorghum (molecular cloning and expression of two related genes)[J]. Plant Physiol,1996,110: 1301-1308.
    [34]刘振林,尹伟伦,戴思兰.菠菜甜菜碱醛脱氢酶基因同源片段的克隆与序列分析分子植物育种.2006,(1):45-52.
    [35]何晓兰,侯喜林,吴纪中,等.三角叶滨藜甜菜碱醛脱氢酶(BADH)基因的克隆及序列分析.南京农业大学学报,2004,27(1):15-19.
    [36]Ishitani M, Han S Y, Han S Y. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Bio,1995, (2):307-315.
    [37]肖岗,张耕耘,刘风华.山菠菜甜菜碱醛脱氢酶基因研究[J].科学通报,1995,40(8):741-745.
    [38]Nuccio M L, Russell B L, Nolto K D. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase[J]. Plant J,1998,16: 487-498.
    [39]Holmstrom K O, Somersalo S, Mandal A, et al. Improved tolerance to salinity and low temperatures in transgenic tobacco producing glycine betaine[J]. J Exp Bot,2000,51: 177-185.
    [40]Hayashi H, Alia K Y, Mustardy L, et al. Transformation of Arobidopsis thaliana with the conA gene for choline oxidase:accumulation of glycine betaine and enhanced tolerance to salt and cold stress[J]. Plant J,1997,12:133-142.
    [41]Prasad K V S K, Sharmila P, Kumar P A. Transformation of Brassica juncea (L) Czem with bacterial codA gene enhances its tolerance to salt stress[J]. Mol Breeding,2000,6:489-499.
    [42]Guo Y, Zhang L, Xiao G, et al. Expression of betaine aldehyde dehydrogenase gene and salinity tolerance in rice transgenic plants[J]. Sci Chin Ser C Life sci,1997,27(2):151-155.
    [43]Rathinasabapathi B, McCue K F, Gage D A, et al. Metabolic engineering of glycine betaine biosynthesis:plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance[J]. Planta, 1994,193:155-162.
    [44]粱峥,马德钦,汤岚,等.菠菜甜菜碱醛脱氢酶(BADH)在烟草中的表达[J].生物工程学报,1997,13(3):236-240.
    [45]郭北海,张艳敏,李洪杰,等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达[J].植物学报,2000,42(3):279-283.
    [46]Tarczynski M C, Jense R G, Bohnert H J. Stress protection of transgenic tobacco by production of osmolyte mannitoi[J]. Science,1993,259:508-510.
    [47]Kanayama Y M H, Imaseki H, et al. Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phodphate dehydrogenase from apple[J]. Plant Physiol,1992,100: 1607-1608.
    [48]刘广发,谭静.盐生盐杆菌含耐盐相关基因DNA片段的克隆.厦门大学学报(自然科学版),2001,01:35-43.
    [49]Sheveleva E V, Marquez S, Chamar W, et al. Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco[J]. Plant Physiol,1998,117:831-839.
    [50]Liu Y, Wang G Y, Liu J Y, et al. Transfer of Ecoli gutD gene into maize and regeneration of salt-tolerant transgenic plants[J]. Sci Chin SerC Life Sci,1998,28(6):542-547.
    [51]Bohnert H J. Biochemistry and molecular biology of CAM[A]. London:Cam bridge University Press,1994,113-137.
    [52]Epstein E. How calcium enhances plant salt tolerance[J]. Science,1998,280:1906-190.
    [53]Walker D J, Leigh R A, Miller A J. Potassium homeostasis in acuolated plant cells[J]. Proc Natl Acad Sci,1996,93:10510-10514.
    [54]高永生,王锁民,张承烈.植物盐适应性调节机制的研究进展[J].草业学报,2003,12(2):1-6.
    [55]鲁黎明,杨铁钊.植物K+吸收转运的分子机制研究进展[J].棉花学报,2006,18(6):379-385.
    [56]Kim E J, Kwak J M, Uozumi N, et al. AtKUP1:an Arabidopsis gene encoding high-affinity potassium transport activity[J]. Plant Cell,1998,10:51-62.
    [57]Maser P, Thomine S, Schroeder J I, et al. Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant Physio,2001,126:1646-1667.
    [58]Fu H H, Luan S. AtKuP1:a dual-affinity K+ transporter from Arabidopsis[J]. Plant Cell, 1998,10:63-73.
    [59]Banuelos M A, Garciadeblas B, Cubero B, et al. Inventory and functional characterization of the HAK potassium transporters of rice[J]. Plant Physiol,2002,130:784-794.
    [60]Santa-Maria G E, Rubio F, Dubcovsky J, et al. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter[J]. Plant Cell,1997,9: 2281-2289.
