用户名: 密码: 验证码:
低阻Ni/(Ba,Sr)TiO_3复合PTC材料的制备与电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研制具备良好PTC性能的低阻材料,对(Ba,Sr)TiO_3陶瓷以及Ni/(Ba,Sr)TiO_3复合材料进行了研究。采用了ESEM、OG、TEM、EDX、SAD、XRD、XPS、DSC-TG等现代材料研究与分析方法。测试了材料的电阻-温度特性和耐电压强度。讨论了Ni/(Ba,Sr)TiO_3复合PTC材料的性能特点和影响因素。
     通过增加MnO_2添加量、添加BN、加入Zn-V-B系玻璃料以及改变预合成所用的TiO_2原料四种途径来改善(Ba,Sr)TiO_3陶瓷的PTC性能。这四种途径在增强PTC效应方面均起到了积极的效果。尤其是不改变配方,采用TiO_2-B原料制备出的(Ba,Sr)TiO_3陶瓷材料PTC性能最为理想。1320℃保温20min烧结后,ρ_(25) = 228.9Ω·cm,ρ_(max)/ρ25=10~(5.1),α= 25.1%/℃。采用此配方和原料制备与金属Ni复合的陶瓷基质。在还原气氛中烧成后,随着Ni加入量增大,Ni/(Ba,Sr)TiO_3复合材料室温电阻率降低,同时PTC效应恶化、耐电压强度下降。综合考虑各项电性能指标,下面研究中将Ni的加入量固定在15wt%。提高烧结温度,有助于制备高性能的Ni/(Ba,Sr)TiO_3复合PTC材料。对比了复合材料在倒置的Al2O_3坩埚内放置足够多石墨粉形成的还原气氛1、石墨坩埚形成的还原气氛2中烧结后以及热处理后的XRD和XPS图谱,结果表明还原气氛1更适合制备复合PTC材料。另外,所采用的三种Ni粉中,Ni粉平均粒径越小,室温电阻率越小,PTC效应越好。在复合材料中引入了PbO-B_2O_3-ZnO-SiO_2玻璃料。此玻璃料可以很好地润湿(Ba,Sr)TiO_3陶瓷。玻璃料以无定形态存在于复合材料中的相界与陶瓷晶界上。晶粒间相和陶瓷之间没有明显的扩散。玻璃料的加入不仅有助于复合材料的致密化,而且有助于Ni颗粒在陶瓷基质中的均匀分布,更为重要的是可以改变Ni-(Ba,Sr)TiO_3相界面上的电荷传输,从而改善了复合材料的电性能。当玻璃料加入量为0.5wt% ,AST加入量为0.1wt%时,Ni-(Ba,Sr)TiO_3相界面上的液相层厚度适中,既可以避免金属-陶瓷界面上隧道效应对PTC效应的消弱,又不足以因为液相层过厚导致晶界电阻过大,复合材料获得了较佳的电性能。与AST相比,玻璃料更有利于制备高性能的Ni/(Ba,Sr)TiO_3复合PTC材料。仅加入0.6wt%玻璃料,Ni/(Ba,Sr)TiO_3复合材料1320℃保温20min烧结后获得了最佳的电性能(ρ25=2.5Ω·cm,ρ_(max)/ρ_(25)=10~(3.6),α= 9.0 %/℃)。计算了(Ba,Sr)TiO_3陶瓷中的有效施主浓度,肯定了Ni-(Ba,Sr)TiO_3界面上通过隧道效应实现欧姆接触的可行性。对制备高性能Ni/BaTiO_3复合PTC材料提出了改进措施,并提出了理想的显微结构模型。
In order to fabricate the material with both low room-temperature resistivity and considerable PTC effect, (Ba,Sr)TiO_3 ceramics and Ni/(Ba,Sr)TiO_3 composite were investigated. ESEM, OG, TEM, EDX, SAD, XRD, XPS as well as DSC-TG were employed to investigate the samples. Resistivity-temperature characteristics and withstanding voltage strength of the samples were obtained. The properties and the influential factors of Ni/(Ba,Sr)TiO_3 PTC composite were discussed.
     Four approaches, namely, increasing MnO_2 amount, introducing BN, adding Zn-V-B glass and using another TiO_2 powder as the raw material, were used to improve the PTC effect of (Ba,Sr)TiO_3 ceramics. They all play positive effects in enhancing the PTC effect. Particularly, with the same composition and the specific TiO_2-B powder, electrical properties of (Ba,Sr)TiO_3 ceramics are excellent. Sintering at 1320℃for 20min, the room-temperature resistivity (ρ_(25)) is 228.9Ω·cm, the resistivity jump (ρ_(max)/ρ_(25)) is 10~(5.1) and the resistivity-temperature coefficient (α) is 25.1 %/oC. The (Ba,Sr)TiO_3 ceramic matrix, used in the Ni/(Ba,Sr)TiO_3 composite fabrication, was according to the specific composition and raw materials.
     When a Ni/(Ba,Sr)TiO_3 composite is sintered in the reducing atmosphere,ρ25 decreases, the PTC effect worsens and the withstanding voltage strength decreases with increasing the nickel amount. Taking all the electrical parameters into consideration, nickel amount is fixed at 15wt% in the following experiment. With increasing the sintering temperature, Ni/(Ba,Sr)TiO_3 PTC composite finds better electrical properties. XRD and XPS spectrum comparison of the composite sintered in the 1st reducing atmosphere (Samples are put on an alumina setter in a bottom-up alumina crucible. Sufficient graphite powder is placed beside the samples in the crucible and there is no contact between the graphite powder and the samples), in the 2nd reducing atmosphere (produced by graphite crucible) and after the heat treatment shows that, the 1st reducing atmosphere is desirable for the fabrication of PTC composite. Particle size distribution of nickel powders also influences the electrical properties of the composite. Concerning the three nickel powders used, the smaller the average particle size, the lower theρ_(25) and the better the PTC effect.
     PbO-B_2O_3-ZnO-SiO_2 glass has been introduced into the composite. Good wet behavior between the glass and (Ba,Sr)TiO_3 ceramics can be observed. The glass has an amorphous structure and exists at the composite phase interface and ceramic grain boundary. No obvious diffusion occurs at the interface between crystalline (Ba,Sr)TiO_3 grain and the intergranular phase. The addition of glass not only improves the densification process but also helps the homogeneous distribution of nickel particles in the ceramic matrix. More importantly, charge transport behavior at the Ni-(Ba,Sr)TiO_3 interface is modified by the glass addition, the electrical properties are thus improved. With 0.5wt% glass and 0.1wt% AST as the sintering aid, the electrical properties of the composite are better. It is ascribed to the proper intergranular layer, which effectively avoids electron tunneling at the metal-ceramics interface and PTC deterioration. Also the intergranular layer is thin enough not to greatly increase grain-boundary resistance. Comparing with AST, glass favors the fabrication of Ni/(Ba,Sr)TiO_3 PTC composite with high performance. When a Ni/(Ba,Sr)TiO_3 composite with only 0.6wt% glass as the sintering aid is sintered at 1320℃for 20min, the composite possesses the optimized electrical properties. The room-temperature resistivity is 2.5Ω·cm, the resistivity jump is about 103.6 and the resistivity-temperature coefficient is 9.0 %/℃.
