用户名: 密码: 验证码:
金属基体超疏水表面的制备及其海洋防腐防污功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类已经进入海洋开发的新时代,海洋资源开发、海上运输、海港和海防建设等领域都需要大量的专用新型材料和新型表面防护技术,研究这些材料的制备科学和工艺技术、失效机制、探索未来海洋开发所需求的新概念表面防护理论和应用领域预测显得格外重要和迫切。而在金属基体上构建超疏水表面是近年来表面防护技术的一个新兴领域,因此,研究不同金属基体(包括金属间化合物基体)超疏水表面的制备,以及其超疏水表面的海洋防腐蚀与防生物污损功能将对海洋表面防护技术的进一步发展有着深远的影响。
     本课题以不同类型金属(包括铜,铝及铁铝金属间化合物)为研究对象,利用分子动力学模拟和量子化学计算相结合的方法首先确定适合不同金属的超疏水表面制备方法和制备体系,在铜表面使用表面自组装法构建十四烷酸分子层;对于金属铝,则先进行阳极氧化,在表面构建适合的微观粗糙度,再浸泡于十四烷酸溶液中进行组装;而对于铁铝金属间化合物,由于其特殊的组成结构,可以使用双层沉积法,先以物理吸附在材料表面形成一层单分子层,再在此分子层上嫁接十四烷酸分子层。这三种方法主要针对不同金属表面结构而定,既相互联系,又有明显不同。利用原子力显微镜,扫描电镜,椭圆偏振光测量仪,接触角测量仪等手段对超疏水表面进行表征,发现在不同金属基体上利用不同方法制备的超疏水表面,其微观形貌有很大区别,在铜表面是类似于花瓣状结构,铝表面则为树叶状结构,而铁铝金属间化合物表面则为类似于荷叶表面的乳突结构,虽然三种金属表面形貌各异,但都满足一定的表面粗糙度,这也是超疏水表面形成的必备条件之一;进而通过电化学手段对不同金属表面超疏水膜的抗海水腐蚀能力进行横向与纵向的评测,经动电位极化曲线分析得出,超疏水膜的存在,使阳极和阴极电流都明显减小,腐蚀电位E_(Corr)正方向移动,说明超疏水表面的存在阻止了金属基体的阳极溶解过程。Nyquist与Bode谱解析与等效电路数据拟合显示,超疏水表面对于铜,铝,铁铝金属间化合物的缓蚀效率可分别达到99%,97%和86%。说明超疏水表面的形成有效阻止了海水对于金属材料表面的侵蚀。另外,确立超疏水表面的抗腐蚀模型,并探讨其抗腐蚀机理。最后,通过静态挂片法获得三种金属在青岛天然海水中浸泡不同时间后表面的优势菌种,经过生物方法PCR鉴定获悉,优势菌种为需钠弧菌。采用比浊法测定细菌的生长曲线,明确了该细菌在培养条件下的生长规律。进而通过挂片实验和荧光显微镜观察,证明了超疏水表面可明显抑制海洋微生物的附着。
The ocean epoch is coming, the marine materials and the technic of surface protection are urgent needed in the area of exploitation of marine resources, transport in ocean and marine engineering. Because of interesting properties and important applications in fundamental researches and industrial applications, super-hydrophobic surface has attracted significant attention, and various fabrication methods have been reported. However, to the best of our knowledge, little attention has been paid to super-hydrophobic surface equipped with anticorrosion properties to metallic surface. Such surface is of great importance for many industrial applications, and may present a solution to the long-standing problems of environmental contamination and corrosion of metals and metal alloys
     A novel super-hydrophobic film was prepared by myristic acid (n-tetradecanoic) chemically adsorbed onto the copper wafer. The film formation and its structure were characterized by means of water contact angle measurement, Fourier transformation infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The static contact angle for water on the surface of this organic film was measured to be as high as 158·.The formation of a composite interface composed of the flower-like surface nanostructures, water droplet and air trapped in the crevices was suggested to be responsible for the superior water-repellent property. The corrosion behavior of the super-hydrophobic surface was investigated with potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Due to the‘air valleys’and‘capillarity’effects, the corrosion resistance of the material was improved remarkably.