    [61]Quintero F J, Blatt M R.A new family of K+ transporters from Arabidopsis that are conserved across phyla[J]. FEBS Letters,1997,415:206-211.
    [62]Su H, Golldack D, Katsuhara M, et al. Expression and stress-dependent induction of potassium channel transcripts in the common ice plant[J]. Plant Physiol,2001,125:604-614.
    [63]Rigas S, Debrosses G, Haralampidis K, et al. Trhl encodes a potassium transporter required for tip growth in Arabidopsis root hairs[J]. Plant Cell,2001,13:139-151.
    [64]Ruan Y L, Llewellyn D J, Furbank R T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin[J]. Plant Cell,2001,13:47-60.
    [65]Senn M E, Rubio F, Banuelos M A, et al. Comparative functional features of plant potassium HvHAKl and HvHAK2 transporters[J]. J Biol Chem,2001,276:44563-44569.
    [66]邵群,丁同楼,韩宁,等.高亲和K+转运载体(HKT)与植物抗盐性[J].植物生理学通讯,2006,2(42):175-181.
    [67]Schachtman D P, Schroeder J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants[J]. Nature,1994,370:655-658.
    [68]Rubio F. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J]. Science,1995,270:1660.
    [69]Rubio F, Gassmann W, Schroeder J I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J]. Science,1995,270: 1660-1663.
    [70]Rus A, Yokoi S, Sharkhuu A, et al. AtHKTl is a salt tolerance determinant that controls Na+ entry into plant roots[J]. Pro Natl Acad Sci,2001,98:14150-14155.
    [71]Wang T B, Gassmann W, Rubio F, et al. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium[J]. Plant Physiol,1998,118:651-659.
    [72]Horie T, Yoshida K, Nakayama H, et al. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa[J]. Plant J,2001,27:129-138.
    [73]Laurie S, Feeney K A, Maathuis F J M, et al. A role for HKT1 in sodium uptake by wheat roots[J]. Plant J,2002,32:139-149.
    [74]Ratner A, Jacoby B. Efect of K+ its coumter anion and pH on sodium efflux from barley roots. J Exp Physiol,1976,148:425-433.
    [75]任仲海,马秀灵,赵彦修,等.Na+/H+逆向转运蛋白和植物耐盐性[J].生物工程学报,2002,18:16-19.
    [76]Jia Z P, McCullough N, Martel R, et al. Gene amplification at a locus encoding a puative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast[J]. EMBO J,1992, 11:1631-1640.
    [77]Watanabe Y, Miwa S, Tamai Y. Characterization of Na+/H+ antiporter gene closely related to the salt-tolerance of yeast Zygosaccharomyces rouxii[J]. Yeast,1995,11:829-838.
    [78]Iwaki T, Higashida Y, Tsuji H, et al. Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae[J]. Yeast,1998,14:1167-1174.
    [79]Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proc Natl Acad Sci,2000,97:6896-6901
    [80]Zhu JK. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol,2003,6: 441-445.
    [81]Waditee R, Hibino T, Nakamura T, et al. Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water[J]. Proc Natl Acad Sci,2002,99:4109-4114.
    [82]Shi H, Lee B, Wu S, et al. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana[J]. Nat Biotechnol,2003,21:81-85.
    [83]Zhang F. Environmental stress and plant breeding[M]. Beijing:Agriculture Press,1993: 330-335.
    [84]Cheeseman J M. Mechanisms of salinity tolerance in plants[J]. Plant Physiol,1988,87: 547-550.
    [85]Michelet B, Boutry M. The plasma membrane H+-ATPase:A highly regulated enzyme with multiple physiological functions[J]. Plant Physiol,1995,108:1-6.
    [86]Volkmar K M, Hu Y, Steppuhn H. Physiological responses of plants to salinity:a review[J]. Can J Plant Science,1998,78:19-27.
    [87]Blummald E, Poole R J. Na+/H+ antiporter in isolated tonoplast vesicles from storage tissue of Beta vulgaris[J]. Plant Physiol,1985,78(1):163-167.
    [88]Gaibarino J, Dupont F M. NaCl induces a Na+/H+antiport in tonoplast vesicles from barley root[J]. Plant Physiol,1988,86:231-236.
    [89]Staal M, Maathuis F J M, Elzenga T M. Na+/H+ antiporter activity of the salt tolerant Plantago maritima and the salt sensitive Plantago media[J]. Physiol Plant,1991,82:179-184.
    [90]Ballesteros E, Blumwalt E, Donaire J P, et al. Na+/H+ antiporter activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress[J]. Physiol Plant,1997,99:328-334.