     The effective donor concentration in the (Ba,Sr)TiO_3 ceramics is calculated and the Ohmic contact via the quantum mechanical tunneling effect at the Ni-(Ba,Sr)TiO_3 interface is feasible. Improvement measures are proposed and the ideal structural model for Ni/BaTiO_3 PTC composite is sketched.
引文
[1] B. Huybrechts, K. Ishizaki, M. Takata, Review the positive temperature coefficient of resistivity in barium titanate [J], J. Mater. Sci., 1995, 30: 2463~2472.
    [2] R. Shrout, D. Moffatt, W. Huebner, Composite PTCR thermistors utilizing conducting borides, silicides and carbide powders [J], J. Mater. Sci., 1991, 26: 145~150.
    [3]薛丹敏,罗延龄,偶联处理对HDPE/炭黑复合材料PTC性能的影响[J],现代塑料加工应用, 2003, 5(2): 5~9.
    [4]谢建玲,王雪梅,炭黑填充聚乙烯PTC效应及其稳定性[J],高分子材料科学与工程, 2002, 18(2): 86~89.
    [5]储九荣,刘辅宜, PTC陶瓷掺杂高分子PTC材料的研究[J],高分子材料科学与工程, 2001, 17(5): 159~161.
    [6] T. Ota, I. Yamai, J. Takahashi, Positive-temperature-coefficient effect in graphite cristobalite composites [J], J. Am. Ceram. Soc., 1992, 75(7): 1772~1776.
    [7]陈文,徐庆,崔万秋, V_2O_3系新型PTC热敏元件的实用研究[J],材料导报, 1996, 5: 39~42
    [8]陈文,徐庆,掺杂V_2O_3系PTC的陶瓷研究现状与进展[J],现代技术陶瓷, 1997, 2: 26~30.
    [9]陈文,徐庆, Cr_2O_3、Al_2O_3掺杂V_2O_3系PTC陶瓷的制备与特性[J],武汉工业大学学报, 1994, 16(2): 18~22
    [10] M. Yethiraj, Pure and doped vanadium sesquioxide: a brief experimental review [J], J. Solid State Chem., 1990, 88: 53~69.
    [11] B. M. Kullwichi, Advances in ceramics, Edited by L.M.Levinson and D.C.Hill (American Ceramic Society, Colombus, OH, 1981), Vol.1 (Grain boundary phenomenon in electronic ceramics), 138~153.
    [12] D. C. Hill, H. L. Tuller, Ceramic Sensors: Theory and Practice [M], edited by R.C.Buchnan, 1986, 265~374.
    [13] B. Jaffe, W. R.Cook, H. Jaffe, Piezoelectric Ceramics [M], edited by J. P. Robert and P. Popper, Academic Press, London, New York, 1971.
    [14]徐廷献,沈继跃,薄占满,等.电子陶瓷材料[M],天津:天津大学出版社, 1993, 85~95, 290~300, 168~170, 308~313.
    [15]周东祥,等.半导体陶瓷及应用[M],武汉:华中理工大学出版社, 1991, 98~110.
    [16]钟彩霞,等.热敏电阻实用技术[M],成都:成都科技大学出版社, 1994, 1~5.
    [17]莫以豪,等.半导体陶瓷及其敏感元件[M],上海:上海科学技术出版社, 1983, 67~75.
    [18]周锋,孙慷,施主半导化BaTiO_3 PTC陶瓷的电压效应[J],压电与声光, 1996, 18(2): 122~125.
    [19]周锋,孙慷,施主半导化BaTiO_3 PTC陶瓷耐压特性[J],压电与声光, 1994, 16(5): 36~40.
    [20]徐国跃,吴柏源,施主半导化BaTiO_3 PTC陶瓷耐压性能研究[J],硅酸盐学报, 1991, 19(5): 417~423.
    [21]宋义虎,郑强,刘小蕊,等.炭黑和石墨填充聚乙烯导电复合材料电阻的外场依赖性[J],材料研究学报, 2000, 14(2): 141~146.
    [22] H. Okinaka, T. Hata, Varistor, themistor manufacturing in Japan [J], Am. Ceram. Soc. Bull., 1995, 74(2): 62~66.
    [23] W. Heywang, Barium titanate as a semiconductor with blocking layers [J], Solid State Electron, 1961, 3(1):51~58.
    [24] W. Heywang, Resistivity anomaly in doped barium titanate [J], J. Am. Ceram. Soc., 1964, 47: 484~490.
    [25] W. Heywang, W. Wersing, Anomalous temperature resisitance characteristic of highly acceptor doped BaTiO_3 PTC resistors [J], Ferroelectrics, 1974, (1-4): 361~363.
    [26] B. M. Kulwicki, Ferroelectrics, diffusion potentials in BaTiO_3 and the theory of PTC mateials [J], Ferroelectrics, 1971, 1: 253~263.
    [27] M. Kuwabara, K. I. Morimo, Single grain boundaries in PTCRs [J], J. Am. Ceram. Soc., 1996, 79(4): 997~1001.
    [28] M. Kuwabara, H. Matsuda, K. Hamamota, Giant piezoresistive effects in single grain-boundaries of semiconducting barium titanate ceramics [J], J. Electroceram., 1999, 4S1: 99~103.
    [29] H. Nemonto, I. Oda, Direct examination of PTC action of single grain boundaries in seminconducting BaTiO_3 ceramics [J], J. Am. Ceram. Soc., 1980, 63(7-8): 398~401.
    [30] C. Gillot, Microscopic origin of PTC effect in niobium doped barium titanate [J], J. Am. Ceram. Soc., 1997, 80: 1043~1046.
    [31] G. H. Jonker, Some aspects of semiconducting barium titanate [J], Solid State Electron, 1964, 7: 895~903.
    [32] G. H. Jonker, E. E. Havinga, Influence of foreign ions on the crystal lattice of barium titanate [J], Mater. Res. Bull., 1982, 17(3): 345~350.
