用户名: 密码: 验证码:
新型氨基酸希夫碱配合物的合成及铜(Ⅱ)、铂(Ⅱ)配合物的生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酸是生物体内微量金属元素的重要配体,氨基酸希夫碱配合物在医学、催化、分析化学、农业等领域的应用受到广泛关注。近几年来,有关希夫碱配合物抗肿瘤活性的研究有一定的报道,但是关于氨基酸希夫碱铜配合物对肿瘤细胞内蛋白酶体活性及细胞凋亡诱导性的作用及作用机理方面的研究鲜有报道。设计和合成不同的氨基酸希夫碱配体及其金属配合物,研究其结构、性质及对生物体的作用机制,特别是氨基酸希夫碱铜配合物对肿瘤细胞内蛋白酶体的作用和作用机理,是一项具有挑战性的研究。顺铂是治疗癌症的常用药物,但是由于其毒副作用较大而限制了使用。研究铂配合物对肿瘤细胞内的蛋白酶体活性及细胞凋亡诱导性的作用,可以为铂配合物的抗肿瘤作用机理及其毒副作用研究提供理论依据。
     论文设计和合成新的氨基酸希夫碱配体及其金属配合物,对其进行表征,推断出其可能的结构,对部分配合物的抑菌活性进行了研究;以蛋白酶体为作用靶点,深入研究了氨基酸希夫碱铜配合物及苯基吡啶铂配合物对肿瘤细胞内蛋白酶体的抑制作用和凋亡诱导作用;以有机铜配合物NC-CuCl为模型化合物,研究了其抗肿瘤作用机理。具体研究内容如下:
     选用L-天冬酰胺和L-谷氨酰胺为母体,同含有亲水基的邻香草醛缩合,得到两种希夫碱配体,使其与过渡金属反应得到10种金属配合物,采用红外光谱、紫外光谱、摩尔电导率分析、元素分析和热重分析等分析手段对配体及金属配合物进行表征。L-天冬酰胺缩邻香草醛希夫碱配体及其五种过渡金属配合物的组成分别为:HL_1Li·2H_2O,[Zn(LiL_1)(CH_3COO)(H_2O)3], [CuL_1(H_2O)3], [Mn(LiL_1) (CH_3COO)(H_2O)3],[Co(LiL_1)(CH_3COO)(H_2O)3], [Ni(LiL_1)(CH_3COO)(H_2O)]·2H_2O。L-谷氨酰胺缩邻香草醛希夫碱配体及其五种过渡金属配合物的组成分别为:HL_2Li·H_2O, [Zn2(L_2)_2(CH_3COOH)(H_2O)_2]·(H_2O)(CH_3OH), [Cu3(L_2)_2(CH_3COO)_2 (H_2O)]·2H_2O, [Mn3(L_2)_2(CH_3COO)_2(CH_3COOH)_2]·3H_2O,[Co2(L_2)_2(CH_3COOH) (H_2O)_2]·(H_2O)(CH_3OH), [Ni3(L_2)_2(CH_3COO)_2]·5H_2O。
     对金属配合物进行了非等温热分解动力学处理,研究其热分解过程和热分解机理,结果如下:L-谷氨酰胺缩邻香草醛希夫碱锰配合物第一步热分解动力学函数为:f(α)= 1/3(1-α)[-ln(1-α)]~(-2),热分解速率动力学方程为:dα/dt = A·e~(-E/RT)·1/3 (1-α)[-ln(1-α)]~(-2)。其它的L-天冬酰胺和谷氨酰胺缩邻香草醛希夫碱金属配合物的第一步或第二步热分解动力学函数均为:f(α)=1/4(1-α)[-ln(1-α)]~(-3),热分解速率的动力学方程均为:dα/dt = A·e-E/RT·f(α) = A·e~(-E/RT)·1/4(1-α)[-ln(1-α)]~(-3)。热分解动力学处理同时也得到了配合物某步的热分解相应的动力学参数(E, A)及活化熵变△S≠和活化吉布斯自由能变△G≠。
     采用抑菌圈法对L-天冬酰胺和L-谷氨酰胺希夫碱配体及其部分金属配合物进行了抑菌活性研究。研究表明所供测试化合物的抑菌活性均与浓度正相关;配合物的抑菌效果明显高于相应的配体,其中天冬酰胺缩邻香草醛镍配合物(#2)和谷氨酰胺缩邻香草醛铜配合物(#8)的抑菌效果较好,具有广谱抗菌性;对金黄色葡萄球菌、绿脓假单胞菌、大肠杆菌和枯草杆菌抑菌效果最好的分别是谷氨酰胺缩邻香草醛铜配合物(#8)、谷氨酰胺缩邻香草醛钴配合物(#7)、天冬酰胺缩邻香草醛镍配合物(#2)和天冬酰胺缩邻香草醛镍配合物(#2)。配合物的抑菌效果明显高于相应的配体,说明配合物中的过渡金属离子对细菌的生长发挥了重要的抑制作用。
     用溴化3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑(MTT)法对所合成的12种天冬酰胺和谷氨酰胺希夫碱配体及其金属配合物进行抗肿瘤活性筛选,筛选出对乳腺癌MDA-MB-231细胞增殖具有较好抑制作用的谷氨酰胺缩邻香草醛希夫碱铜配合物(GVC)。对GVC的进一步抗肿瘤活性研究发现:GVC对乳腺癌MDA-MB-231及血癌Jurkat T细胞内的蛋白酶体活性有抑制作用,能诱导该肿瘤细胞发生凋亡,且这种作用与GVC的使用浓度和作用时间正相关;更重要的发现是GVC能选择性的抑制肿瘤细胞,对恶性乳腺癌细胞MCF 10DCIS.com有较强细胞毒性,对正常乳腺细胞MCF 10A毒性较小。GVC对乳腺癌MDA-MB-231和血癌Jurkat T细胞内蛋白酶体的抑制作用和细胞凋亡诱导作用,说明GVC具有广谱抗肿瘤活性;对恶性乳腺癌细胞MCF 10DCIS.com和正常乳腺细胞MCF 10A的选择性凋亡诱导作用,说明了GVC具有很好的抗肿瘤选择性。
