用户名: 密码: 验证码:
转Bt Cry1 Ah基因抗虫玉米的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bt cry1Ah基因是本实验室从国内苏云金芽胞杆菌(Bacillus thuringiensis, Bt)分离株BT8中克隆的新型杀虫蛋白基因,其编码蛋白对鳞翅目害虫具有强毒力,尤其对亚洲玉米螟(Ostrinia furnacalis )的毒力强于目前转基因作物研究中使用的cry1A类基因。利用cry1Ah基因进行抗虫转基因玉米研发在提高转基因玉米抗虫性的同时可以降低害虫抗性风险,获得的转基因玉米具有很好的应用前景。
     为了在玉米内验证cry1Ah的功能,本研究首先利用cry1Ah基因构建了植物表达载体pHUAh,该载体以潮霉素磷酸转移酶基因(hygromycin phosphotransferase,hyg)为筛选标记基因。用基因枪法转化玉米Q31(齐31)和Z31(综31)杂交组合的胚性愈伤组织,得到66株T0代转化植株,分子检测确定13株为阳性转基因玉米植株。通过对T1代植株进行田间抗虫性检测,筛选得到两个抗性转基因事件B1和B7。对B1和B7的T1-T5代转基因植株进行了四年跟踪检测,结果表明cry1Ah基因在玉米植株中可以稳定表达,并且可以逐代稳定遗传。转化cry1Ah基因的玉米对玉米螟具有较好的抗性,该基因可继续用于转基因抗虫玉米的研发。
     随后,我们利用cry1Ah基因构建了一个无筛选标记基因的植物重组表达载体pUAh,利用花粉管通道法转化玉米自交系X090。对获得的2200株T1代转化植株的Bt Cry1Ah蛋白表达进行检测,有172株为阳性植株。通过田间抗虫性测定,筛选到35株抗性植株。对其T2代植株进行抗虫性测定后确定了12个高抗转基因事件。随后分别从DNA水平、蛋白水平及田间抗虫性三方面对这12个高抗转基因事件的T2-T5代转基因植株进行了跟踪检测:DNA水平分析发现cry1Ah在转基因玉米中具有很好的遗传稳定性,T5代有9个转基因事件已经纯合,PCR阳性率为100%。蛋白水平的分析结果表明该基因在每代都可以正常稳定表达,但Cry1Ah蛋白在不同转化事件之间及同一转化事件不同组织部位内的表达量存在差异:转化事件P12(P12-8-7-13行)的Cry1Ah平均表达量最高,占可溶性总蛋白的0.130%。转化事件P16(P16-16-6-5行)的Cry1Ah平均表达量最低,占可溶性总蛋白的0.023%。对P12不同组织部位的Bt蛋白表达量的检测结果表明,Cry1Ah在苞叶中的表达量最高,占可溶性总蛋白的0.186%。抗虫性研究结果表明转cry1Ah基因玉米对亚洲玉米螟具有显著抗性,抗性可以逐代稳定遗传,并且抗性与蛋白的表达水平呈正相关。
     此外,本研究利用TAIL-PCR技术对花粉管通道法获得的转cry1Ah抗虫玉米P19的外源基因整合位点3′侧翼序列进行了初步研究,对得到的3′侧翼序列进行序列比对后发现其与玉米基因组4号染色体上的一段序列同源性最高,核苷酸一致性为99.5%。在玉米基因组内的具体位置为BIN4.09,初步确定了外源基因在玉米基因组中的整合位点。
     本研究获得的无筛选标记的遗传稳定的转基因玉米有很好的应用价值,可以作为候选材料进行下一步Bt抗虫玉米的育种工作。
The cry1Ah gene was one of the novel insecticidal genes cloned from Bacillus thuringiensis isolate BT8 which exhibited high toxicity against lepidopteran larvae. Cry1Ah protein showed higher toxicity to Asian corn borer (Ostrinia furnacalis) than any other cry1A genes. Transferring cry1Ah gene into maize can not only improve the resistance of transgenic maize to Asian corn borer but also delay the insect resistance risk. The cry1Ah gene was a candidate gene for insect resistant transgenic maize research.