    [33] G. H. Jonker, Dielectric Curie-Weiss law and diffuse phase transition in ferroelectrics [J], Mater. Res. Bull., 1983, 18(3): 301~308.
    [34] H. B. Haanstra, H. Ihrig, Transmission electron microscopy at grain boundaries of PTC-type BaTiO_3 ceramics [J], J. Am. Ceram. Soc., 1980, 63(5): 288~291.
    [35] P. Gerthsen, K. L. Hardtl, A method for the direct proof of the homogeneity of conductivity of grain boundaries [J], Z. Naturforsch, A, 1963, 18(3): 423~424.
    [36] W. P. Peria, W. R. Bratschun, R. D. Fenity, Possible explanation of positive temperature coefficient of resistivity of semiconducting ferroelectric [J], J. Am. Ceram. Soc., 1961, 44(5):249~250.
    [37] H. B. Haanstra, H. Ihrig, Voltage contrast imaging of PTC-type BaTiO_3 ceramics having low and high titanium excess [J], Phys. Stat. Sol.(a),1977, 39, K7~K10.
    [38] H. Ihrig, M. Klerk, Visualization of the grain-boundary potential barriers of PTC-type BaTiO_3 ceramics by cathodoluminescence in an electron-probe microanalyzer [J], Appl. Phys. Lett., 1979, 35(4): 307~309
    [39] U. Knauer, Distribution of the iron dopant in barium titanate ceramic, determined by the scanning transmission electron microscope [J], Phys. Stat. Sol.(a), 1979, 53: 207~210.
    [40] H. Heydrich, U. Knauer, Grain boundary effects in ferroelectric barium titanate [J], Ferroelectrics, 1981, 31: 151~156.
    [41] G. Koschenek, E. Kubalek, Grain- boundary characteristics and their influence on the electrical resistance of barium titanate ceramics [J], J. Am. Ceram. Soc., 1982, 68(11): 582~586.
    [42] H. Rehme, Detection of barrier layer in barium titanate by electron microscope: cold conductor ceramics [J], Phys. Stat. Sol., 1966, 18, K101~K102.
    [43] H. Rehme, Electron microscope investigation of the mechanism of barium titanate PTC ceramics [J], Phys. Stat. Sol., 1968, 26:K1~K3.
    [44] D. C. Sinclair, A. R. West, Bulk PTC effect on doped BaTiO_3 [J], J. Mater. Sci. Lett., 1988, 7: 823~824.
    [45] D. C. Sinclair, A. R. West, Variation with processing conditions of bulk and grain boundary PTCR phenomena in doped BaTiO_3, Surface and interfaces of ceramic materials [M], edited by L.C. Dufour, C. Monty, G. Petot-Ervas, Kluwer Acad. Publ., Dordrecht, 1988, 535~543.
    [46] J. Danials, R. Wernicke, New aspects of an improved PTC modes [J], Philips Res. Rep., 1976, 31(6): 544-559.
    [47] J. Danials, K. H. Hardtl, R. Wernicke, The PTC effect of brium titanate [J], Philips Tech. Rev.,1978/79, 38(3):73~82.
    [48] J. Danials, K. H. Hardtl, D. Hennings, Defect chemistry and electrical conductivity of doped barium titanate ceramics [J], Philips Res. Rep., 1976, 31(5): 487~559.
    [49] J. S. Capurso, Piezoresistivity in PTCR barium titanate ceramics: 1. Experiment findings [J], J. Am. Ceram. Soc., 1998, 81(2): 337~346.
    [50] G. V. Lewis, C. R. A. Catlow, Computer modeling of barium titanate [J], Radia. Eff., 1983, 73: 304~314.
    [51] S. B. Desu, D. A. Payne, Interfacial segregation in perovskites: I Theory [J], J. Am. Ceram. Soc., 1990, 73(11): 3391~3397.
    [52] S. B. Desu, D. A. Payne, Interfacial segregation in perovskites: II Experimental evidence [J], J. Am. Ceram. Soc., 1990, 73(11): 3398~3406
    [53] S. B. Desu, D. A. Payne, Interfacial segregation in perovskites: III Microstructure and electrical properties [J], J. Am. Ceram. Soc., 1990, 73(11): 3407~3415.
    [54] S. B. Desu, D. A. Payne, Interfacial segregation in perovskites: IV Internal boundary layer devices [J], J. Am. Ceram. Soc., 1990, 73(11): 3416~3421.
    [55] G. Goodman, Electrical conduction anomaly in samarium-doped barium titanate [J], J. Am. Ceram. Soc., 1963, 46(1): 45~48.
    [56] R. D.Roseman, J. Kim, R. C. Buchanan, Structural phase transitions in donor doped BaTiO_3 and effects on PTCR behavior [J], Ferroelectrics, 1996, 177: 273~282.
    [57] P. L. Janega, Hypothesis to explain pressure effects on resistivity in semiconductive barium titanate-ceramics [J], Solid State Electron, 1986, 29: 59~66.
    [58] T. Miki, A. Fujimoto, An evidence of trap activation for PTCR in BaTiO_3ceramics with substitutional Nb and Mn as impurities [J], J. Appl. Phys., 1998, 83(3): 1592~1603.
    [59] T. R. N. Kutty, P. Murugara, G. S. Gajbhiye, Activation of trap centers in PTC BaTiO_3 [J], Mater. Lett., 1984, 2(5)A:396~400.
    [60] T. R. N. Kutty, P. Murugara, EPR study on the role of Mn in enhancing PTC of BaTiO_3 [J], J. Mater. Lett., 1985, 3(5,6): 195~199.
    [61] T. R. N. Kutty, D. L. Gomathi, P. Murugara, Chang in state of Mn ions in semiconducting BaTiO_3 and SrTiO_3 around the phase transition temperatures [J], J. Mater. Res. Bull., 1986, 21(9): 1093~1102.
    [62] G. V. Lewis, C. R. A. Catlow, R. E. W. Casselton, PTCR effect in BaTiO_3 [J], J. Am. Ceram. Soc., 1985, 68(10): 555~558.
    [63] Y. M. Chiang, T. Takagi, Grain boundary chemistry of barium titanate and strontium titanate [J], J. Am. Ceram. Soc., 1992, 75: 3398~3402.
    [64] H. Nemoto, I. Oda, Direct examination of electrical properties of single grain boundaries in BaTiO_3 PTC ceramics [J], J. Am. Ceram. Soc., 1980, 63 (7-8): 398~340.
    [65]徐保民, SrTiO_3陶瓷晶界电容器材料的晶界研究(晶界模型与材料电性能) [J],硅酸盐学报, 1993, 21(6): 519~527.