    [91]Nass R, Cunningham K W, Rao R. Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase[J]. J Biol Chem,1997,272:26145-26152.
    [92]Apse M P, Aharon G S, Snedden W S. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science,1999,285:1256-1258.
    [93]Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa[J]. Biochim Biophys Acta,1999,1446(1-2):149-155.
    [94]Fukuda A, Nakamura A, Tagiri A, et al. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice[J]. Plant Cell Physiol, 2004,45(2):146-159.
    [95]Hamada A, Shono M, Xia T, et al. Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini[J]. Plant Mol Biol,2001,46:35-42.
    [96]Wang J, Zuo K, Wu W, et al. Molecular cloning and characterization of a new Na+/H+ antiporter gene from Brassica napus[J]. DNA Seq,2003,14:351-358.
    [97]Xia T, Apse M P, Aharon G S, et al. Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris[J]. Physiol Plant,2002,116:206-212.
    [98]Wu C A, Yang G D, Meng Q W, et al. The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress[J]. Plant Cell Physiol,2004, 45:600-607.
    [99]Fukuda A, Chiba K, Maeda M, et al. Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley[J]. J Exp Bot,2004,55:585-594.
    [100]Yang Q, Wu M, Wang P, et al. Cloning and expression analysis of a vacuolar Na+/H+ antiporter gene from alfalfa[J]. DNA Seq,2005,16:352-357.
    [101]Zhang H X, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature biotechnol,2001,19:765-768.
    [102]Zhao J S, Zhi D Y, Xue Z Y, et al. Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis[J]. J Plant Physiol,2007,164:1377-1383.
    [103]Zhang H X, Hodson J N, Williams J P, et al. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation[J]. Proc Natl Acad Sci,2001,98:12832-12836.
    [104]Chen L H, Zhang B, Xu Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum)[J]. Transgenic Res,2008,17:121-132.
    [105]Chen H, An R, Tang J H, et al. Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol breeding,2007,19:215-225.
    [106]Wu Y Y, Chen Q J, Chen M, et al. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene.2005, Plant Sci,169:65-73.
    [107]Ohta M, Hayashi Y, Nakashima A, et al. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice[J]. FEBS Lett,2002,532:279-282.
    [108]Zhao F Y, Wang Z L, Zhang Q, et al. Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa[J]. J Plant Res,2006,119:95-104.
    [109]龚明.盐胁迫下大麦和小麦等叶片脂质过氧化伤害与超微结构变化的关[J].植物学报,1989,31(11):841-846.
    [110]Greenway H,Munne R. Mechanisms of salt tolerance in non-halophytes[J]. Ann Rev Plant Physiol,1980,31:149-190.
    [111]Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress [J]. Plant Cell,2002,14:165-183.
    [112]陈贻竹,B.帕特森.低温对植物叶片中超氧物歧化酶、过氧化氢酶和过氧化物酶水平的影响[J].植物生理学报,1988,14(4):323-328.
    [113]Fridovich I. Superoxide dismutases[J]. Adv Enzymol Relat Areas Mol Biol,1986,58: 61-79.
    [114]Raychqudhuri S S, Deng X W. The role of superoxide dimutase in combating oxidative stress in higher plants[J]. Bot Rev,2000,66:89-98.
    [115]McCord J M, Fridovich I. Superoxide dismutase, an enzymatic function for erythrocuprein (Hemocuprein). Biol Chem,1969,244(22):6049-6055.
    [116]Gupta A S, Eebb R P, Holaday A S, et al. Overexpression of superoxide dismutase protects plants from oxidative stress[J]. Plant Physiol,1993,103(4):1067-1073.
    [117]Tanaka Y, Hibino T, Hayashi Y, et al. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts[J]. Plant Sci,1999,148:131-138.
    [118]Samis K, Bowley S. Pyramiding Mn-superoxide dismutase tranagenes to improve persistence and biomass production in alfalfa[J]. J Exp Bot,2002,53(372):1343-1350.
    [119]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.
    [120]路子显,常团结,刘翔,等.植物碱性亮氨酸拉链(bZIP)蛋白的研究进展(一)结构、分类、分布和同源性分析.遗传,2001,23:564-570.
    [121]Choi H, Hong J H, Ha J, et al. ABFs, a family of ABA-responsive element binding factors[J]. J Biol Chem,2000,275:1723-1730.
    [122]Casaretto J, Ho T H D. The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells[J]. Plant Cell,2003,15: 271-284.
    [123]Brocard I M, Lynch T J, Finkelstein R R. Regulation and role of the Arabidopsis ABA-insensitive 5 gene in ABA, sugar and stress response[J]. Plant Physiol,2002,129: 1533-1543.