     以有机铜配合物NC-CuCl为模型化合物,用Image-iT~(TM)活细胞ROS测试法研究了有机铜配合物的抗肿瘤作用机理,研究发现有机铜配合物对蛋白酶体的抑制作用可能主要是通过铜离子和蛋白酶体的键合作用,通过对细胞内蛋白酶体活性的抑制,进而诱导细胞发生凋亡。ROS的产生参与了诱导肿瘤细胞发生凋亡,但不是主要原因。
     研究了四种苯基吡啶铂配合物对纯化的20S蛋白酶体的抑制作用,研究表明它们对纯化的20S蛋白酶体的抑制作用与其使用浓度正相关,其半数抑制率IC50值均小于6μM;用MTT法考察了这四种苯基吡啶铂配合物对乳腺癌MDA-MB-231细胞增殖的抑制作用,研究表明这四种苯基吡啶铂配合物比顺铂具有使用浓度更低、抑制活性更好的特性,其半数抑制率IC50值均小于10μM。对这四种四种苯基吡啶铂配合物的深入研究发现:这四种苯基吡啶铂配合物均有抑制乳腺癌MDA-MB-231细胞内的蛋白酶体活性和诱导肿瘤细胞发生凋亡的作用。此项研究为深入研究这四种苯基吡啶铂配合物在体内的抗肿瘤活性提供了必要的理论依据。
     合成了4-氨基安替比林缩对苯二甲醛双希夫碱,并得到其单晶。该化合物属单斜晶系,P2(1)/C空间群,化学式为C30H28N6O2,M = 504.58。晶胞参数为:a = 6.0710(2)(?),b = 22.2948(7) (?),c = 9.8712(3) (?),α= 90o,β= 95.147(2)°,γ= 90°,Z = 2,V = 1330.70(7) (?)~3,T = 293(2) K,Dc = 1.259mg/m~3,R1 = 0.0494,wR2 = 0.1361 for I>2σ(I),F(000) = 532。分子晶体结构显示4-氨基安替比林缩对苯二甲醛的分子不是二维共平面的,而是向三维空间伸展。分子间氢键相互作用使分子形成了一维链状结构。
     运用Gaussian03量子化学程序包,采用量子化学的密度泛函理论(DFT)B3LYP方法,对4-氨基安替比林缩对苯二甲醛的晶体结构进行优化,在稳定几何构型的基础上计算得到前沿分子轨道能量、各分子片富含电子的氮氧原子对前沿轨道的贡献和NBO电荷分布。计算结果表明,此化合物部分键长、键角的计算值与实验值基本吻合。由计算可知该配体与金属或其他分子作用时,N(31)、N(64)、O(33)和O(66)这4个原子是化学活性部位,可以发生各种有机反应及与金属离子配位。
     对4-氨基安替比林缩对苯二甲醛双希夫碱配体进行了非等温热分解动力学处理,结果如下:其热分解动力学函数为:f(α)= 3/2(1-α)~(4/3)[1/(1-α)~(1/3)-1]-1,热分解速率的动力学方程为:dα/dt = A·e-E/RT·3/2(1-α)~(4/3)[1/(1-α)~(1/3)-1]~(-1),E = 1248 kJ/mol,lnA = 235.1,r = 0.9799,ΔS≠= 1888 J/mol·K,ΔG≠= 86.14 kJ/mol。
Amino acids are the essential trace metal elements’ligands in vivo. Amino acid Schiff base complexes have been applied in a wide range of fields, such as medicine, catalysis, analytical chemistry, agriculture and so on. In recent years, many researchers reported that Schiff base complexes have the anticancer activity, but the anticancer activities and mechanisms of amino acid Schiff base complexes as proteasome inhibitors and apoptosis inducers were seldom reported. It is a challenging project to design and synthesize different amino acid Schiff base ligands and their metal complexes for studying their structures, properties and bioactivities, especially the ancicancer activity of the amino acid Schiff base copper complexes on tumor cells by targeting cellular proteasome and inducing apoptosis. Cisplatinum is a widely used anticancer drug, but it is limited because its side effects. The study of platinum complexes on tumor cellular proteasome and apoptosis may supply theoretical basis on anticancer mechanism and side effects of platinum complexes.