    [66] M. Vollman, R. Waser, Grain boundary defect chemistry of acceptor-doped titanates space charge layer width [J], J. Am. Ceram. Soc., 1994, 77(1): 235~243.
    [67] R. Waser, Bulk conductivity and defect chemistry of acceptor-doped titanate in the quenched state [J], J. Am. Ceram. Soc., 1991, 74(8): 1934~1940.
    [68] G. H. Jonker, Halogen treatment of barium titanate semiconductors [J], Mater. Res. Bull., 1967, 2: 401~407.
    [69] H. Igrashi, S. Hayakawa, K. Okazaki, PTC behavior of semiconductive ceramics under reduced atmosphere, Jpn. J. Appl. Phys., 1981, 20(4) (Suppl.20-4): 135~138.
    [70] M. Kuwabara, Determinztion of the potential barrier height in BaTiO_3 ceramics [J], Solid State Electron, 1984, 27: 929-935.
    [71] A. B. Alles, V. R. Amarakoon, V. I. Burdick, Positive temperature coefficient of resistivity effect in undoped, atmospherically reduced barium titanate [J], J. Am. Ceram. Soc., 1989, 72(1): 148~153.
    [72] T. Takajashi, Y. Nakano, N. Ichinose, Influence of reoxidation on PTC effect of porous BaTiO_3, J. Ceram. Soc. Jpn., 1990, 98: 879~884.
    [73] R. Wernicke, Defect chemistry and electrical conductivity of doped barium titanate ceramics [J], Part IV, Philips Res. Rep., 1976, 31: 526~543.
    [74] H. M. Al-Allak, G. J. Russel, J. Woods, The effect of annealing on the characteristics of semiconducting BaTiO_3 positive temperature coefficient of resistance devices [J], J. Phys. D: Appl. Phys., 1987, 20: 1645~1651.
    [75] H. M. Al-Allak, A. W. Brinkman, G. J. Russel, et al. The effect of donor dopant concentration on the room temperature resistivity of BaTiO_3 ceramics with positive temperature coefficients of resistance [J], J. Phys. D: Appl. Phys., 1988, 21(7): 1226~1233.
    [76] T. F. Lin, C. T. Hu, I. N. Lin, Defects restoration during cooling and annealing in PTC-type barium titanate ceramics [J], J. Mater. Sci., 1990, 25: 3029~3033.
    [77] H. S. Kim, G. Y. Sung, C. H. Kim, Determination of inversion temperature of Sb2O_3-doped BaTiO_3 positive temperature coefficient of resistivity (PTCR) ceramics by the finite difference method [J], J. Am. Ceram. Soc., 1992, 75(3): 587~591.
    [78] G. V. Lewis, C. R. A. Catlow, R. E. W. Casselton, PTCR effect in BaTiO_3 [J], J. Am. Ceram. Soc., 1985, 68: 555~558.
    [79] G. V. Lewis, C. R. A. Catlow, The PTCR effect in BaTiO_3 [J], Br. Ceram. Proc., 1985, 36: 187~191.
    [80] H. M. Chan, M. P. Harmer, D. M. Smyth, Compensating defects in highly donor-doped BaTiO_3 [J], J. Am. Ceram. Soc., 1986, 69(6): 507~510.
    [81] G. Koschek, E. Kubalek, Grain–boundary characteristics and their influence on the electrical resistance of barium titanate ceramics [J], J. Am. Ceram. Soc., 1985, 68(11): 582~586.
    [82] A. Hasegawa, S. Fujitsu, K. Koumoto, et al. The enhanced penetration of oxygen along the grain boundary in semiconducting barium titanate [J], Jpn. J. Appl. Phys., 1991, 30(6):1252~1255.
    [83] A. B. Alles, V. I. Burdick, Grain boundary oxidation in PTCR BaTiO_3 thermistors [J], J. Am. Ceram. Soc., 1993, 76(2): 401~408.
    [84] Y. M. Chiang, T. Takagi, Grain-boundary chemistry of barium titanate and strontium titanate: II, origin of electrical barrier in PTC thermistors [J], J. Am. Ceram. Soc., 1990, 73(11): 3286~3291.
    [85] A. Amine. Phenomenological description of stress related grain boundary properties in semiconducting perovskite [J]. Ferroelectrics, 1988, 87: 41~53.
    [86] D. C. Sinclair, A. R. West, Impedance and modulus spectroscopy of semiconducting BaTiO_3 showing PTCR [J], J. Appl. Phys., 1989, 66(8): 3850~3856.
    [87] D. C. Sinclair, A. R. West, Effect of atmosphere on the PTCR properties of BaTiO_3 ceramics [J], J. Mater. Sci., 1994, 29: 6061~6068.
    [88] D. C. Sinclair, A. R. West. Use of succinic acid to test the stability of PTCR BaTiO_3 ceramics [J], J. Am. Ceram. Soc., 1995, 78(1): 241~244.
    [89] H. Ihrig, PTC effect in BaTiO_3 as a function of doping with 3D elements [J], J. Am. Ceram. Soc., 1981, 64(10): 617~620.
    [90] H. Ihrig, The phase stability of BaTiO_3 as a function of doped 3d elements: an experimental study [J], J. Phys. C: Solid State Phys., 1978, 11: 819~827.
    [91] H. Ueoka, M. Yodogawa, Ceramic manufacturing technology for the high performance PTC thermistor [J], IEEE Trans. Manuf. Technol., 1974, 3(2): 77~82.
    [92] H. Ueoka, The doping effects of transition elements on the PTC anomaly of semiconductive ferroelectric ceramics [J], Ferroelectrics, 1974, 7: 351~353.
    [93] Y. M. Chiang, T. Takagi, Grain-boundary chemistry of barium titanate and strontium titanate: I, high-temperature equilibrium space charge [J], J. Am. Ceram. Soc., 1990, 73(11): 3278~3285.
    [94] J. H. Lee, S. H. Kim, S. H. Cho, Valence change of Mn ions in BaTiO_3-based PTCR materials [J]. J. Am. Ceram. Soc., 1995, 78(10): 2845~2848.
    [95]曹明贺,周东祥,等. BaTiO_3多晶陶瓷表面态研究[J],功能材料, 2001, 32(4): 341~342.
    [96]曹明贺,周东祥,等.钛酸钡PTC热敏电阻陶瓷表面态浅析[J],华中科技大学学报:自然科学版, 2001, 29(A01): 25~27.
    [97]曹明贺,袁俊,等.低电阻率Ba_(0.92)Ca_(0.08)Ti_(1.02)O_3PTCR陶瓷界面缺陷态研究[J],无机材料学报, 2003, 18(6): 1235~1239.