     To confirm the cry1Ah gene’s function in transgenic maize, a plant expression vector pHUAh harboring the cry1Ah gene was constructed and transferred into immature embryonic calli of maize Q31×Z31 by microprojectile bombardment. The hyg gene was used as the selective marker gene. Sixty-six regenerated plants were obtained in T0 generation,thirteen of which were PCR positive. Bioassay results of T1 transgenic plants showed that events B1 and B7 were high resistant to the Asian corn borer . The two events were monitored by molecular detection and bioassay for 4 years from T1 toT5 generations. The results showed that foreign gene cry1Ah was expressed stably in maize and could be inherited stably over generations. Results of bioassay to T2-T5 transgenic maize plants suggested that the transgenic plants had high resistance against the Asian corn borer .
     A marker-free plant expression vector pUAh harboring the cry1Ah gene was constructed and transferred into maize inbred line X090 by pollen-tube pathway. Two thousands and two hundreds regenerated plants were obtained in T1 generation and were detected for the expression of Bt toxic Cry1Ah protein by Jin-biao immune detection strips. There were 172 plants expressing the Cry1Ah protein,35 of which were insect resistant confirmed through bioassay. In T2 generation, there were 12 transgenic events showing high resistance against the Asian corn borer which were further analyzed by DNA assay, protein assay and bioassay from T2 to T5 generations. Results of DNA analysis from T2 to T5 generations showed that foreign gene cry1Ah could be inherited stably over generations in transgenic maize. Nine homozygous transgenic events were obtained in T5 generation which showed uniformly positive in PCR assay. Protein analysis suggested that the Cry1Ah protein were stably expressed in each generation in transgenic maize and the contents of Cry1Ah protein were different among the 12 transgenic events as well as among different tissues. Content of Cry1Ah protein was the highest in transgenic event P12 ( line of P12-8-7-13 ) which was 0.130% of the total soluble protein . The lowest was the event P16(line of P16-16-6-5),of which the content of Cry1Ah protein was 0.023%. Detection of Cry1Ah protein in different tissues of event P12 showed that the Cry1Ah content was the highest in the husk leaf which was 0.186% of the total soluble protein. Bioassay results exhibited that the transgenic maize harboring cry1Ah gene showed high resistance against the Asian corn borer and the insect resistance could be inherited stably which were positively correlated with the level of the Cry1Ah expression.
     In this study, the integration 3’flanking sequence of cry1Ah gene in event P19 was analyzed by TAIL-PCR. The results showed that the flanking sequence was the highest homologous with the sequence at the BIN4.09 locus in the maize genome. The identity of nucleotide sequence was 99.5% .These revealed that foreign gene had been integrated into the maize genome.
     The stably inherited transgenic maize obtained in this study which had no selective marker gene could be potential candidates for the breeding of Bt insect-resistant transgenic maize.
引文
1.安韩冰,朱祯.基因枪在植物遗传转化中的应用.生物工程进展,1997,17(1):18~26
    2.仇艳光,田景汉,葛荣朝,等.TAIL-PCR的改良及其在分离小麦基因启动子中的应用.生物工程学报,2008,24(4):695-699.
    3.崔洪志.vgbM基因在植物中的表达及抗虫棉GK12中外源基因整合的初步分析.中国农业科学院学位论文,2004.
    4.丁群星,谢友菊,戴景瑞,等.用子房注射法将Bt毒蛋白基因导入玉米的研究.中国科学(B辑),1993,23(7):707—713
    5.关淑艳,张健华,柴晓杰,等.花粉管通道法将淀粉分支酶基因反义表达载体转入玉米自交系的研究.玉米科学, 2005, 13(4): 13-15.
    6.韩志勇,王新其,沈革志.反向PCR克隆转基因水稻的外源基因旁侧序列.上海农业学报,2001,17(2):27-32.
    7.黄璐,卫志明.农杆菌介导的玉米遗传转化.实验生物学报,1999,32(4):381-387
    8.李葱葱,刘娜,康岭生,等.转基因抗虫玉米BT蛋白表达量的研究.玉米科学,2006,14(31):
    40-41
    9.李慧芬,刘翔,曲强,等.转抗虫融合基因(cry1Ac3-cpti)玉米(Zea mays L.)植株的获得及其抗虫性分析.自然科学进展,2002,12(1):37-40
    10.李余良,胡建广,苏菁,等.子房注射法将Bt基因导人超甜玉米.玉米科学,2005,13(1):
    41—43
    11.梁雪莲,郭平毅,孙毅,等.玉米3种非组培转基因方法转化外源bar基因研究.作物学报,2005,
    31(12):1648-1653
    12.刘桂玲,陈举林,李平海.转基因玉米的研究进展与展望.农业生物技术科学,2004,20(4):36-38
    13.刘欣芳,高晓蓉,苏乔,等.转植酸酶基因玉米的获得及其后代的初步鉴定.玉米科学,2008,16(1):15~19
    14.欧阳立明,吴宏文,喻子牛,等.害虫对转Bt基因植物抗性的治理策略.植物保护学报,2001,28(2):183-188
    15.祁永红.大豆DNA直接导入玉米自交系的研究.玉米科学,2000,8(1):34-36
    16.渠柏艳,于海清,韩兆雪,等.可去除选择标记的转Bt基因抗虫玉米研究.分子植物育种,2004,2(5):649-653
    17.沈世华,张秀君,郭奕明,等.玉米基因转化的离体子房注射及其转基因植株的鉴定.植物学报,2001,43(10):1055-1057
    18.宋达峰,韩凝,边红武,等.用改良TAIL-PCR技术分析转基因烟草cbf1基因插入区的侧翼序列.作物学报,2005,31(10):1377-1379.