     This dissertation aims to design, synthesize and characterize new amino acid Schiff base ligands and their metal complexes. It focuses on interactions of various amino acid Schiff base copper complexes and platinum complexes with the proteasome, and their abilities to inhibit tumor cellular proteasome and induce apoptosis in vitro. Moreover, organic copper complex NC-CuCl as a model compound was used to study the antitumor mechanism of organic copper complexes. The main researches are as follows:
     Two Schiff base ligands which are derived from L-asparagine or L-glutamine and o-vanillin and their ten transition metal complexes have been synthesized. Their structures were characterized by IR spectroscopy, UV spectroscopy, molar conductance analysis, elemental analysis and thermal gravimetric analysis and so on. The composition of Schiff base ligand derived from L-asparagine and o-vanillin (L_1) and its five metal complexes are as follows: HL_1Li·2H_2O, [Zn(LiL_1)(CH_3COO) (H_2O)3], [CuL_1(H_2O)3], [Mn(LiL_1)(CH_3COO)(H_2O)3], [Co(LiL_1)(CH_3COO)(H_2O)3], [Ni(LiL_1)(CH_3COO)(H_2O)]·2H_2O. The composition of Schiff base ligand derived from L-glutamine and o-vanillin (L_2) and its five metal complexes are as follows: HL_2Li·H_2O, [Zn2(L_2)_2(CH_3COOH)(H_2O)_2]·(H_2O)(CH_3OH), [Cu3(L_2)_2(CH_3COO)_2 (H_2O)]·2H_2O, [Mn3(L_2)_2(CH_3COO)_2(CH_3COOH)_2]·3H_2O, [Co2(L_2)_2(CH_3COOH) (H_2O)_2]·(H_2O)(CH_3OH), [Ni3(L_2)_2(CH_3COO)_2]·5H_2O.
     By thermal decomposition analysis, the thermal decomposition mechanism of metal complexes has been studied. The results are as follows: The first step of the thermal decomposition kinetic function of [Mn3(L_2)_2(CH_3COO)_2(CH_3COOH)_2]·3H_2O is expressed as f(α)= 1/3(1-α)[-ln(1-α)]-2 and its kinetic equation of thermal decomposition is expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT·1/3(1-α)[-ln(1-α)]-2. Except for the above complex, the first or second step of the thermal decomposition kinetic functions of other metal complexes derived from L-asparagine or L-glutamine and o-vanillin and transition metal are all expressed as f(α)=1/4(1-α)[-ln(1-α)]-3. Their kinetic equations of thermal decomposition are expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT·1/4(1-α)[-ln(1-α)]-3. The kinetics parameters E and A and activation entropy change△S≠and Gibbs free energy change△G≠have been obtained.
     The antibacterial activities of ligands and parts of their metal complexes were also studied against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis bacteria by inhibition zone method. The antibacterial activities of tested compounds were in a concentration-dependent manner. Comparing with the ligands, their metal complexes showed higher antibacterial activity. The complexes #2 and #8 showed the higher antibacterial activity than other tested complexes and were sensitive against four tested bacteria. The best antibacterial complexes against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Bacillus subtilis were complex #8, #7, #2 and #2, respectively. The results indicate that metal complexes have higher antibacterial activities than their ligands, disclosing transition metal ions play an important role in antibacterial activity.