    [98] J. Kim, R. D. Roseman, R. C. Buchanan. Microstructual effects on conductivity in donor doped BaTiO_3 [J]. Ferroelectrics, 1996, 177: 255~271, 273~282.
    [99] R. D. Roseman, High temperature poling effects on conducting barium titanate ceramics [J]. Ferroelectrics, 1998, 215: 31~45.
    [100] G. Goodman. Electrical condition anomaly in samarium doped barium titanate [J], J. Am. Ceram. Soc., 1963, 46(1): 48~54.
    [101] H. Ogawa, M. Demura, T. Yamamoto, et al. Estimation of PTCR effect in single grain boundry of Nb-doped BaTiO_3 [J], J. Mat. Sci. Lett., 1995, 14: 537~538.
    [102]曲远方,徐廷献,姜恩永,等.功能陶瓷及应用[M],北京:化学工业出版社, 2003, 660~670.
    [103]姜胜林,龚树萍,周莉,等.双施主掺杂BaTiO_3半导体陶瓷材料的研究[J],压电与声光, 2000, 22(6): 392~393, 397.
    [104] Z. Z. Huang , S. U. Adikary , H. L. W. Chan, et al. Preparation and properties of PTCR ceramics with low resistivity sintered at low temperature [J], J. Mater. Sci. Mater. Electron, 2002, 13: 221~224.
    [105] Z. M. He, J. Ma, Y. F. Qu, et al. Compositional and processing effects on electrical properties of (Ba0.85Pb0.15)TiO_3-based positive temperature coefficient resistors [J], J. Eur. Ceram. Soc., 2004, 24: 3617~3622.
    [106] J. Arakawa, S. Tashiro, H. Igarasshi, Fabrication of multilayer positive temperature coefficient resistor by electrode bonding method [J], Jpn. J. Appl. Phys., 30 (1991), 9B, 2330~2332.
    [107] S. Tashiro, J. Arakawa, H. Igarasshi, Dynamic characteristics of BaTiO_3 ceramic semiconductors with a multilayer structure [J], Jpn. J. Appl. Phys., 31(1992), 9B, 3102~3107.
    [108]范福康,王希勇,低阻PTC热敏电阻的制备[J],火花塞与特种陶瓷, 1998, 2: 5~8.
    [109]魏敏敏,陆高荣,吴强,等. BaTiO_3基PTCR瓷的关键原料TiO_2的化学组成和显微结构对PTC性能影响[J],硅酸盐通报,1996, 6: 4~10.
    [110]王永年,朱盈权, BaTiO_3和TiO2的物化特性对PTC热敏电阻器性能的影响[J],电子元件与材料, 1994, 6: 27~31.
    [111] F. D. Morrison, A. M. Coats, D. C. Sinclair, et al. Charge compensation mechanisms in La-doped BaTiO_3 [J], J. Electroceram., 2001, 6, 219~232.
    [112]李国华,影响PTC材料性能的主要因素[J],电子元件与材料, 1986, 4:19~22.
    [113]朱盈权, BaTiO_3系PTC热敏电阻施主加人物的研究[J],电子元件与材料, 1996, 15(5): 33~38.
    [114]姜胜林,龚树萍,等.双施主掺杂BaTiO_3半导体陶瓷材料的研究[J],压电与声光, 2000, 22(6): 392~393.
    [115]马建丽,曲远方,等.多施主掺杂PTC陶瓷材料的研究[J],热固性树脂, 1999, 14(4): 54~58.
    [116]姚尧,祝炳和,添加SiO_2、Al_2O_3等的PTC BaTiO_3陶瓷的物质传递与晶粒生长[J],无机材料学报, 1990, 5(1): 37~42.
    [117]Y. Matsuo, M. Fujimura, H. Sasaki, et al. Semiconducting BaTiO_3 with additions of Al2O_3, SiO2 and TiO2 [J], Am. Ceram. Soc. Bull., 1968, 47(3): 292~297.
    [118] L. F. Cheng, C. T. Hu, Effect of sintering aids on microstructures and PTCR characteristics of (Ba0.8Sr0.2)TiO_3 ceramics [J], J. Am. Ceram. Soc.,1993, 76(4): 827~932.
    [119]吴波,黄松涛,沈化森,等. Si_3N_4在BaTiO_3基低阻高性能PTCR陶瓷材料中的作用[J],电子元件与材料, 2000, 8: 15~17.
    [120] I. Zajc, M. Drofenik, Semiconducting BaTiO_3 ceramics prepared by low temperature liquid phase sintering [J], J. Mater. Res., 1998, 13 (3): 660~664.
    [121] X. X. Wang, H. L. W. Chan, C. L. Choy, Positive temperature coefficient of resistivity effect in niobium-doped barium titanate ceramics obtained at low sintering temperature [J], J. Eur. Ceram. Soc., 2004, 24: 1227~1231.
    [122] X. X. Wang, H. L. W. Chan, G. K. H. Pang, C. L. Choy, Semiconducting barium titanate ceramics prepared by using yttrium hexaboride as sintering aid [J], Mater. Sci. Eng. B, 2003, 100: 286~291.
    [123] I. C. Ho, H. L. Hsieh, Low temperature fired positive temperature coefficient resistors [J], J. Electron. Mater., 1994, 23 (5): 471~476.
    [124] I. C. Ho, Semiconducting barium titanate ceramics prepared by boron-containing liquid-phase sintering [J], J. Am. Ceram. Soc., 1994, 77 (3): 829~832.
    [125] J. H. Lee, Y. W. Heo, J. A. Lee, et al. Grain boundary and its related properties of boron added Y-doped BaTiO_3 ceramics [J], Solid State Ionics, 1997, 101/103: 787~791.
    [126] S. M. Rhim, S. Hong, H. Bak, O. K. Kim, Effects of B2O_3 addition on the dielectric and ferroelectric properties of Ba0.7Sr0.3TiO_3 ceramics [J], J. Am. Ceram. Soc., 2000, 83 (5): 1145~1148.
    [127]唐小峰,陈海龙, PTC陶瓷材料的超低温烧结[J],无机材料学报, 2000, 15(4): 697~703.
    [128]陆辉,陈后胜,正温度系数热敏电阻烧结气氛的研究[J],电子器件, 1998, 21(1): 18~21.
    [129] D. C. Sinclair, A. R. West, Effect of atmosphere on the PTCR properties of BaTiO_3 ceramics [J], J. Mater. Sci., 1994, 29: 6061~6068.