    [124]Kuhlmann M, Horvay K, Strathmann A, et al. The alphahelical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response[J]. J Biol Chem, 2003,278:8786-8794.
    [125]Kim J C, Lee S H, Cheong Y H, et al. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants[J]. Plant J,2001,25: 247-259.
    [126]Chen C, Chen Z. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor[J]. Plant Physiol,2002, 129:706-716.
    [127]Dellagi A, Helibronn J, Avrova A O, et al. A potato gene encoding a WRKY-like transcription factor is induced in susceptible interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression[J]. Mol Plant Microbe In,2000,13:1092-1101.
    [128]Yamaguchi S K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress[J]. Plant Cell, 1994,6:251-264.
    [129]Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1 Over expression Induces COR genes and enhances freezing tolerance[J]. Science,1998,280:104-106.
    [130]Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci,1997,94:1035-1040.
    [131]Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell,1998,10:1391-1406.
    [132]Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-Binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducibe gene expression[J]. Biochem Bioph Res Commun,2002,290:998-1009.
    [133]Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB gene in rice, Oryza sativa L, encode transcription activators that function in drought high-salt and coldresponsive expression[J]. Plant J,2003,33:751-763.
    [134]Xue G P. An AP2 domain transcription factor HvCBFl activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t) CGAC motif[J]. Biochim Biophys Acta,2002,1577:63-72.
    [135]Shen Y G, Zhang W K, He S J, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration, and ABA stress[J]. Theor Appl Genet,2003,106:923-930.
    [136]Qin F, Li J, Zhang G Y, et al. Isolation and structural analysis of DRE-Binding transcription factor from maize[J]. Acta Bot Sin,2003,45:331-339.
    [137]Menke F L H, Champion A, Kijne J W, et al. A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2[J]. EMBO J, 1999,18:4455-4463.
    [138]Shen Y G, Yan G Q, Zhang W K, et al. Novel halophyte EREBP/AP2-Type DNA binding protein improves salt tolerance in transgenic tobacco[J]. Acta Bot Sin,2003,45:82-87.
    [139]陈俊,王宗阳.植物MYB类转录因子研究进展[J].植物生理学与分子生物学学报,2002,28(2):81-88.
    [140]Urao T, Yamaguchi-Shinozaki K, Urao S, et al. An Arabidopsis MYB homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence[J]. Plant Cell,1993,5:1529-1539.
    [141]Sugimoto K, Takeda S, Hirochika H. MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Ttol and defense-related genes[J]. Plant Cell,2000,12:2511-2528.
    [142]Daniels M J, M irkov E, Chrispeels M J. The plasma membrane of Arabidopsis thaliana contains a mercury insensitive aquapofin that is a homolog of the tonoplast water channel protein TIP[J]. Plant Physiol,1994,106:1325-1333.
    [143]Kammerloher W, Fischer U, Piechottka G P, et al. Water channels in the plant plasma membran ecloned by immunoselection from a mammalian expression system[J]. Plant J, 1994,6(2):187-199.
    [144]Yamada S, Katsuhara M, Kelly W B, et al. A family of transcripts encoding water channel proteins:tissue specific expression in the common ice plant[J]. Plant Cell,1995,7(8): 1129-1142.
    [145]Liu Q, Umeda M, Uchimiya H. Isolation and expression analysis of two rice genes encoding the major intrinsic protein[J]. Plant MolBiol,1994,26(6):2003-2007.
    [146]Close T J, Meyer N C, Radik J. Nucleotide sequence of a gene encoding a 58.5-kilod alton barley dehydrin that lacks a serine tract[J]. Plant Physiol,1995,107(1):289-290.
    [147]Campbell S A, Crone D E, Ceccardi T L, et al.40 kDa maize (Zea mays L.) embryo dehydrin is encoded by the dhn2 loeus on chromosome 9[J]. Plant Mol Biol,1998,38(3): 417-423.
    [148]Welin B V, Olson A, Nylander M, et al. Characterization and differential expresion of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana[J]. Plant Mol Biol,1994,26(1):131-144.
    [149]Xu D, Duan X, Wang B. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerane to water deficit and salt stress in transgenic rice[J]. Plant Physiol,1996,110(1):249-257.
    [150]Saunders J W, Bingham E T. Production of alfalfa plants from callus tissue[J]. Crop Sci, 1972,12:804-808.
    [151]Bingham E T, Hurley L V, Kaatz D M, et al. Breeding alfalfa which regenerates from callus tissue in culture[J]. Crop Sci,1975,15:719-721.