     The antiproliferaion activities of parts of metal complexes were studied by 3-[4,5-dimethyltiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT method) in human breast cancer MDA-MB-231 cells. It was found that GVC showed the higher antiproliferation activity than other metal complexes. So GVC was chose for further anticancer studies and found that GVC could inhibit proteasome activity and induce apoptosis in MDA-MB-231 and Jurkat T cells in a concentration- and time-dependent manner. Importantly, GVC could specifically and selectively inhibit proteasome activity and induce apoptosis in breast cancer MCF 10DCIS.com cells, but not in normal, immortalized human breast MCF 10A cells. These data demonstrate that the GVC could widely inhibit proteasome activity and induce apoptosis in human cancer cells. Moreover it could specifically and selectively induce proteasome inhibition and apoptosis in human tumor cells.
     The antitumor mechanism of organic copper complexes was studied by Image-iTTM live green reactive oxygen species detection kit used organic copper complex NC-CuCl as a model compound. This study found the inhibition of proteasome activity induced by organic copper complexes might be mainly through copper binding mechanism and induced cytotoxicity and apoptosis might be primarily through proteasome inhibition. ROS generation may be partially involved in the process of the copper complexes induced cell death, but not the major mechanism.
     The inhibition of purified 20S proteasome by four platinum complexes were investigated and found that their inhibition potency of 20S proteasome was in a dose-dependent manner. Their IC50 values were less than 6μM. Their antiproliferaion activities were studied by MTT method in human breast cancer MDA-MB-231 cells and found these four platinum complexes had much more antiproliferation activity than that of cisplatin. Their antiproliferation IC50 values were less than 10μM. The further study demonstrates that these four platinum complexes could inhibit proteasome activity and induce apoptosis in human breast cancer MDA-MB-231 cells. This research provides necessary theoretical data for further study on their anticancer activity in vivo.
     The crystal of the Schiff base derived from 4-aminoantipyrine and terephthalaldehyde belongs to monoclinic, P2(1)/C space group, molecular formula is C30H28N6O2, M=504.58. The unit cell parameter are: a = 6.0710(2)?, b = 22.2948(7) ?, c = 9.8712(3) ?,α= 90o,β= 95.147(2)o,γ= 90o, Z = 2, V = 1330.70(7) ?3, T = 293(2) K, Dc = 1.259mg/m3, R1 = 0.0494, wR2 = 0.1361 for I>2σ(I), F(000) = 532. The single crystal structure indicates that the molecule is not a two-dimensional plane, but extending to the three-dimensional space. It is the intermolecular hydrogen bond interaction to form a one-dimensional chain structure.
     The Geometry optimization of C30H28N6O2 was performed by the hybrid density functional theory of the B3LYP method. The energy level, electronic population in the frontier molecule orbitals of the fragments of molecules, the atoms with plentiful electron like as N, O atoms and natural atomic charges distribution were obtained. The calculation results disclose that the calculated data and the tested data of parts of the bond lengthes and bond angles are similar. While this ligand coordinates with metal ions or other molecules, N(31), N(64), O(33) and O(66) atoms could occur in certain reactions or in coordination with metal ions.
     The thermal decomposition kinetic function of the compound C30H28N6O2 is expressed as f(α)= 3/2(1-α)4/3[1/(1-α)1/3-1]-1 and its kinetic equation of thermal decomposition is expressed as dα/dt = A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1, E = 1248 kJ/mol, lnA = 235.1, r = 0.9799,ΔS≠= 1888 J/mol·K,ΔG≠= 86.14 kJ/mol.