    [130]曹明贺,袁俊,降温速率对Ba0.92Ca0.08TiO_3PTCR陶瓷室温电阻率反常现象的影响[J],硅酸盐学报, 2003, 31(6): 604~607.
    [131] S. M. Su, L. Y. Zhang, Preparation of porous BaTiO_3 PTC thermistor by adding graphite porosities [J], J. Am. Ceram. Soc., 1994, 77 (8): 2154~2156.
    [132] K. Nozaki, M. Kawaguchi, K. Sato, BaTiO_3-based positive temperature coefficient of resistivity ceramics with low resistivities prepared by the oxalate method [J], J. Mater. Sci., 1995, 30: 3395~3400.
    [133]黄庆,曲远方,马卫兵,高性能BaTiO_3基PTCR陶瓷的制备研究[J],压电与声光, 2002, 24(4): 271~274, 302.
    [134]黄庆,高濂,曲远方, BaTiO_3基PTC陶瓷低阻化新途径与显微分析[J],硅酸盐学报, 2003, 31(8): 738~742.
    [135] W. B. Ma, Y. F. Qu, Y. X. Hao, Effect of BaCO_3 and Pb3O4 on properties of BaTiO_3-based PTCR ceramics [J], Key Engineering Materials, 2005, v(280-283): 349~352.
    [136]印南羲之,近藤直树,限流素子,日本公开特许,昭58-28803
    [137] ibid.日本公开特许,昭58-28804
    [138]杉山浩,日本公开特许,昭58-06101
    [139] M. Takada, S. Umino, K. Hayashi, Properties of PTC ceramics/metal sintered compact [J], Journal of Japan Inst. Of Metals, 1992, 3: 303~307.
    [140] T. Kanou, T. Sawaguchi, A. Kamegawa, et al. PTCR properties of Bi metal/ceramics composites fabricated by hot-pressing [J], J. Jpn. Soc. Powder Metall., 1999, 46(7): 752~756.
    [141]张端明,张新宇,金属-PTC陶瓷复合材料制备工艺及机理的研究[J],无机材料学报, 1995,10(2): 248~252.
    [142]张端明,刘书龙,有效介质理论与金属-陶瓷复合材料PTC效应[J],华中理工大学学报, 1995, 23(11):119~121.
    [143]张端明,张新宇,彭芳明,等.金属-PTC陶瓷复合材料研究[J],硅酸盐学报, 1995, 23(3): 331~334.
    [144]杨海,李朝友,余鸿飞,等.新型NTC(金属-PTC陶瓷)复合材料的导电机制[J],半导体杂志, 2000, 25(1): 40~42.
    [145] D. Y. Wang, Properties of PTCR barium titanate [J], J. Am. Ceram. Soc., 1990, 73(3): 669~677.
    [146] D. Y. Wang, K. Umeya, Depletion-layer dielectric properties of positive temperature coefficient resistance barium titanate [J], J. Am. Ceram. Soc., 1990, 73(6): 1574~1578.
    [147]曲远方,何泽明,马金淼,等, Cr/PTC陶瓷复合材料的研究[J],压电与声光, 2000, 22(1): 33~36.
    [148] Z. M. He, J. Ma, Y. F. Qu, et al. Effect of additives on the electrical properties of a (Ba0.92Sr0.08)TiO_3-based positive temperature coefficient resistor [J], J. Eur. Ceram. Soc., 2002, 22: 2143~2148.
    [149] Z. M. He, J. Ma, Y. F. Qu, A structural model of Cr/(Ba,Pb)TiO_3 positive temperature coefficient composite [J], J. Mater. Sci. Mater. Electron., 2000, 11: 235~238.
    [150] Z. M. He, J. Ma, Y. F. Qu, Experimental determination of intrinsic parameters in double-donor-doped (Ba0.92Sr0.08)TiO_3-based positive temperature coefficient ceramics [J], J. Phys.: Condens. Matter, 2004, 16: 6961~6968.
    [151]侯峰,曲远方,徐廷献, Ni/ PTC陶瓷复合材料的研究[J],热固性树脂, 1999, 4: 50~53.
    [152]李晓雷,曲远方,等.烧成及热处理工艺对Ni/PTC陶瓷复合材料性能的影响[J],硅酸盐通报, 2002, 3: 50~54.
    [153]李晓雷,曲远方,冯亚青,等. Ni/PTC陶瓷复合材料低阻化机理的研究[J],压电与声光, 2005, 27(2): 160~163
    [154]李晓雷,曲远方,马卫兵,等. Ni/PTC陶瓷复合材料的显微结构与再氧化效果[J], 2004, 12: 21~24.
    [155]李晓雷,曲远方,马卫兵,等. Ni/PTC陶瓷复合材料的制备与性能[J],材料研究学报, 2004,18(6): 654~660.
    [156]杜娟,曲远方,马卫兵,等.金属Ni/石墨/BaTiO_3基复合PTC材料的研究[J],硅酸盐通报, 2003(6), 17~19.
    [157] J. Du, Y. F. Qu, W. B. Ma, Structural model of Ni/graphite/BaTiO_3 composites [J], J. Electro-ceram., 2004, 12 (3): 163~167.
    [158]杜娟,曲远方,马卫兵, Ni/石墨/BaTiO_3复合PTC材料的显微结构模型[J],压电与声光, 2005, 4: 461~464.
    [159]杨光,曲远方,马卫兵,等.石墨/酚醛树脂/BaTiO_3基PTCR复合材料的研究[J],硅酸盐通报, 2003, 5: 39~42.
    [160]郭晓琨,曲远方,郑占申,等.金属Ni/Mn/BaTiO_3基复合PTC材料的研究[J],电子元件与材料, 2004, 23(12): 54~56.
    [161]郑占申,曲远方,李晓雷,等. Ni、Mn加入量及工艺对PTCR复合材料的性能影响[J],复合材料学报, 2006, 23(5): 39~43.
    [162]王鹏程, PTC热敏元件的进展与发展趋势[J],电子元件与材料, 1995, 14(3): 1~8.
    [163]祝炳和,王依琳, PTC材料的制备与性质[J],压电与声光, 1990, 12(6): 19~36.
    [164]邓小华,无机材料学报,原料颗粒度对BaTiO_3陶瓷晶粒大小及PTC效应的影响[J], 1987, 2(1): 29~35.
    [165]王依琳,姚尧,赵梅瑜,等. TiO_2对Y掺杂PTCR陶瓷材料性能的影响[J],无机材料学报, 1997, 12(5): 744~748.
    [166] A. Beauger, J. Mutin, J. Niepce, Synthesis reaction of barium titanate (IV). Part 1. Effect of the gaseous atmosphere upon the thermal evolution of the system barium carbonate- titanium dioxide [J], J. Mater. Sci., 1983, 18(10): 3041~3047.