     A novel and stable super-hydrophobic film was prepared by myristic acid (CH_3(CH_2)_(12)COOH, mya) chemically adsorbed onto the anodized aluminum surface. The static contact angle for seawater on the surface was measured to be 154o. As evidenced by molecular dynamics (MD) simulations and electrochemical impedance spectroscopy (EIS), the effect of ethanol solvent on the film stability was proved. The surface structure and composition were then characterized by means of scanning electron microscopy (SEM) with energy dispersive X-ray spectrum (EDS) and atomic force microscope (AFM). The electrochemical measurements showed that the super-hydrophobic surface significantly decreased the corrosion currents densities (icorr), corrosion rates and double layer capacitance (Cdl), as simultaneously increased the values of polarization resistance (Rct) of aluminum in sterile seawater.
     A super-hydrophobic film was prepared by myristic acid (CH_3(CH_2)_(12)COOH chemically adsorbed onto the polyethyleneimine (PEI) coated Fe_3Al-type intermetallic wafer. The film character and structure were probed with contact angle measurement, scanning electron microscopy (SEM) and atomic force microscope (AFM). The results suggested that the structure of the film is similar to lotus and the seawater contact angle was larger than 150·. Moreover, the corrosion resistances of untreated and modified samples in seawater were investigated by electrochemical impedance spectroscopy (EIS). Experimental results showed that the corrosion rate of Fe3Al-type intermetallic with super-hydrophobic surface decreases dramatically because of its special microstructure.
     In addition, the preponderant bacterium was obtained from the surfaces of copper, aluminum and Fe3Al-type intermetallic which were staticly hung in natural sea water from Qingdao for different times. The preponderant bacterium was identified as Vibrio natriegens (V. natriegens) through biological method namely PCR. The survival habit and growth curve were studied using nephelometery. Moreover, the effect on microbial attachment of superhydrophobic surface was discussed using fluorescence microscope.
引文
[1] T .Peter,A .Gilbert, Review of Recent Work on Corrosion Behavior of Copper Alloys in Sea water[J].Materials Performance,1982,21(2):47.
    [2] J .M. Galbraith,K .L .Lofgren.Update on Monitoring Microbial Corrosion in Prudhce Bay’s Produced Water and Seawater Floods[J].Materials Performance,1987,26(9):47.
    [3]罗正贵,闻荻江.铜的腐蚀及防护研究进展.武汉化工学院学报[J].2005,27(2): 18~21
    [4]李嘉,尹衍升,刘强等.压痕-淬冷技术表征氧化锆/铁铝复合材料的抗热震性能[ J] .复合材料学报, 2004, 21( 4) : 50- 56)
    [5] Tammy L Metroke , Robert L ,et al . Passivation of Metal Alloy using Sol - gel - derived Materials a Review. Progress in Organic Coatings , 2001 , (41) :233 - 238
    [6] Abodolreza Mirmohseni , Ali Oladegaragoze. Anti - corrosion Properties of Polyaniline Coating on Iron. Synthetic Metals , 2000 , (114) : 105 - 108
    [7] Abraham Ulman. Formation and Structure of Self– assembled Monolayer. Chem. Rev. ,1996 , (96) :1 533 - 1 554
    [8] Maege I ,Jaehne E ,Henke A , Adler HJ P. Self - assembling Adhesion Promoters for Corrosion Resistant Metal Polymer Interfaces.Progress in Organic Coatings ,1998 , (34) :1– 12
    [9]黄桂桥铜合金在海洋飞溅区的腐蚀,中国腐蚀与防护学报,2005,25(2):65-69
    [10] P.D. Svoronos,T .J. Bruno.Application of langrnuirblodgett technology on electrochemistry study[J].1996,Ind.Eng.Chem .Res,2002.41;5321.