引文
[1]国家自然科学基金委员会.自然科学学科发展战略调研报告.无机化学.北京:科学出版社. 1994
    [2]徐光宪. 21世纪的配位化学是处于现代化学中心地位的二级学科.北京大学学报(自然科学版), 2002, 38(2): 149-153
    [3]杜向东,俞贤达.非对称Schiff碱过渡金属配合物模拟酶催化烯烃环氧化(Ⅰ).高等学校化学学报, 1997, 18(4): 567
    [4]杜向东,俞贤达.非对称希夫碱过渡金属配合物模拟催化烯烃环氧化(Ⅱ).分子催化, 1997, 12(1): 26-30
    [5] Drew, M.G.B., Esho, F.S., Nelson, S.M. Trihapto-hexahapto fluxional behavior of a macrocyclic ligand: template synthesis, proton nuclear magnetic resonance spectra, and the crystal and molecular structure of an eleven-coordinate barium(Ⅱ) complex. Inorganic Chemistry, 1983, (8): 1653-1659
    [6] West, B.O. The magnetic moments and structures of some N-substituted salicylidene-imine complexes of cobalt(Ⅱ). Journal of the Chemical Society, 1962: 1374-1387
    [7] Chandra, S., Sharma, K. Synthesis and characterization of chrominum(Ⅲ) complex of some semicarbazones and thiosemicarbazones. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 1982, 12(6): 647-659
    [8] Csaszar, J., Morvay, J., Herczeg, O. Study of 5-nitro-2-furfuraldehyde Derivatives.Ⅱ. Preparation, spectra and antibacterial activities of Schiff bases with sulfonamides. Acta Physica Chemistry, 1985, 31(3): 711-722
    [9]祝心德,乐芝凤,吴自慎等. 2,4-二羟基本甲醛缩氨基硫脲合铜(II),镍(II),锌(II),铁(II)的合成和表征及杀菌活性.高等学校化学学报, 1991, 12(8): 1066-1068
    [10] Dutt, N.K., Nag, K. Bis-salicylaldehyde ethylenediamine and bissalicylaldehyde o-phenylenedimine complexes of rare-earth. Journal of Inorganic and Nuclear Chemistry, 1968, 30: 2493-2499
    [11] Iftikhar, K., Arvind, S.A., Syaeed, M., et al. Studies on bis(p-dimethylaminobenzylidene) benzidine complexes of Trivalent Lanthanides. Indian Journal of Chemistry, 1986, 25 (6): 589-591
    [12] Yang, X., Brittain, H.G. Evidence for Schiff base formation in the addition of amino alcohols to the europium (III) chelates of benzoylacetone and dibenzoylmethane. Inorganica Chimic Acta, 1982, 59(2): 261-268
    [13] Bastos, M.B.R., Moreira, J.C., Farias, P.A.M. Adsorptive striooing voltammetric behaviour of UO2(Ⅱ) complexed with the Schiff base N, N-prime-ethylenebis(salicylidenimine) in 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid medium. Analytica Chimica Acta, 2000, 408: 83-88
    [14] Desai, S.B., Desai, P.B., Desai, K.R. Synthesis of some Schiff base thiazolidinones and azetidinones from 2, 6-diaminobonzol [1,2-d:4,5-d/] bisthiazole and their activities. Hetercyclic Communications, 2001, 7(1): 83-90
    [15] Gaber, M. Structural, pH-metric, and conductance studies of 4-(2-Pyridyl)-1- (2-Hydroxyacet -ophenone)-3-thiosemicarbazone (H2PHAT) complexes. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 1994, 24(5): 813-829
    [16] Isse, A.A., Gennaro, A., Vianello, E. Electrochemical reduction of Schiff bases ligands H2salen and H2salophen. Electrochimical Acta, 1997, 42(13-14): 2065-2071
    [17] Juan, M., Fernandez, G., Hernandez, O.S. The structures and electrochemical studies of three 2, 3-naohthalenic Schiff base copper(Ⅱ) complexes. Polyhedron, 1998, 17(15): 2425-2432
    [18] Maurya, R.C., Mishra, D.D. Synthesis, magnetic and spectral studies of some mixed-ligand complexes of copper(Ⅱ) and cobalt(Ⅱ) with Schiff Base and 2-or 3-Pyrazoline-5-one derivatives. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 1994, 24(3): 427-430
    [19] Mehmet, T., Huseyin, K., Selahattin, S. Synthesis, characteriztion and studies of mononuciear and binuclear complexes of copper(Ⅱ) with Schiff Bases derived from 1-Phenyl-2,3-Dimethyl-4-Amino-5-Pyrazolone. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 1996, 26(9): 1589-1594
    [20] Punnlyanurthy, T., Madhava, R.M. Cobalt(Ⅱ) Schiff base catalyzed biomimetic oxidation of organic substrates with dioxygen pure. Applied Chemistry, 1996. 68(3): 619-622
    [21]陈德余,江银枝.过渡金属L-丙氨酸Schiff碱配合物的合成及其抗O2-?性能.应用化学, 1997, 14(3): 5-8