    [152]Kao K N, Michayluk M R. Plant regeneration from mesophyll protoplasts of alfalfa[J]. Z. Pflanzenphysiol,96:135-141.
    [153]Atanassov A, Brown D C W. Plant regeneration from suspension culture and mesophyll protoplasts of Medicago sativa L[J]. Plant Cell Tissue Organ Cult,1984,3:149-162.
    [154]Mariza M, Beatriz A G, Maria J V, et al. Plant regeneration from proroplasts of alfalfa (Medicago sativa) via somatic embryogenesis[J]. Sci Agric,2003,60(4):683-689.
    [155]Mendis M H, Power J B, Davey M R. Somatic hybrids of the forage legumes Medicago sativa L. and M. falcata L[J]. J Exp Bot,1991,42:1565-1573.
    [156]Nenz E, Pupilli F, Damiani F, et al. Somatic hybrid plants between the forage legumes Medicago sativa L. and Medicago arborea L. Theor Appl Genet,1996,93:183-189.
    [157]Gallego P, Hita O, Villalobos N, et al. Somatic embryogenesis and plant regeneration in Medicago arborea L[J]. In Vitro Cell Dev Bio Plant,2001,37(2):199-203.
    [158]Cuadrado Y, Guerra H, Martin A B, et al. Differences in invertase activity in embryogenic and non-embryogenic calli from Medicago arborea L[J]. Plant Cell Tissue Organ Cult,2001, 67:145-151.
    [159]Chen T H H, Marowttch J, Thompson B G. Genotypic effects on somatic embryogenesis and plant regeneration from callus cultures of alfalfa[J]. Plant Cell Tissue Organ Cult,1987, 8:73-81.
    [160]Moltrasio R, Claudio G. Alfalfa(Medicago sativa) somatic embryogenesis:genetic control and introduction of favourable alleles into elite Argentinean germplasm[J]. Plant Cell Tissue Organ Cult,2004,77:119-124.
    [161]Iantcheva A, Vlahova M, Trinh H, et al. Assessment of polysomaty,embryogenic potential, embryo formation and regeneration for various species of diploid annual Medicago[J]. Plant Sci,2001,160:4621-4627.
    [162]杨燮荣,邰根福,荣仁.组织培养及植株的再生[J].植物生理学通报,1981,5:33-34.
    [163]何茂泰,白静仁.野生黄花苜蓿花药愈伤组织的诱导和植株再生.植物生理学通讯,1988,6:44-45.
    [164]李聪,熊德邵,耿华珠.苜蓿愈伤组织再生植株的研究.中国草地,1989,3:51-55.
    [165]安利佳,张俊敏等.天蓝苜蓿单细胞培养植株再生[J].实验生物学报,1991,24(2):119-125.
    [166]时永杰,周丽霞.几种豆科牧草的组织培养[J].四川草原,1997,(3):27-29.
    [167]宫相忠,黄健.苜蓿组织培养体细胞胚发生的细胞学观察[J].青岛海洋大学学报,1997,27(4):504-508.
    [168]李望丰,吕德扬,刘艳芝等.诱导苜蓿胚性愈伤组织分化和再生[J].吉林农业科学,2002,27(2):15-16.
    [169]Zambryski P. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu[J]. Rev Genet,1988,22:1-30.
    [170]Hooykaas P J, Schilperoort R A. Agrobacterium and plant genetic engineering[J]. Plant Mol Biol,1992,19:15-38.
    [171]Shahin E A, Spielmann A, Sukhapinda K, et al. Transformation of cultivated alfalfa using disarmed Agrobacterium tumefaciens[J]. Crop Science,1986,26:1235-1239.
    [172]Deak M, Kiss G B, Koncz C, et al. Transformation of Medicago by Agrobacterium mediated gene transfer[J]. Plant Cell Rep,1986,5:97-100.
    [173]Chabaud M, Passiatore J E, Cannon F, et al. Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation[J]. Plant Cell Rep,1988,7:512-516.
    [174]Hill K K, Jarvis-Eagan N, Halk E L, et al. The development of virus resistant alfalfa, Medicago sativa L[J]. Bio Technology,1991,9(4):373-377.
    [175]Narvaez-Vasquez J, Orozco-Cardenas M L, Ryan C A. Differentia expression of a chimeric CaMV-tomato proteinase Inhibitor I gene in leaves of transformed nightshade, tobacco and alfalfa plants[J]. Plant Mol Biol,1992,20(6):1149-1157.
    [176]Thomas J C, Wasmann C C, Echt C, et al. Introduction and expression of an insect proteinase inhibitor in alfalfa Medicago sativa L[J]. Plant Cell Rep,1994, (14):31-36.