    19.王冬妍,王振营,何康来,等. BT玉米杀虫蛋白含量的时空表达及对亚洲玉米螟的杀虫效果.中国农业科学,2004,37(8):1155-1159
    20.王罡,杜娟,张艳华.用花粉管通道法将Bt杀虫基因导入玉米自交系的研究.玉米科学,2002 ,10(1) :36~37
    21.王国英,杜天冰,张宏,等.用基因枪将Bt毒蛋白基因转入玉米及转基因植株再生.中国科学(B辑),1995,25(1):71-76
    22.王秀君,郎志宏,陆伟,等.利用花粉管通道法将耐草甘膦基因MG2-EPSPS导入玉米自交系的研究初报.中国农业科技导报,2008,10(4):56-62
    23.王振营,鲁新,何康来,等.我国研究亚洲玉米螟历史、现状与展望.沈阳农业大学学报,2000,31(5):402-412
    24.伍晓丽,朱祯,李晚忱,等.农杆菌介导豇豆胰蛋白酶抑制剂基因(cpti)在玉米中的遗传转化.作物学报,2004,30(3):297-298
    25.徐艳聆,王振营,何康来,等.昆虫对Bt杀虫蛋白的抗性机制及治理策略.植物保护学报,2006,33(4):437-444
    26.张荣,王国英,张晓红,等.根癌农杆菌介导的玉米遗传转化体系的建立.农业生物技术学报,2001,9(1):45-48
    27.张森燕,吴忠义,张秀海,等. ZmPti1基因正义和RNAi表达载体的构建及其转化玉米的研究.华北农学报,2008 , 23(5):1-5
    28.张秀君,刘俊起,赵倩,等.用基因枪将高赖氨酸基因导入玉米及转基因植株的检测.农业生物技术学报, 1999, 7(4): 363—367
    29.中国农业科学院植物保护研究所.对鳞翅目昆虫高毒力的Bt cry1Ah基因及其表达产物.中国,发明,200410009918,2005.
    30.朱祯.高效抗虫转基因水稻的研究与开发.中国科学院院刊,2001,(5):353-357
    31.朱至清,王敬驹,孙敬三等.通过氮源比较试验建立一种较好的水稻花药培养基.中国科学,1975(5):484-490
    32. Abranches R., Santos A. P., Wegel E. , et al. Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant J, 2000 , 24(6): 713–723.
    33. Allen G. C., Hall G. J., Michalowski S., et al. High-level transgene expression in plant cells:effects of a strong scaffold attachment region from tobacco.Plant cell ,1996,8(5):899-913.
    34. Alonso J. M., Stepanova A. N., Leisse T. J., et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science,2003,301(5633):653-657.
    35. Amedeo P.,Habu Y.,Afsar K.,et al. Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature , 2000 , 405 (6783): 203–206.
    36. Azpiroz-Leehan R., Feldmann K. A..T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet,1997,13(4): 152–156.
    37. Beegle C. C., Yamamoto T.. History of Bacillus thuringiensis Berliner research and development .Can. Entomol, 1992, 124: 587-616.
    38. Bolin P. C., Hutchison W. D., Andow D.A.. Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera: Crambidae). J Econ Entomol,1999,92(5): 1021–1030.
    39. Chaufaux J., Seguin M., Swanson J. J., et al. Chronic exposure of the European corn borer(Lepidoptera: Crambidae) to CrylAb Bacillus thuringiensis toxin. J Econ Entomol,2001, 94(6), 1564–1570
    40. Chen L., Marmey P. , Taylor N. J., et al. Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol , 1998 , 16(11): 1060–1064.