    [22]李培凡,刘燕,王智等.对溴苯甲醛缩邻氨基酚席夫碱及其配合物的合成及抑菌活性.天津师范大学学报, 2003, 23(2): 10-12
    [23]李仲辉,秦圣英.冠醚化对双Schiff碱钴(Ⅱ)配合物催化氧化性能的影响.应用化学, 1998, 15(5): 43-46
    [24]唐波,张杰,王栩.新型主体试剂交联聚合β-环糊精-邻香草醛苯甲酰腙的合成及荧光法识别锌.分析化学, 2002, 30(10): 1196-1200
    [25]王积涛.手性过渡金属(Mn,Co, Ni)-Salen配合物催化NaOCl不对称环氧化苯乙烯的反应.有机化学, 1998, 18(3): 228-232
    [26]王焱钢,杨志斌.新席夫碱SAAQ合成及其分析应用研究-分光光度法测定镓.化学试剂, 1993, 15(1): 17-18
    [27]袁淑军,蔡春,吕春绪.双亲性席夫碱铜(Ⅱ)配合物的合成及苯甲醇的催化氧化.应用化学, 2003, 20(3): 278-280
    [28] Chedini, M., Pucci, D., Cesarotti, E., et al. Crystal, 1993, 15: 331
    [29] LiOIlS, F., Martin, K.V.J. Chemical Socialty, 1957, 79: 2733
    [30] Mkreos, M., Serrano, J.L., Sierra, T. Chemistry of Materials, 1991, 3(5): 1332
    [31] Huang, G.S., Liu, Y.H., Chen, B.H., et al. Chemical Papers, 1999, 53(1): 65
    [32] Liu, Y.H., Liang, Y.M., Chen, B.H., et al. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 1998, 28(5): 803
    [33] Syarnal, A., Maurya, M.R. Coordination chemistry of Schiff base complexes of molybdenum. Coordination Chemistry Reviews, 1989, 95(2): 183-238
    [34] Gopinathan, S., Deshpande, S.S., Gopinatha, C. Novel ruthenium(Ⅱ) Schiff base complexes. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 1989, 19(4): 321
    [35] Agarwala, R.G. Acyl Hydrazine Complexes of titanium and zirconium tetrachlorides. Journal of Inorganic and Nuclear Chemistry, 1973, 35: 653-655
    [36] Dilworth, J.R. The Coordination Chemistry of substituted hydrazines. Coordination Chemistry Reviews, 1976, 21: 29-62
    [37] Mahapatra, B.B., Dash, S.S., Pujari, S.K. Complexes of Cu (Ⅱ) and Cd (Ⅱ) with tetradentate Schiff bases. Journal of Indian Chemical Society, 1980, 57: 95
    [38] Kimball, D. Heterocyclic thrombin inhibitors. USA. 1998: 21
    [39]胡秉方,李增民.水稻白叶枯病化学防治的新进展.化学通报, 1986, 11: 1-7
    [40]田君濂,毕思玮,高恩庆.甲酰基甲酸氨基硫脲席夫碱二价金属离子配合物的研究.应用化学, 1994, 11(5): 45-48
    [41]毕思玮,刘树祥.氨基酸水杨醛席夫碱与铜(Ⅱ)配合物的合成及其抗菌活性和稳定性、结构间的关系.无机化学学报, 1996, 12(4): 423-426
    [42]张静夏,周永言,蔡于.手性胺-铜配合物的合成及其在菊酸不对称合成中的应用.分子催化, 1997, 11(1): 41-44
    [43] Byrappa, K., Yoshimura, M. Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing. LLC Norwich, New York: William Andrew, 2001: 1-43
    [44] Yoshimura, M. In situ fabrication of morphology-controlled advanced ceramic materials by soft solution processing. Solid State Ionics, 1997, 98(3-4): 197-208
    [45] Yoshimura, M. Importance of soft solution processing for advanced inorganic materials. Journal of Materials Research, 1998, 13(5): 1091-1098
    [46] Yoshimura, M. Soft solution processing: a strategy for one-step processing of advanced inorganic materials. MRS Bulletin. , 2000, 25(9): 17-25
    [47] Yoshimura, M. Soft solution processing: environmentally benign direct fabrication of shaped ceramics (nano-crystals, whiskers, films, and/or patterns) without firing. Key Engineering Materials, 2001, 206-213: 1-6
    [48] Yoshimura, M. Soft processing for advanced inorganic materials. MRS Bulletin, 2002, 25(19): 12-13
    [49]施尔畏.水热法的应用与发展.无机化学学报, 1996, 11(2): 193-206
    [50]王秀峰,王永兰,金志浩,水热法制备纳米陶瓷粉体.稀有金属材料与工程, 1995, 24(4): 1-6
    [51]徐如人.无机合成与制备化学.高等教育出版社, 2001
    [52] Demazeau, G. Solvothermal processes: a route to the stabilization of new materials. Journal of Materials Chemistry, 1999, 9(11): 15-18
    [53] Demazeau, G. In future trends of hydrothermal and solvothermal reactions in materials science. Editors: Yanagisawa, K., Feng, Q., Nishimura Tosha-Do Ltd: Kochi, Japan, 2001
    [54] Zhou, J., Liu, X., Liu, D.Q., et al., Synthesis and crystal structure of zinc(Ⅱ) complex with Schiff base from pyridine-4-aldehyde and semicarbazon. Chinese Journal of Synthetic Chemistry, 2006, 14(5): 476-479
    [55]陈德余,张义建,张平.甲硫氨酸席夫碱铜、锌、钴配合物的合成及抗O2-?性能.应用化学, 2000, 17(6): 607-610
    [56]叶勇. 2-氯代苯甲醛丙氨酸席夫碱及其3d-过渡金属配合物的合成与表征.湖北大学学报, 2001, 23(1): 57-61