    [177]Strizhov N, Keller M, Mathur J, et al. A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco[J]. Proc Natl Acad Sci,1996,93:15012-15017.
    [178]Mizukami Y, Houmura I. Production of transgenic alfalfa with chintinase gene (RCC2)[A]. Lorne and Hamilton Victoria,2000.
    [179]Samac D A, Smigocki A C. Expression of oryzacystatin I and II in alfalfa increases resistance to the root-lesion nematode Lorne and Hamilton Victoria. Phytopathology,2003, 93:799-804.
    [180]Wigdorovitz A, Sadir A M, Escribano J M, et al. Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1[J]. Virol,1999, (255):347-353.
    [181]Dus Santos M J, Wigdorovitz A, Trono K, et al. A novel methodology to de-velop a foot and mouth disease virus (FMDV) peptide based vaccine in transgenic plants[J]. Vaccine, 2002,(20):1141-1147.
    [182]Wigdorovitz D, MozgoVoj M, Parenno V, et al. Protective lactogenic immunity conferred by an edible peptide vaccine to bovine rotavirus produced in transgenic plants[J]. J Gen Vir, 2004,85:1825-1832.
    [183]Ziauddin A, Lee R W H, Ro R, et al. Transformation of alfalfa with a bacterial fusion gene, Mannheimia haemolytica A1 leukotoxin50-gfp:response with Agrobacterium tumefaciens strains LBA4404 and C58[J]. Plant Cell Tissue Organ Cult,2004,79:271-278.
    [184]Ullah A H, Sethumadhavan K, Mullaney E J, et al. Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase[J]. Biochem Biophys Res Commun,2002, (290): 1343-1348.
    [185]Schroeder H E, Khan M R I, Knibb W R, et al. Expression of a chicken ovalbumin gene in three lucerne cultivars[J]. Aust J Plant Physiol,1991,18(5):495-505.
    [186]Tabe L M, Wardley-richardson T M. Genetic engineering of grain and pasture legumes for improced nutritive value[J]. Genetica,1993, (90):181-200.
    [187]Wandelt C I, Khan M R, Craig S, et al. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants[J]. Plant J,1992,2:181-192.
    [188]Bagga S, Armendaris A, Klypina N, et al. Genetic engineering ruminal stable high methionine protein in the foliage of alfalfa[J]. Plan Sci,2004, (166):273-283.
    [189]Avraham T, Badani H, Galili S, et al. Enhanced levels of methionine and cysteine in transgenic alfalfa (Medigaco sativa L.) plants overexpressing the Arabidopsis cystathionine-y-synthase gene[J]. Plant Biotechnol J,2005, (3):71-79.
    [190]D'Halluin K, Botterman J, De Greef W. Engineering of herbicide-resistant alfalfa and evaluation under field conditions [J]. Crop Sci,1990,30:866-871.
    [191]Srinivasa R M S, Chen F, Shadle G, et al. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.)[J]. Proc Natl Acad Sci,2005,102(46):16573-16578.
    [192]吕德扬,范云六,俞梅敏,等.苜蓿高含硫氨基酸蛋白转基因植株再生[J].遗传学报,2000,27(4):331-337.
    [193]黎茵,黄霞,黄学林.根癌农杆菌介导的苜蓿体胚转化[J].植物生理与分子生物学学报,2003,29(2):109-113.
    [194]韩利芳,张玉发.烟草MnSOD基因在保定苜蓿中的转化[J].生物技术通报,2004,(1):39-46.
    [195]金淑梅,管清杰,罗秋香,等.苜蓿愈伤组织高频再生遗传和转化体系的建立.分子植物育种,2006,(4):571-578.
    [196]Pereira L F, Erickson L. Stable transformation of alfalfa(Medicago sativa L.) by particle bombardment[J]. Plant Cell Rep,1995,14:290-293.
    [197]Ramaiah S M, Skinner D Z. Particle bombardment:A simple and efficient method of alfalfa (Medicago sativa L.) pollen transformation[J]. Current Science,1997,73(8):674-682.
    [198]McKerise B D, Chen Y, Bans C M, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago sativa L)[J]. Plant Physiol,1993,103(4): 1155-1163.
    [199]McKersie B D, Bowley S R, Haijanlo E. Water-deficit tolerance and field performance of transgenie alfalfa overoxpressing superoxide dismutase[J]. Plant Physiol,1993,111(4): 1177-1181.
    [200]McKersie B D, Bowley S R, Jones K S. Winter survival of transgenic alfalfa overexpressing superoxide dismutase[J]. Plant Physiology,1999,119:839-847.