    [167] C. B. Samantaray, H. Sim, H. Hwang, Electronic structure and optical properties of barium strontium titanate (Bax Sr1-x TiO_3) using first-principles method [J], Physica B, 2004, 351: 158~162.
    [168] Q. F. Lu, D. R. Chen, X. L. Jiao, Preparation and characterization of Ba1-xSrxTiO_3 (x=0.1, 0.2) fibers by sol-gel process using catechol-complexed titanium isopropoxide [J], J. Alloys Compd., 2003, 358: 76~81.
    [169] S. Kongtaweelert, D. C. Sinclair, S. Panichphant, Phase and morphology investigation of BaxSr1-xTiO_3 (x=0.6, 0.7, 0.8) powders [J], Curr. Appl. Phys., 2006, 6: 474~477.
    [170]屈晓田,李莉,钛酸钡纳米粉体的制备与X射线衍射分析[J],山西大学学报(自然科学版), 2007, 30(1): 61~63.
    [171] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J], Acta Cryst. A, 1976, 32(5): 751~767.
    [172] C. M. Valot, N. Floquet, J. C. Niepce, et al. Microstructrue of 90o domains in ferroelectric materials studied by XRD [J], Key Eng. Mat., 1997, 132~136, 1127~1130.
    [173] E. Brzozowski, M. S. Castro, Influence of Nb5+ and Sb3+ dopants on the defect profile, PTCR effect and GBBL characteristics of BaTiO_3 ceramics [J], J. Eur. Ceram. Soc., 2004, 24, 2499~2507.
    [174]祝炳和,顾文荣,朱家钦, PTC陶瓷生产中影响稳定及重复性的因素[J],电子元件与材料, 1995, 14(3): 9~15.
    [175] F. K. Hennings, R. Janssen, P. J. L. Reynen, Control of liquid-phase-enhanced discontinuous grain growth in barium titanate [J], J. Am. Ceram. Soc., 1987, 70(1): 23~27.
    [176] D. Hennings, Control of microstructure with seed grains [J], Ceram. Int., 1991, 17: 283~286.
    [177] Y. Matsuo, H. Sasaki, Exaggerated grain growth in liquid-phase sintering of BaTiO_3 [J], J. Am. Ceram. Soc., 1971, 54(9): 471~475.
    [178] I. Zajc, M. Drofenik, Grain-growth and densification in donor-doped BaTiO_3 [J], Br. Ceram. Trans., 1989, 88: 223~225.
    [179] M. Drofenik, Oxygen partial pressure and grain growth in donor-doped BaTiO_3 [J], J. Am. Ceram. Soc., 1987, 70(5): 311~314.
    [180] S. Osaki, B. Huybrechts, K. Ishizaki, Abnormal grain growth during liquid-phase sintering of Sb-doped BaTiO_3 [J], J. Ceram. Soc. Jpn., 1993, 101(8): 955~957.
    [181] H. M. Al-Allak, A. W. Brinkman, G. J, Russel, et al. The effect of Mn on the positive temperature coefficient of resistance characteristics of donor-doped BaTiO_3 ceramics [J], J. Appl. Phys., 1988, 63(9): 4530~4535.
    [182] T. F. Lin, C. T. Hu, I. N. Lin, Influence of stoichiometry on the microstructure and positive temperature coefficient of resistivity of semiconducting barium titanate ceramics [J], J. Am. Ceram. Soc., 1990, 73(3): 531.
    [183] H. Schmelz, A. Meyer, The evidence for anomalous grain growth below the eutectic temperature in BaTiO_3 ceramics [J], Ber. Dtsch. Keram. Ges., 1982, 59(8/9): 436~440.
    [184] B. Huybrecht, M. Takata, K. Ishizaki, Comment on“Effect of sintering aids on microstructures and PTCR characteristics of (Sr0.2Ba0.8)TiO_3 ceramics”[J], J. Am. Ceram. Soc., 1994, 77(4): 1113~1114.
    [185] W. Y. Howng, C. Mccutcheon, Electrical properties of semiconducting BaTiO_3 by liquid phase sintering [J], Am. Ceram. Soc. Bull., 1983, 62(2):231~233.
    [186] L. F. Cheng, Effect of sintering aids on the electrical properties of positive temperature coefficient of resistivity BaTiO_3 ceramics[J], J. Appl. Phys., 1989, 66(3):1382~1387.
    [187]周东祥,姜胜林,龚树萍,等. AST液相添加剂对PTCR陶瓷电性能的影响[J],功能材料, 1998, 29(3): 290~292.
    [188]马卫兵,郝艳霞,曲远方, V2O5对BaTiO_3陶瓷PTC效应的影响[J],稀有金属材料与工程, 2005, 34卷增刊1: 806~808.
    [189]刘向春,王为民,高峰,原料和掺杂对钛酸锌陶瓷烧结及介电性能的影响[J],稀有金属材料与工程, 2006, 35卷增刊2: 45~49.
    [190]朱海奎,刘敏,周洪庆,等.添加剂对MgTiO_3陶瓷性能的影响[J],硅酸盐通报, 2005, 4: 24~26.
    [191]曲远方,侯峰,徐廷献,低温烧结绝缘材料的研究[J],硅酸盐通报, 1997, 6: 23~26.
    [192] W. D. Kingery, Introduction to ceramics [M], Wiley, New York, 1976: 461.
    [193]徐国跃,谢国治,陶杰, Mn离子的价态变化与ZnO压敏陶瓷V-I非线性[J],材料研究学报, 2000, 14(2): 198~202.
    [194]周健,徐国跃,曹敏, V_2O_5在ZnO-V_2O_5压敏陶瓷低温烧结中的双重作用[J],电磁避雷器, 2005, 5: 39~42.
    [195]唐子龙,唐小锋,周志刚,等.掺锰BaTiO_3 PTCR陶瓷的电子顺磁共振研究[J],硅酸盐学报, 2002, 30(1): 57~61.
    [196] S. S. Jida, T. Miki, Electron paramagnetic resonance of Nb-doped BaTiO_3 ceramics with positive temperature coefficient of resistivity [J], J. Appl. Phys., 1996, 80(9): 5234~5239.
    [197]朱盈权, PTC热敏电阻用BaCO_3与TiO_2的特性和质量要求[J],无机盐工业, 1994, 4: 32~35.
    [198]王华涛, Ni/陶瓷PTC复合材料的研究[D].天津:天津大学硕士学位论文, 2003.