    [11] A.Ulman.Inhibition of copper corrosion with schiff base derived from 3-methoxysalaldehy- deando [J].Chem.Rev,1996.96:1533.
    [12] M. Stratmann.Inhibition and PPP quantum chemistry study of benzothiazole derivatives [J].Adv.Mater.1990,29:191.
    [13]赵永生,庞正智.2一己基咪唑作为铜的盐酸酸洗缓蚀剂作用机理的研究[J].北京化工大学学报,2003.30(1):36.
    [14]王佳,曹楚南,林海潮.缓蚀剂阳极脱附现象的研究[J].中国腐蚀与防护学报,1989,9(4):261.
    [15] D. Modestov, G.. D. Zhou, Y. T. Wu, etal. Study of the electrochem ical formation of Cu (I) BTA film s on copper electrodes and the mechanism of copper corrosion inhibition in aqueous chloride benzotriazole solutions[J]. Corros Sci, 1994, 36 (5) :1931-1946.
    [16]董泉玉.羧酸类铜缓蚀剂的制备及性能测试[J].材料保护,2001,34(3):49-50.
    [17]扈显奇.海水中铜缓蚀剂研究[J].四川化工与腐蚀控制,1999,2(3):4-8.
    [18] P. E. Laibinis,G M Whites. Influence of some thiazole derivatives on the co rrosion of mild steel in hydroc hloric acid [J].Am.Chem.Soc.1992,114.9022.
    [19] G. K. Jennings,P. E. Laibinis.Properties and status of corosion inhibitors in solution [J] .Colloids Surf.1996,1 16,105.
    [20]王艳波.高浓度氯离子介质中铝、铜合金的腐蚀与防护研究[D].重庆大学,重庆,2005
    [21]张捷,翁小龙.红外高透明树脂的合成研究[A].陆军武器隐身技术研究论文集[C].总装备部装甲兵装备技术研究所,总装备部炮兵装备技术研究所,中国兵器工业第五九研究所,2002:47—52.
    [22]刘登良.涂层失效分析的方法和工作程序[M].北京.化学工业出版社,2003:27-30.
    [23]许健翔,刘俊能.吸收剂填充体系的反应特性研究[J].宇航材料工艺,2001(5):58-60.
    [24] Foley R T, Localized corrosion of aluminum alloys. Corrosion, 1986,42(5): 277-288
    [25] D.Quéré, Non-sticking drops, Rep. Prog. Phys., 2005, 68: 2495-2532.
    [26]江雷从自然到仿生的超疏水纳米界面材料[J]科学基础,2005,23(2)
    [27] T.Onda, S.Shibuichi, N.Satoh, K.Tsujii,Super-water-repellent fractal surfaces, Langmuir, 1996, 12:2125-2127.
    [28] S.Shibuichi, T.Onda, N.Satoh, K.Tsujii, Super water-repellent surfaces resulting from fractal structure,J. Phys. Chem,1996,100: 19512-19517
    [29] W.Barthlott, C.Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces,Planta,1997, 202: 1-8.
    [30] C. Neinhuis, W. Barthlott, Characterization and distribution of water-repellent, self- cleaning plant surfaces, Ann. Bot.,1997, 79: 667-677.
    [31] A. Nakajima, Design of a transparent hydrophobic coating, J. Ceram. Soc. Jpn., 2004, 112(10): 533-540.
    [32] A. Nakajima, K. Hashimoto, T. Watanabe, Recent studies on super-hydrophobic films, Monatsh. Chem.,2001,132:31-41.
    [33] D.Quere,Non-sticking drops, Rep. Prog. Phys.,2005,68:2495-2532.
    [34] T. Sun,L. Feng,X. Gao,L. Jiang,Bioinspired surfaces with special wettability, Acc. Chem. Res.,200538: 44一52.