    41. Cheng M. , Fry J. E. , Pang S. Z. , et al .Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol , 1997,115(3): 971–980.
    42. Chomczynski P., Sacchi N.. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987 , 162(1):156-159
    43. Crickmore N., Zeigler D. R., Feitelson J., et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev, 1998. 62(3): 807-813.
    44. Day C. D., Lee E., Kobayashi J., et al . Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes & Dev ,2000,14:2869–2880.
    45. Denolf P., Hendrickx K., Van D. J.,et al. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Eur J Biochem, 1997, 248(3):748-61
    46. Feitelson J. S., Payne J., Kim L.. Bacillus thuringiensis: insects and beyond. Bio/Technology, 1992, 10:271-275.
    47. Feitelson J. S.. The Bacillus thuringiensis family tree. In L. Kim (ed.), Advanced engineered pesticides. NewYork, Marcel Dekker, Inc., 1993, p.63-71.
    48. Filleur S., Dorbe M. F., Cerezo M., et al. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett , 2001 , 489(2-3):220–224.
    49. Forsbach A., Schubert D., Lechtenberg B., et al. A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol,2003,52(1):161–176.
    50. Frankenhuyzen V., Gringorten L., Gauthier D.. Cry9Ca1 Toxin, a Bacillus thuringiensis Insecticidal Crystal Protein with High Activity against the Spruce Budworm (Choristoneura fumiferana). Appl Environ Microbiol, 1997, 63 (10): 4132-4134
    51. Fromm M. E., Taylor L. P., Walbot V.. Inheritance and expression of chimeric genes in progeny of transgenic plants. Plant Cell, 1990, 2: 603~618
    52. Gazit E., Rocca P. L., Sansom M. S. P., et al. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensisδ-endotoxin are consistent with an“umbrella-like”structure of the pore. Proc Natl Acad Sci U S A, 1998, 95(21): 12289–12294.
    53. George C., Ridley W. P., Obert J. C., et al. Composition of grain and forage from corn rootworm-protected corn event MON 863 is equivalent to that of conventional corn (Zea mays l.). J Agric Food Chem, 2004, 52(13):4149-58
    54. Gordon-kamm W. J., Spencer T. M., Mangano M. L., et al. Transformation of maize cells and regeneration of fertile transgenic plants . Plant Cell, 1990,2: 603~618
    55. Grimsley N., Hohn T., Davis J. W., et al. Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature, 1987, 325:177~179
    56. Hern′andez M. , Pla M., Esteve T. ,et al.A specific real-time quantitative PCR detection system for event MON810 in maize YieldGard based on the 3'-transgene integration sequence.Transgenic Res , 2003, 12(2): 179–189.
    57. Hofmann C., Vanderbruggen H., Hofte H., et al. Specificity of Bacillus thuringiensisδ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midgets. Proc Natl Acad Sci USA, 1988, 85:7844-7848
    58. H?fte H., Whitetey H. R.. Insecticidai crystal proteins of Bacillus thuringiensis. Microbiol Rev, 1989, 53(2): 242-255.
    59. Holsters M., Villarroel R.,Montagu M. V., et al.The Use of Selectable Markers for the Isolation of Plant-DNA/T-DNA Junction Fragments in a Cosmid Vector. Mol Gen Genet, 1982,185(2):283-289.
    60. Huang F. N., Higgins R. A., Buschman L. L.. Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis subsp. kurstaki under selection pressure in European corn borer (Lepidoptera: Pyralidae). J Econ Entomol,1997,90(5):1137–1143
    61. Hwang I. T.,Kim Y. J.,Kim S. H.,et al.Annealing control primer system for improving specificity of PCR amplification. Biotechniques,2003,35(6):1180-1184.
    62. Ishida Y., Saito H., Ohta S., et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnolgy, 1996,14:745~750
    63. Jackson S. A. , Zhang P., Chen W. P., et al. High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor Appl Genet , 2001, 103(1): 56–62.
    64. James C. Global Status of Commercialized Biotech/GM Crops:2008. ISAAA Brief No. 39, ISAAA: Ithaca, 2009
    65. Jones D. H., Winistorfer S. C.. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA. Nucleic Acids Res, 1992, 20(3):595-600
    66. Kai G. Y., Zhang H. Y., Xu T. F.,et al. Marker-free: a novel tendency of transgenic plants. Acta Botanica Sinica, 2002, 44(8): 883-888
    67. Kaya H., Sato S., Tabata S. , et al. hosoba toge toge, a syndrome caused by a large chromosomal deletion associated with a T-DNA insertion in Arabidopsis. Plant Cell Physiol , 2000 , 41(9):1055–1066.