    [57] Ma, H.Y., Chen, S.H., Niu, L., et al. Studies on electrochemical behavtor of copper in aerated NaBr solutions with Schiff bases. Journal of Electrochemical Society, 2001, 148(5): 208-216
    [58]何存星,蔡沛样,莫金垣.一氧化氮在Nafion-钴席夫碱膜修饰电极上的电催化氧化及其测定.分析实验室, 2000, 19(1): 9-12
    [59]何存星,邓锐,李平.一氧化氮在聚钴—席夫碱修饰电极上的电催化氧化.分析测试学报, 2000, 19(2): 35-38
    [60]魏丹毅,李冬成,姚克敏.希土元素与β-丙氨酸席夫碱双核配合物的合成、表征及催化活性.无机化学学报, 1998, 14(2): 209-214
    [61] Isse, A.A., Gennaro, A., Vianello, E. Electrochemical reduction of Schiff bases ligands H2salen and H2salophen. E1echtrochimical Acta, 1997, 42(13-14): 2065-2071
    [62] Bastos, M.B.R., Moreira, J.C., FARIAS, P.A.M. Adsorptive stripping voltammetric behaviour of UO2-(II) complexed with the Schiff base N,N-prime-ethylenebis salicylidenimine) in aqueous 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid medium. Analytica Chimica Acta, 2000, 408: 83-88
    [63]杜宝石,樊耀亭.镨、钕、钇甘氨酸三元配合物的晶体结构.结构化学, 1996, 15(2): 141-146
    [64]赵建章,赵冰,徐蔚青. Schiff碱N,N’-双水杨醛缩-1,6-己二胺的光致变色光谱的研究.高等学校化学学报, 2001, 22(6): 971-975
    [65]樊耀亭,朱伯仲,李娅等.含稀土的混合氨基酸配合态多元微肥的研制及应用.中国稀土学报, 1997, 18(4): 57-59
    [66]黎植昌.混合氨基酸稀土配合物及其应用研究.化学通报, 1994, (1): 21-25
    [67]邵建华,韩永圣,高芝祥.复合氨基酸稀土元素螯合物的生产和应用研究进展.中国稀土学报, 2001, 22(5): 59-62
    [68]易国斌,崔英德,陈德余.生理活性氨基酸Schiff碱的合成与表征.精细化工, 2001, 18(5): 252-254
    [69] Gravert, D.J., Griffin, J.H. Specific DNA cleavage mediated by [SalenMn(Ⅲ)]+. The Journal of Organic Chemistry, 1993, 58(4): 820-822
    [70]孔德源,谢毓元.氨基酸类Schiff碱稀土配合物的合成及抗肿瘤活性(I).中国医药化学, 1998, 118(14): 245-253
    [71]席晓岚,黎植昌.氨基酸Schiff碱及其金属配合物的抑菌抗癌活性的研究进展.氨基酸和生物资源, 1998, 20(4): 40-43
    [72] Santanu, B., Subhrangsu, S.M. Ambient oxygen activating water soluble Cobalt -Salen complex for DNA cleavage. Journal of Chemical Society, Chemical Communications, 1995, 24: 2489 -2490
    [73] Sylvain, R., Bernier, J.L., Waring, M.J. Synthesis of a funcitionalized Salen2copper complex and its interaction with DNA. Organic Chemistry, 1996, 61(7): 2326-2331
    [74] Adsule, S., Barve, V., Chen, D., et al. Novel schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. Journal of Medicinal Chemistry, 2006, 49(24): 7242-7246
    [75]易国斌,崔英德,陈德余.天冬酰胺Schiff碱稀土配合物的合成、表征与抗O2-?性能.化学通报, 2002, (2):119-122
    [76]Voges, D., Zwickl, P., Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annual Review of Biochemistry, 1999, 68: 1015-1068
    [77] Schubert, U., Ott, D.E., Chertova, E.N., et al. Proteasome inhibition interferes with Gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 13057-13062
    [78]Tanaka, K., Yoshimura, T., Kumatori, A. Proteasomes(multiprotease complexes)as 20S ringshaped particles in a variety of eukaryotic cells. Journal of Biological Chemistry, 1988, 263: 16209-16217
    [79] Adams, J., Behnke, M., Chen, S. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorganic Medicinal Chemistry Letter, 1998, 8(4): 333-338
    [80] Adams, J. Proteasome inhibition:a novel approach to cancer therapy. Trends in Molecular Medicine, 2002, 8(4): 49-54
    [81] Baldwin, A.S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. Journal of Clinical Investigation, 2001, 107(3): 241-246
    [82] Gataiger, M., Jordan, R., Lim, M. SKp2 is oncogenic and overexpressed in human canners. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(9): 5043-5048
    [83] Van-Antwerp, D.J., Martin, S.J., Verma, I.M., et al. Inhibition of TNF-induced apoptosis by NF-kappa B. Trends in Cell Biology, 1998, 8(3): 107-111
    [84] Palombella, V.J., Rando, O.J., Goldberg, A.G., et al. The ubiquitin-proteasome pathway is required for processing the NF-kappa-B1 precursor protein and the activation of NF-kappa-B. Cell, 1994, 78(5): 773-785
    [85] Goldberg, A.L., Cascio, P., Saric, T. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Molecular Immunology, 2002, 39(3-4): 147-164