    [35] Miwa , M. Nakajima , A. Fujishima , A. Hashimoto , K. Watanabe , T.Langmuir 2000 , 16 , 5754
    [36]钱柏太金属基体上超疏水表面的制备研究,大连理工大学博士学位论文,大连,2005
    [37] R.N. WENZEL. Resistance of solid surfaces to wetting by water [J] . Industrial & Engineering Chemistry Research ,1936 ,28 :988 - 994.
    [38] A. CASSIE , S. BAXTER. Wettability of porous surfaces[J] .Translations of the Faraday Society ,1944 ,40 :546 - 551.
    [39] J.L. Zhang, X.D. Wu, L. Zeng , etal .Superhydrophobicity from micro- structured surface [J] .Chinese Science Bulletin ,2004 ,49(17) :1779 - 1 787.
    [40] S.Kulinich , M.Farzaneh. Hydrophobic properties of surfaces coated with fluoroal- kylsiloxane and alkylsioxane monolayers[J] . Surface Science,2004 ,573 :379 - 390.
    [41] H. B, L .Junghoon , A. P.NEELESH .Contact angle hysteresis on rough hydrophobic surfaces [J ] . Colloids and Surfaces A: Physicochem Eng Aspects,2004 ,248:101 -104.
    [42] X. D. Wang, X.F. Peng , J.C. Min,etal .Hysteresis of contact angle at liquid-solid interface [J].Journal of Basic Science and Engineering,2001,9 (4):343 - 353.
    [43] R .Buzio, D.M.F.Buatier, C. Boragno. A novel approach for the investigation of mesoscopic contact mechanics[J].Thin Solid Films ,2003 ,428 :111 -114.
    [44] Muraseh ,K. Nanishi, Kogureh,etal. Interactionsbetween heterogeneous surfaces of polymers and water[J].Journal of Applied Polymer Science,1994,54(13):2051 -2062.
    [45] B. Wang , J .Feng , C.Y.Gao. Surface wettability of compressed polyelec- trolyte multilayers [J] . Colloids and Surfaces A:Physicochem Eng Aspects,2005, 259 :1 - 5.
    [46] W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Oner, J. Youngblood, T.J. McCarthy, Ultrahy- drophobic and ultratyophobic surfaces: some comments and examples, Langmuir,1999,15: 3395-3399.
    [47] N.J. Shirtcliffe, G..McHale, M.I .Newton, G..Chabrol, C.C. Perry, Dual-scale roughness produces unusually water-repellent surfaces, Adv. Mater., 2004, 1 (1):1929-1932.
    [48] N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, Wetting and wetting transitionson copper-based super-hydrophobic surfaces, Langmuir, 2005, 21(3): 937-943.
    [49] K Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Super oil-repellent surfaces, Angew. Chen1 Int. Ed. Engl.,1997, 36(9): 1011-1012.
    [50] S. Shibuichi, T. Yamamoto, T. Onda, K Tsujii, Super water- and oil-repellent surfaces resulting from fractal stricture, J. Colloid Interface Sci., 1998, 208: 287-294
    [51] M. Thieme, R Frenzel, S. Schmidt, F. Simon, A. Hennig, H. Worch, K. Lunkwitz, D. Schamweber, Generation of ultrahydrophobic properties of aluminium a fast step to self-cleaning transparently coated metal surfaces, Adv. Eng. Mater,2001, 3(9): 691-695.
    [52] S.Ren, S.Yang, Y.Zhao, T.Yu, X.Xiao, Preparation and characterization of an ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films, Surf. Sci., 2003, 546: 64-74.
    [53]J.Bico, C. Marzolin, D. Querc, Pearl drops, Europhys. Lett.,1999,47(2):220-226.
    [54] J.Y. Shiu, C.W. Kuo, P. Chen, C.Y. Mou, Fabrication of tunable superhydrophobic surfaces by nanosphere lithography, Chem. Mater,2004,16(4): 561-564.
    [55] T. Sun,L. Feng, X.Gao, L.Jiang, Bioinspired surfaces with special wettability, Acc. Chem. Res., 2005, 38: 644-52.