    68. Kim S. R. , Lee J., Jun S. H.,et al. Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol , 2003 , 52(4): 761–773.
    69. Klein T. M.. Genetic transformation of maize cell sparticle bombardment. Plant Physiol, 1989, 91: 440~444
    70. Knowles B. H., Ellar D. J.. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensisδ-endotoxins with different insect specificity. Biochimica et Biophysica Acta, 1987, 924(3):509-518
    71. Knowles B. H.. Mechanism of action of Bacillus thuringiensis insecticidal proteins. Adv Insect Physiol, 1994, 24:275-308
    72. Kohli A., Twyman R. M., Abranches R,et al . Transgene integration, organization and interaction in plants. Plant Mol Biol , 2003 , 52(2):247–258.
    73. Koncz C., Németh K., Rédei G. P.,et al. T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Bol ,1992,20(5): 963–976.
    74. Koziel M. G.,Beland G. L., Bowman C., et al. Field performance of elite transgenic maize plant expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technolgy, 1993, 11:194~200
    75. Lambert B., Buysse L., Decock C., et al. A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae. Appl Environ Microbiol,1996, 62:80–86.
    76. Latham J. R., Wilson A. K., Steinbrecher R. A.. The Mutational Consequences of Plant Transformation. J Biomed Biotechnol,2006 (2):25376.
    77. Li Y., Rosso M. G., Ulker B.,et al. Analysis of T-DNA insertion site distribution patterns in Arabidopsis thaliana reveals special features of genes without insertions.Genomics, 2006, 87(5): 645-652.
    78. Liu Y. G., Mitsukawa N., Oosumi T.,et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J ,1995 ,8(3) :457 -463.
    79. Liu Y. G.,Chen Y.,Zhang Q.. Amplification of genomic sequences flanking T-DNA insertions by thermal asymmetric interlaced polymerase chain reaction. Methods Mol Biol,2005,286:341-348.
    80. Liu Y. G.,Whittier R. F.. Thermal asymmetric interlaced PCR :automatable amplification and sequencing of insert end fragment from P1 and YAC clones for chromosome walking.Genomics ,1995 ,25(3) :674 - 681.
    81. Liu Y. J.,Wang G .Y.. The Inheritance and Expression of cry1A Gene in Transgenic Maize. Acta Botanica Sinica, 2003, 45(3):253-256
    82. Marcin F., Stefan M.. Unintended consequences of plant transformation: a molecular insight. J Appl Genet, 2006, 47(4): 277–286
    83. Martineau B., Voelker T. A., Sanders R. A.. On defining T-DNA. Plant cell, 1994, 6(8):1032-1033.
    84. Nanto K. , Sato K. , Katayama . Expression of a transgene exchanged by the recombinasemediated cassette exchange (RMCE) method in plants. Plant Cell Rep , 2009, Epub ahead of print.
    85. Nelson D. L.,Ledbetter S. A.,Corbo L,et al. Alu polymerase chain reaction: a method for rapid isolation of human specific sequenes from complex DNA sources.Proc Natl Acad Sci U S A,1989,86(17):6686-6690.
    86. Ochman H., Gerber A. S., Hartl D. L.. Genetic applications of an inverse polymerase chain reaction. Genetics, 1988 , 120(3):621-623
    87. Otha Y..High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA.Proc Nat1 Acad Sci , 1986, 83:715-719
    88. Payne J., Sick A. J.. Bacillus thuringiensis isolates active against lepidopteran pests, and genesencoding novel lepidopteran-active toxins. U.S., patent for an invention, 5188960, 1993.
    89. Pereira E. J. G., Storer N. P., Siegfried B. D..Inheritance of Cry1F resistance in laboratory-selected European corn borer and its survival on transgenic corn expressing the Cry1F toxin. Bull Entomol Res, 2008, 98(6):621-629
    90. Rai M. , Datta K. , Parkhi V. , et al. Variable T-DNA linkage configuration affects inheritance of carotenogenic transgenes and carotenoid accumulation in transgenic indica rice. Plant Cell Rep , 2007 , 26(8):1221–1231.
    91. Revenkova E., Masson J., Koncz C. , et al. Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress. EMBO J , 1999 , 18(2):490–499.