    [199] N. H. Chan, D. M. Smyth, Defect chemistry of donor-doped BaTiO_3 [J], J. Am. Ceram. Soc., 1984, 67 (9): 285~288.
    [200] T. Kolodiazhnyi, A. Petric, Effect of PO2 on bulk and grain boundary resistance of n-type BaTiO_3 at cryogenic temperatures [J], J. Am. Ceram. Soc., 2003, 86(9): 1554~1559.
    [201] J. Nowotny, Positive temperature coefficient of resistivity for BaTiO_3-based materials [J], Ceram. Int., 1991, 17: 227~241.
    [202] C. K. Liang, C. C. Tsai, Evaluation of a novel PTC thermistor for telecom overcurrent protection [J], Sens. Actuators A, 2005, 121: 443~449.
    [203] D. L. Zhang, D. X. Zhou, Y. X. Hu, et al. Influences of the electroless nickel electrode on the electrical characteristics of BaTiO_3-based PTCR ceramics [J], J. Eur. Ceram. Soc., 2001, 21: 1101~1105.
    [204] H. Seiter, W. Heywang, Semiconducting barium titanate [J], J. Mater. Sci., 1971, 6:1214~1226.
    [205] I. C. Ho, S. L. Fu, Effect of reoxidation on the grain-boundary acceptor-state density of reduced BaTiO_3 ceramics [J], J. Am. Ceram. Soc., 1992, 75 (3): 728~730.
    [206] D. S. Mclachlan, M. Blaszkiewlcz, R. E. Newnham, Electricity of composites [J], J. Am. Ceram. Soc., 1990, 73 (8): 2187~2202.
    [207]杨洁,金属-BaTiO_3复合陶瓷的渗流特性[D],武汉,华中理工大学, 1992.
    [208] C. D. Wagner, W. M. Riggs, L. E. Davis, et al. Handbook of X-ray Photoelectron Spectroscopy [M], Minnesota: Perkin-Elmer Corporation, 1979.
    [209]刘恩科,朱秉升,罗晋生,等.半导体物理学[M],第4版,北京:国防工业出版社, 1994, 192~193.
    [210] B. V. Zeghbroeck, Principles of semiconductor devices, Web-based book, University of Colorado at Boulder, 2004. URL: http://ece-www.colorado.edu/bart/book.
    [211]朱小英,刘顺妮,金德江,复相陶瓷导电性与其颗粒级配的关系研究[J],功能材料, 1996, 27(6): 559~561.
    [212]李可为,姚熹, Al2O_3-SiO2溶胶对PTC效应的影响[J],无机材料学报, 1993, 8(2): 249~252.
    [213]姚尧,王依琳,赵梅瑜,等.液相添加剂AST对PTCR BaTiO_3陶瓷电气物理特性的影响[J],电子元件与材料, 1997, 16(2): 24~27.
    [214]陈勇,郭琳,周桃生,等.欧姆接触镍电极的研究[J],压电与声光, 2005: 27 (1): 85~88.
    [215]邓传益,李秀峰,肖腊连,等.空气中烧成镍电极与PTCR的欧姆接触[J],功能材料, 2005, 36 (5): 692~693.
    [216]周东祥,陈勇,邓传益,等.空气中烧成镍电极浆料的研究[J],电子元件与材料, 2003, 22(8): 10~14.
    [217]何晓明,刘胜利,张绍彬,等. PTC半导瓷用欧姆接触电极的研究[J],功能材料, 1996, 27(5): 407~411.
    [218]孙文通,贱金属电子浆料导电机理研究[J],电子原件与材料, 1997, 16 (3): 14~19.
    [219]罗小巧,邓传益,欧姆接触锌电极的研制[J],功能材料, 1999, 30(1): 74~75.
    [220]罗小巧,邓传益,空气中烧成锌电极浆料的研究[J],压电与声光, 1998, 20 (5): 332~334.
    [221] (前苏联)H. M.巴夫鲁什夫, A. K.茹拉夫列夫编,陈树森译,易熔玻璃[M],中国建筑工业出版, 1975, 5
    [222] S. F. Wang, T. C. K. Yang, Y. R. Wang, et al. Effect of glass composition on the densification and dielectric properties of BaTiO_3 ceramics [J], Ceram. Int., 2001, 27: 157~162.
    [223] Z. Y. Fan, A new approach to the electrical resistivity of two-phase composites [J], Acta Metall. Mater., 1995, 43 (1): 43–49.
    [224]徐国跃,吴柏源,施主半导化BaTiO_3PTC陶瓷耐压性能研究[J],硅酸盐学报, 1991, 19(5): 417~423.
    [225]周玉,材料分析方法[M],北京:机械工业出版社, 2005, 301.
    [226] H. A. Sauer, Ohmic contacts to semiconducting ceramics [J], J. Electrochem. Soc., 1960, 107(3): 250~251.
    [227] K. Ohe, Y. Nitio, A new resistor having an anomalously large positive temperature coefficient, Jpn. J. Appl. Phys.,1971, 10(1): 99~108.
    [228] U. Syamaprasad, A. R. Sheejanair, M. S. Sarma, et al. Multilayer capacitor ceramics in the PMN-PT-BT system: effect of MgO and 4PbO.B2O_3 additions [J], J. Mater. Sci. Mater. Electron, 1997, 8: 199~205.
    [229] D. R. Lide, Handbook of chemistry and physics [M], 83rd, USA: CRC Press LLC, 2002.
    [230] B. Huybrechts, K. Ishizaki, M. Takata, Experimental evaluation of the acceptor-states compensation in positive-temperature-coefficient-type barium titanate [J], J. Am. Ceram. Soc., 1992, 75: 722~724.
    [231] G. H. Jonker, Equilibrium barriers in PTC themistors, PP.155-166. in advances in ceramics, Vol. 1, Grain boundary phenomena in electronic ceramics , edited by L. Levinson, D. C. Hill, Am. Ceram. Soc., Columbus, Ohio, 1981.
    [232] A. M. J. H. Seuter, Defect chemistry and electrical transport properties of barium titanate [J], Philips Res. Rep. Suppl., 1974, 3:1~84.
    [233]蒲永平,陈寿田, H. T. Langhammer,掺镧钛酸钡陶瓷晶界的再氧化[J], 2005, 33(10): 1237~1242.
    [234]郭景坤,诸培南,复相陶瓷的设计原则[J],硅酸盐学报, 1996, 24(1): 7~17.
    [235]郭景坤,中国先进陶瓷研究及其展望[J],材料研究学报, 1997, 11(16): 594~600.
    [236]侯峰,何泽明,曲远方,铬/PTC陶瓷复合材料研究[J],功能材料, 2000, 31(4): 416~418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700