    [56] C.Sanchez, H.Arribart, M.M.Giraud Guille, Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nature Mater., 2005, 4: 277-288.
    [57] A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, A. Fujishima, Transparent superhydrophobic thin films with self-cleaning properties, Langmuir, 2000, 16: 7044-7047.
    [58] R Furstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning properties of artificial super-hydrophobic surfaces, Langniuir, 2005, 21(3): 956-961.
    [59] R. Blossey, Self-cleaning surfaces一virtual realities, Nature Mater., 2003, 2: 301-306.
    [60] T.Kako, A.Nakajima,H. Irie, Z. Kato, K. Uematsu, T. Watanabe, K. Hashimoto, Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels, J. Mater. Sci., 2004, 39: 547- 555.
    [61] A. Nakajima, K Hashimoto, T. Watanabe, Recent studies on super-hydrophobic films, Monatsh. Chem., 2001,132:31-41.
    [62] M.Thieme, R.Frenzel, V.Hein, H.Worch, Metal surfaces with ultrahydrophobicproperties: perspectives for corrosion protection and self-cleaning, J. Corros. Sci. Eng., 2003, 6
    [63] Z.Guo, F.Zhou, J.Hao, W.Liu, Stable biomimetic super-hydrophobic engineering materials, J. Am. Chem. Soc., 2005, ASAP article.
    [64] K.Watanabe, Y.Udagawa, H.Ugadawa, Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall, J. Fluid Mech., 1999, 381:225-238.
    [65] K. Fukuda, J. Tokunaga, T. Nobunaga, T. Nakatani, T. Iwasaki, Y. Kunitake, Frictional drag reduction with air lubricant over a super-water-repellent surface, J. Mar. Sci. Technol., 2000, 5: 123-130.
    [66] K. Watanabe, H. Udagawa, Drag reduction of non-Newtonian fluids in a circular pipe with a highly water-repellent wall, AIChE J., 2001, 47(2): 256-262.
    [67] S. Gogte, P. Vorobieff, R. Truesdell, A. Maznmoli, F. van Swol, P. Shah, C.J. Brinker, Effective slip on textured superhydrophobic surfaces, Phys. Fluids, 2005, 17: 051701.
    [68] A.R. Parker, C.R. Lawrence, Water capture a desert beetle, Nature, 2001, 414: 33-4.
    [69] J. Kim, C.J. Kim, Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics, Proceedings of the IEEE Conference on MEMS, Las Vegas, NV, 2002, pp: 479-482.
    [70] J.0u , B.Perot , J.P.Rothstein , Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids, 2004, 16: 4635-4643.
    [71] J.P. Rothstein,Direct velocity measurements of the flow past drag-reducing ultrahydrophobic
    [72] X. Gao, L. Jiang,Water-repellent legs of water striders, Nature, 2004,432: 36.
    [73] T. Sun, H. Tan, D. Han, Q. Fu, L. Jiang, No platelet can adhere一largely improved blood compatibility on nanostructured superhydrophobic surfaces, Small, 2005,1(10): 959-963.
    [74] H. Liu, L. Feng, J. Zhai, L. Jiang, D. Zhu, Reversible wettability of a chemical vapor deposition Prepared ZnO film between superhydrophobicity and superhydro- philicity, Langmuir, 2004, 20(14): 5659-5661.
    [75] X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, D. Zhu, Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films, J. Am. Chem. Soc., 2004, 126(1): 62-63.
    [76] X. Feng, J. Zhai, L. Jiang, The fabrication and switchable superhydrophobicity of Ti0z nanorod films, Angew. Chem. Int. Ed,2005,44:5115-5118.
    [77] T.N. Krupenkin, J.A. Taylor, T.M. Schneider, S. Yang, From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces, Langmuir, 2004, 20(10): 3824-3827.