    92. Riley J., Butler R., Ogilvie D., et al. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res, 1990, 18(10):2887-2890
    93. Roger F., Cecile R., Monique R.. Managing insect resistance to plants producing Bacillus thuringiensis toxin. Crit Rev in Biotechnol, 1999, 19 :227-276
    94. Roush R. T., Shelton A. M.. Assessing the odds: the emergence of resistance to Bt transgenic plants. Nat Biotechnol, 1997, 15(9):816-817
    95. Sambrook J., Russell D.. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 2001
    96. Sanford J. C., Klein T. M., Wolf E. D., et al. Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol, 1987, 5: 27~37
    97. Schneeberger R. G., Zhang K., Tatarinova T., et al. Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions. Funct Integr Genomics, 2005, 5(4): 240-253.
    98. Schnepf E., Crickmore N., Van R. J., et al. Bacillus thuringiensis and its pesticidal crystal protein. Microbiol Mol Biol Rev, 1998,62(3): 775-806.
    99. Schwartz J. L., Juteau M., Grochulski P.,et al. Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS LETT,1997, 410(2-3):397-402
    100. Sha Y., Li S., Pei Z., et al.Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor Appl Genet, 2004, 108(2): 306―314.
    101. Siqueira H. A. A., Moellenbeck D., Spencer T., et al. Cross-resistance of Cry1Ab-selected Ostrinia nubilalis (Lepidoptera: Crambidae) to Bacillus thuringiensis delta-endotoxins. J Econ Entomol 2004, 97(3):1049–1057
    102. Soyle J. J., Doyle J. L., Hortorium B. H.. Isolation of plant DNA from fresh tissue. Focus, 1996, 12(1): 13
    103. Srivastava V., Ariza-Nieto M., Wilson A. J. . Cre-mediated sitespecific gene integration for consistent transgene expression in rice. Plant Biotechnol J, 2004 , 2(2):169–179.
    104. Svitashev S. K., Somers D. A.. Characterization of transgene loci in plants using FISH: A picture is worth a thousand words. Plant Cell Tiss Organ Cult, 2002, 69(3): 205―214.
    105. Svitashev S. K., Somers D. A.. Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome , 2001 , 44(4) : 691–697.
    106. Svitashev S., Ananiev E. , Pawlowski W. P.,et al. Association of transgene integration sites with chromosome rearrangements in hexaploid oat. Theor Appl Genet , 2000 , 100(6): 872–880.
    107. Triglia T.,Peterson M. G., Kemp D. J. .A procedure for in vitro amplification of DNA segments that lie outside the boundaries of knowing sequences. Nucleic Acids Res,1988 , 16 (16) : 8186.
    108. Vachon V., Paradis M. J., Marsolais M., et al. Endogenous K+/H+ exchange activity in the Sf9 insect cell line. Biochemistry, 1995, 34(46):15157-15164
    109. Vergunst A. C., Jansen L. E., Hooykaas P. J. . Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res , 1998 , 26:2729(11)–2734.
    110. Wang J. X., Sun Y., Cui G. M., et al.Transgenicmaize plants obtained by pollen-mediated transformation.Acta Bot Sinica,2001,43(3):275-279
    111. Wang Y. B., Lang Z. H., Zhang J., et al. Ubi1 intron-mediated enhancement of the expression of Bt cry1Ah gene in transgenic maize (Zea mays L.) . Chinese Science Bulletin,2008,53(20): 3185-3190
    112. Windels P. , Taverniers I. , Depicker A ., et al.Characterisation of the Roundup Ready soybean insert .Eur Food Res Technol , 2001, 213(2):107–112.
    113. Xue J.,Liang G., Crickmore N., et al. Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiol Lett, 2008,280(1):95-101
    114. Yan Y. X.,An C. C.,Li L.,et al.T-linker-specific ligation PCR (T-linker PCR):an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends.Nucleic Acids Res,2003,31(12):e68.
    115. Zhang J., Cai L., Cheng J. Q., et al. Transgene integration and organization in Cotton (Gossypium hirsutum L.) genome.Transgenic Res ,2008,17(2):293–306.
    116. Zhang S., Warkentin D., Sun B., et al .Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zeamays L.). Theor Appl Genet , 1996, 92:752–761
    117. Zhang Y. S., Yin X. Y., Yang A. F., et al. Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica,2005,144: 11–22
    118. Zhou G. Y.,Weng J.,Zeng Y. S.,et al.Introduction of exogenous DNA into cotton embryos. Methods Enzymol, 1983, 101: 433-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700