    [201]MeKersie B D, Murnaghan J, Jones K S, et al. Iron-supemxlde dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance[J]. Plant Physiol,2002,122:1427-1437.
    [202]韩利芳,张玉发.烟草Mn-SOD基因在保定苜蓿中的转化[J].生物技术通报,2004,(1):39-46.
    [203]Shearer H L, Friedberg J, Bowley S R. Constitutively active sucrose-phosphate synthase in transgenie alfalfa:carbohydrate profiles and low temperature survival[J]. Molecular Breeding of Forage and Turf, Dallas, TX,2003.
    [204]Zhang J Y, Broeekling C D, Blancafior E B, et al. Overexprossion of WXPI, a putative Medieago truncatula AP2 domain-containing transcription factor gene, increases cutieular wax accumulation and enhances drought tolerance in transgenie alfalfa(Medicago sativa) [J]. Plant J,2005,42(5):689-707.
    [205]Tesfaye M, Temple S J, Allan D L, et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum[J]. Plant Physiol,2001,127:1836-1844.
    [206]Rosellini D, Barone P, Bouton J, et al. Aluminum tolerance in alfalfa with the citrate synthase gene[R]. The 38th Report of the North American Alfalfa Improvement Conference, Sacramento, CA,2002,27-31.
    [207]罗小英,崔衍波,邓伟,等.超量表达苹果酸脱氢酶基因提高紫花苜蓿对铝毒的耐受性[J].分子植物育种,2004,2(5):621-626.
    [208]刘洋.棉花铝诱导蛋白基因GhAlin对紫花苜蓿(Medicago sativa L)的遗传转化[D].[硕士学位论文].昆明:西南农业大学,2004.
    [209]苏金,朱汝财.渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响[J].植物学通报,2002,18(2):125-136.
    [210]晏石娟,马晖玲,营致中.紫花苜蓿抗旱耐盐碱转基因抗性苗耐盐性研究[J].甘肃农业大学学报,2006,10(5):91-94.
    [211]王瑛,朱宝成,孙毅,等.外源lea3基因转化紫花苜蓿的研究[J].核农学报.2007,21(3):249-252.
    [212]刘艳芝,韦正乙,邢少辰,等HAL1基因转化苜蓿再生植株及其耐盐性[J].吉林农业科学,2008,33(6):21-24.
    [213]Krulwich T A. Na+/H+ antiporters[J]. Biochim Biophys Acta,1983,726:245-264.
    [214]Pandan E, Schuldiner S. Intracelluler pH and membrane potential as regulator in the procaryotic cell[J]. J Membr Biol,1987,95:189-198.
    [215]Brini F, Gaxiola R A, Berkowitz G A, et al. Cloning and characterization of a wheat vacuolar cationPproton antiporter and pyrophos phatase proton pump. Plant Physiol Biochem, 2005,43:347-354.
    [216]Chen M, Chen Q J, Chai M F, et al. Cloning and expression analysis of a maize Na+/H+ antiporter gene (ZmNHX)[J]. High Tech Commun,2005,15 (1):62-65.
    [217]Vasekina A V, Yershov P V, Reshetova O S, et al. Vacuolar Na+/H+ antiporter from barley: identification and response to salt stress[J]. Biochemistry,2005,70:100-107.
    [218]关宁,李聪,王涌鑫,等.毛偃麦草Na+/H+逆向转运蛋白的分子克隆及生物信息学分析[J].分子植物育种,2009,7(1):169-176.
    [219]Taji T, Seki M, Satou M, et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt stress using Arabidopsis microarray[J]. Plant Physiol,2004,135:1697-1709.
    [220]Hamada A, Hibino T, Nakamura T, et al. Na+/H+ antiporter from synechocystis species PCC 6803, homologous to SOS1, contains an aspartic residue and long C-terminal tail important for the carrier activity[J]. Plant Physiol,2001,125:437-446.
    [221]蔡伦,张富春,马纪,等.新疆3种藜科盐生植物NHX1基因的克隆与序列分析比较[J].植物生理学通讯,2005,41(3):43-47.
    [222]Thompson J D, Gibson T J, Plewniak F, et al. The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res,1997,25:4876-4882.
    [223]Kumar S, Tamura K, Nei M. MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J]. Brief Bioinform,2004,5:150-163.
    [224]Moller S, Croning M D R, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions[J]. Bioinformatics,2001,17(7):646-653.
    [225]Flowers T J. Improving crop salt tolerance. J Exp Bot,2004,55:307-319.
    [226]Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity[J]. Annu Rev Plant Physiol Plant Mol Biol,2000,51:463-499.