    [78] L. Xu, W. Chen, A. Mulchandani, Y. Yan, Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic, Angew. Chem. Int. Ed., 2005, 44: 6009-6012.
    [79] T. Sun, G..Wang, L. Feng, B. Liu, Y. Ma, L. Jiang, D. Zhu, Reversible switching between superhydrophilicity and superhydrophobicity, Angew. Chem., Int. Ed., 2004,43: 357-360.
    [80] N.J. Shirtcliffe, G. McHale, MI Newton, C.C. Perry, P. Roach, Porous materials show superhydrophobic to superhydrophilic switching, Chem Commun.,2005,24: 3135-3137.
    [81] S. Minko, M. Muller, M. Motomov, M. Nitschke, K Grundke, M. Stamm, Two-level structured self-adaptive surfaces with reversibly tunable properties, J. Am. Chem Soc., 2003, 125: 3896-3900.
    [82] X. Yu, Z. Wang, Y. Jiang, F. Shi, X. Zhang, Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity, Adv. Mater., 2005, 17: 1289-1293.
    [83] Z.Z.Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato, Structural color and the lotus effect, Angew. Chem. Int. Ed., 2003, 42(8): 894-897.
    [84] R. Furstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning properties of artificial super-hydrophobic surfaces, Langniuir, 2005, 21(3): 956-961.
    [85] Z.Z. Gu, H.M. Wei, R.Q. Zhang, G.Z. Han, C. Pan, H. Zhang, X.J. Tian, Z.M. Chen, Artificial silver ragwort surface, Appl. Phys. Lett., 2005, 86: 201915.
    [86] K. Autumn, Y. A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, W.T. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair, Nature, 2000,405: 681-685.
    [87] W.R. Hansen, K. Autumn, Evidence for self-cleaning in gecko setae, Proc. Natl. Acad. Sci. USA, 2005, 102(2): 385-389.
    [88] G..J. Shah, M. Sitti, Modeling and design of biomimetic adhesives inspired by gecko foot-hairs, Proceedings of the IEEE Conference on Robotics and Biomimetics, Shenyang,China, 2004, pp: 873- 878.
    [89] C. Menon, M. Murphy, M. Sitti, Gecko inspired surface climbing robots, Proceedings of the IEEE Conference on Robotics and Biomimetics, Shenyang, China, 2004, pp: 431-436.
    [90] A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, S.Y. Shapoval, Microfabricated adhesive mimicking gecko foot-hair, Nature Mater., 2003, 2: 461-463.
    [91] Fletcher, M. (1960), Bacterial Adhesion. New York:Wily-Liss
    [92] Costerton, J. W., Cheng, K. J., Geesey, G. G, Ladd, T. I., Nickel, J. C., Dasgupta, M., Marrie, T. J. (1987), Am. Rev. Microbiol. 41, pp.435.
    [93] Flemming, H. C., Geesey, G. G. (Eds.) (1991), Biofouling and Biocorrosion in Industrial Water Systems. Berlin: Springer.
    [94] Characklis, W. G., Wilderer, P. A. (Eds.)(1989), Structure and Function of Biofilms. Chichester, U. K.,Wiley.
    [95] Doyle, R. J. Rosenberg, M. (Eds.)(1990), Microbial Cell Surface Hydrophobicity. Washington, DC: American Society for Microbiology.
    [96] Hill, E. C., Shennan, J. L., Watkinson, R. J. (Eds.)(1987), Microbial Problems in the Offshore Oil Industry: Chichester, U. K.: Institute of Petroleum and Wiley.
    [97] L’Hostis E ,Compere C ,Desloais C. Characterization of biofilms formed on gold in natural seawater by oxygen diffusion analysis[J ] . Corrosion ,1997 ,53 (1) :4 - 10
    [98] Gill G Geesey ,et al. Role of bacterial exopolymer in the deterioration of metallic copper surfaces [J ] . Materials Performance ,1986 ,25 (2) :37 - 40
    [99] Chen G, Kagwade S V , French G E ,Clayton C R. Metal ion and exopolymers interaction: a surface analytical study [J ] . Corrosion, 1996, 52 (12) :891 - 899
    [1] M. J.Hwang,T. P.Stockfisch,A. T.Hagler,Derivation of Class II Force Fields. 2. Derivation and Characterization of a Class II Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules. J. Am. Chem. Soc.116 (1994) 2515.
    [2] Depero L E,Curri M L.Inorganic self-assembly. Curr. Opin. Solid State Mater. Sci.,2004,8 : 103-109
    [3] Karaborni S,Esselink K,Hilbers P A J . Simulating the self-assembly of gemini (dimeric) surfactants. Science,1994,266 :254-256
    [4] Huo Q S,Margolese D I,Ciesla U,et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature,1994,368 :317-321
    [5] Tanev P T,Pinnavaia TJ. A neutral templating route to mesoporous molecular sieves.Science,1995,267:865-867
    [6] Haile J N. Molecular Dynamics Simulation: Elementary Methods.New York : Wiley,1992
    [7] Rapaport D C. The Art of Molecular Dynamics Simulation,2nd ed. Cambridge University Press,2004
    [8] J. Vosta,J. Eliasek,P. Knizek. A quantum-chemical study of the corrosion inhibitor of iron by means of aniline derivatives in hydrochloric acid [J]. Corrosion, 1976, 32(5): 183-186.
    [9] J. Vosta,N. Hackerman. The dependence of capacitance on time in an acid inhibition corrosion process [J]. Corros. Sci.,1990,30 (8-9): 949-950.
    [10] L. Vayssieres,On the design of advanced metal oxide nanomaterials,Int. J. Nanotechnology,2004,1(1/2): 1-41.
    [11] D. Oner,T.J. McCarthy,Ultrahydrophobic surfaces. Effects of topography length scales on wettability,Langmuir,2000,16: 7777-7782.
    [12] A.B. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 1944,40: 546-551.
    [1] A.M. Abdel-Gaber, B.A. Abd-El-Nabey, I.M. Sidahmed, Kinetics and thermodynamics of aluminum dissolution in 1.0 M sulphuric acid containing chloride ions. Chem. Phys. 98 (2006) 291.
    [2] W.A. Badawy, F.M. Al-Kharafi, A.S. El-Azab, Electrochemical behavior and corrosion inhibition of Al, Al-6061 and Al-Cu in neutral aqueous solutions. Corros. Sci. 41 (1999) 709.
    [3] M. J.Hwang,T. P.Stockfisch,A. T.Hagler,Derivation of Class II Force Fields. 2. Derivation and Characterization of a Class II Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules.J. Am. Chem. Soc.116 (1994) 2515.
    [4]邱文革,陈树森.表面活性剂在金属加工中的应用[M] .北京:化学工业出版社,2003.
    [5]张树永,孔燕,丁遗福,等.自由体积与亲水性对环氧涂层防护性能的影响[J] .物理化学学报,2004,20(4):360.
    [6]胡吉明,张鉴清,谢德明,等.环氧树脂涂覆L Y12铝合金在NaCl溶液中的阻抗模型[J].物理化学学报,2003,19(2):144.
    [7] Y.T. Tao, Effect of biphenyl and naphthyl groups on the structure of self-assembled monolayers: packing, orientation, and wetting properties. J. Am. Chem. Soc. 115 (1993) 4350.
    [8] A.B. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 1944, 40: 546-551.
    [9] D. Richard, C. Clanet, D. Quere, Contact time of a bouncing drop, Nature, 2002, 417: 811.
    [10] D. Quire, Non-sticking drops, Rep. Prog. Phys., 2005, 68: 2495-2532.
    [11] E. Sabatani, J.B. Cohen, M. Bruening, I. Rubinstein, Thioaromatic monolayers on gold: a new family of self-assembling monolayers.Langmuir 9 (1993) 2974.