    [227]Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol,2000, 124:941-948.
    [228]Porat R, Pavoncello D, Ben-Hayyim G, et al. A heat treatment induced the expression of a Na+/H+ antiport gene (cNHX1) in citrus fruit[J]. Plant Sci,2002,162:957-963.
    [229]Aharonovitz O, Grinstein S. Na+/H+ exchangers:structure, function and regulation[J]. Drugs News Perspect,1999,12:105-109.
    [230]Putney L K, Denker S P, Barber D L. The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions[J]. Annu Rev Pharmacol Toxicol,2002,42: 527-552.
    [231]Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proc Natl Acad Sci,2000,97:6896-6901.
    [232]Yu J N, Huang J, Wang Z N, et al. An Na+/H+ antiporter gene from wheat plays an important role in stress tolerance[J]. J Biosci,2007,32(6):1153-1161.
    [233]王姝杰,王法龙,李世访,等.转Na+/H+ antiporter(Nhap)基因烟草植株的获得及耐盐性鉴定[J].农业生物技术学报,2006,14(1):74-78.
    [234]江文正,金宁一,王宏伟,等.中国株HIV-1结构蛋白基因gag与gp120在巴斯德毕赤酵母中的融合表达[J].细胞与分子免疫学杂志,2002,18(5):426-428.
    [235]Pichia expression kit, a manual of methods for expression of recombinant proteins in Pichia pistoris[B], Invitrogen, Version M,011102,25-0043.
    [236]彭日荷,熊爱生,李贤,等.应用毕氏酵母高效表达耐高温植物酸[J].生物化学和生物物理学报,2002,34(6):725-730.
    [237]施华中,杨弘远,周嫦,陈正华.根癌农杆菌的高效电激转化[J].武汉大学学报(自然科学版):1995,41(6):724-728.
    [238]Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants[J]. Science,1985,227:1229-1231.
    [239]Lutts S, Kinet J M, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot,1996,78:389-398.
    [240]Montague A, Ziauddin A, Lee R, et al. High-efficiency phosphinothricin-based selection for alfalfa transformation[J]. Plant Cell Tiss Organ Cult,2007,91:29-36.
    [241]Ziauddin A, Lee R W H, Lo R, et al. Transformation of alfalfa with a bacterial fusion gene, Mannheimia haemolytica A1 leukotoxin50-gfp:Response with Agrobacterium tumefaciens strains LBA4404 and C58[J]. Plant Cell Tiss Organ Cult,2004,79:271-278.
    [242]Bellucci M, De Marchis F, Mannucci R, et al. Jellyfish green fluorescent protein as a useful reporter for transient expression and stable transformation in Medicago sativa L[J]. Plant Cell Rep,2003,22:328-337.
    [243]Perhald A, Endre G, Kevei Z, et al. Strategies to obtain stable transgenic plants from non-embryogenic lines:complementation of the nn1 mutation of the NORK gene in Medicago sativa MN1008[J]. Plant Cell Rep,2006,25:799-806.
    [244]Tesfaye M, Denton M D, Samac D A, et al. Transgenic alfalfa secretes a fungal endochitinase protein to the Rhizosphere[J]. Plant and Soil,2005,269:233-243.
    [245]Bellucci M, Marchis F D, Arcioni S. Zeolin is a recombinant storage protein that can be used to produce value-added proteins in alfalfa (Medicago sativa L.)[J]. Plant Cell Tiss Organ Cult,2007,90:85-91.
    [246]Calderini O, Bovone T, Scotti C, et al. Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12[J]. Plant Cell Rep,2007,26:611-615.
    [247]Ewa K, Sylwia Z. Regulation of Medicago sativa L. somatic embryos regeneration by gibberellin A3 and abscisic acid in relation to starch content and a-amylase activity[J]. Plant Growth Regul,2006,49:209-217.
    [248]刘小琳,王继峰,胡晓艳,等.根癌农杆菌介导的紫花苜蓿遗传转化体系的建立与优化[J].中国草地学报,2007,29(2):102-106.
    [249]刘小琳,康俊梅,孙彦,等.MsNHX1基因转化紫花苜蓿及转基因植株的鉴定[J].草 地学报,2008,16(02):115-120.
    [250]李世林,杨舸,易秀莉,等.根癌农杆菌介导的盐生杜氏藻DsNRT2基因转化紫花苜蓿的初步研究[J].四川大学学报(自然科学版),2008,45(02):409-412.
    [251]Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol,1999,17: 287-291.
    [252]Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol,2000,12: 431-434.
    [253]Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants:challenges and opportunities. Trends Plant Sci,2005,10:615-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700