    [1]李嘉,尹衍升,刘强,孙康宁.压痕-淬冷技术表征氧化锆/铁铝复合材料的抗热震性能[J].复合材料学报,2004,21(4):50-56.
    [2]李劲风,郑子樵,张昭等.铝合金剥蚀过程的电化学阻抗谱分析[J].中国腐蚀与防护学报, 2005, 25(1) 106-112.
    [3]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004. 169-222.)
    [4] M.C. Garcia-Alonso, M.F. Lopez, M.L. Escudero, Corrosion behaviour of an Fe3Al-type intermetallic in a chloride containing solution[J].Intermetallics, 1999, 7: 185-191.
    [5]夏兰廷,韦华,朱宏喜.常用铸铁材料海水腐蚀行为的研究[J].中国腐蚀与防护学报, 2003, 23(2) 201-206..)
    [6] K. Nakanishi,P.H. Solomon,Infrared Absorption Spectroscopy,2nd ed., Holden-day Inc press,San Francisco,1977,p. 42.
    [1]薛廷耀,海洋细菌学[M] .北京:科学出版社,1958 .
    [2]付玉斌,几种浸海材料表面生物粘膜中异养细菌的演化[J]。材料开发与应用,2000,15 (4):17~21
    [3] Suny C W. The use of biocides to control sulfate reduced bacteria in biofilm on mild steel surface[J]. Biofouling , 1996 , 9 (3) :231~249 .
    [4]纪伟尚,等.海洋细菌在生物表面和非生物表面附着研究[J].青岛海洋大学学报,1991 , 21 (2) :61~68 .
    [5]洪义国,孙谧,张云波,李勃生。16SrRNA在海洋微生物系统分子分类鉴定及分子检测中的应用[J]。海洋水产研究,2002,23(1):58-63.
    [6]周德庆。微生物学教程,北京:高等教育出版社,1993。
    [7]马迪根,马丁克著,杨文博译。微生物生物学[M].北京:科学出版社,2001,767-763。王洪媛,江晓路,管华诗,牟海津,微生物生态学一种新研究方法T-RFLP技术[J]。微生物学通报,2004,31(6):90-94。
    [8] Shobhana Chongdar, G.Gunasekaran, Pradeep Kumar. Corrosion inhibition of mild steel by aerobic biofilm. Electrochimica Acta, 50(2005)4655-4665.
    [9]王绍树。食品微生物实验,天津:天津大学出版社出版1996。
    [10] James A. Coyer, Alejandro Cabello- Pasini, Hewson Swifi and Randall S. Alberte. N2 fixation in marine heterotrophic bacteria: Dynamics of environmental and molecular regulation. Proc. Natl. Acad. Sci. 1996,Vol. 93, pp. 3575-3580.
    [11] Kjell Magne Fagerbakke, Mikal Heldal, Svein Norland。Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria。AQUATIC MICROBIAL ECOLOGY (Aquat Microb Ecol)1996,10:15-27.
    [12] Fletcher, M. (1960), Bacterial Adhesion. New York:Wily-Liss
    [13] Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., Marrie, T. J. (1987), Am. Rev. Microbiol. 41, pp.435.
    [14] Flemming, H. C., Geesey, G. G. (Eds.) (1991), Biofouling and Biocorrosion in Industrial Water Systems. Berlin: Springer.
    [15] Gordon,A.S., Cerchalzow,S.M., Udey,L.R.(1981). Can.J.Microbiol27,pp.689
    [16] Characklis, W. G., Wilderer, P. A. (Eds.)(1989), Structure and Function of Biofilms. Chichester, U. K., Wiley.
    [17] Doyle, R. J. Rosenberg, M. (Eds.)(1990), Microbial Cell Surface Hydrophobicity. Washington, DC: American Society for Microbiology.
    [18] Hill, E. C., Shennan, J. L., Watkinson, R. J. (Eds.)(1987), Microbial Problems in the Offshore Oil Industry: Chichester, U. K.: Institute of Petroleum and Wiley.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700