    [86] Li, L., Liao, J., Ruland, J. A TSG101/MDM2 regulatory loop modulates MDM2 degradation and MDM2/ p53 feedback control. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4): 1619-1624
    [87] Groll, M., Berkers, C.R., Ploegeh, H.L. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 2006, 14(3): 451-456
    [88] Kessler, B.M., Tortorella, D., Altun, M. Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalyticβ-subunits. Chemistry & Biology, 2001, 8(9): 913-929
    [89] Groll, M., Kim, K.B., Kaines, N. Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity ofα′,β′-epoxyketone proteasome inhibitors. Journal of American Chemical Society, 2000, 122(6): 1237-1238
    [90] Kisselev, A.F., Goldberg, A.L. Proteasome inhibitors: from research tools to drug candidates. Chemistry and Biology, 2001, 8(8): 739-758
    [91] Macherla, V.R., Mitchell, S.S., Manam, R.R. Structure-activity relationship studies of salinosporamide a (NPI-0052), a novel marine derived proteasome inhibitor. Journal of Medicinal Chemistry, 2005, 48(11): 3684-3687
    [92] Daniel, K.G., Gupta, P., Harbach, R.H., et al. Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochemistry Pharmacology, 2004, 67(6): 1139-1151
    [93] Chen, D., Cui, Q.Z., Yang, H., et al. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Research, 2006, 66(21): 10425-10433
    [94] Xiao, Y., Bi, C.F., Fan, Y.H., et al. L-glutamine Schiff base copper complex as a proteasome inhibitor and an apoptosis inducer in human cancer cells. International journal of oncology, 2008, 33(5): 1073-1079
    [95] Yang, H.J., Chen, D., Cui, Q.Z., et al. Celastrol, a triterpene extracted from the Chinese "Thunder of God Vine," ss a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Research, 2006, 66(9): 4549-4982
    [96] Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell, 1994, 79(1): 13-21
    [97] Etlinger, J.D., Goldberg, A.L. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74: 54-58
    [98] Hershko, A. Lessons from the discovery of the ubiquitin system. Trends in Biochemical Sciences, 1996, 21(11): 445-449
    [99] Matthews, W., Driscoll J., Tanaka K., et al. Involvement of the proteasome in various degradative processes in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(8): 2597-2601
    [100]Schubert, U., Anton L.C., Norbury, C.C., et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature, 2000, 404: 770-774
    [101] Kerr, J.F., Wyllie, A.H., Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 1972, 26(4): 239-57
    [102] Leist, M., Jaattela, M. Four deaths and a funeral: from caspases to alternative mechanisms. Molecular Cell Biology: Nature Reviews, 2001, 2(8): 589-598
    [103] Saraste, A., Pulkki, K. Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Research, 2000, 45(3): 528-537
    [104] Ameisen, J.C. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death and Differentiation, 2002, 9(4): 367-393
    [105] Raff, M.C., Barres B.A., Burne J.F., et al. Programmed cell death and the control of cell survival: lessons from the nervous system. Science, 1993, 262(5134): 695-700
    [106] Reed, J.C. Apoptosis-based therapies. Nature reviews. Drug discovery, 2002, 1(2): 111-121
    [107] Hanahan, D., Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1): 57-70
    [108] Mullauer, L., Gruber P., Sebinger, D., et al. Mutations in apoptosis genes: a pathogenetic factor for human disease. Mutation Research, 2001, 488(3): 211-231
    [109]卢圣贤,蔡海英,李晴雪.芦笋对小鼠前胃癌变和3T3细胞生长的影响.癌症, 1993, 12(1): 33-35
    [110]刘茹,郑军,纪庆红.谷氨酰胺药物的临床应用进展.中国药事, 2008, 22(4): 346-347
    [111] Peyrone, M. Cisplatin. Annalen der Chemie und Pharmacie, 1845, 51: 1-29
    [112] Rosenberg, B., Camp, L.V., Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 1965, 205(4972): 698-699
    [113] Trzaska, S. Joel Henry Hildebrand Award in the Theoretical & Experimental Chemistry of liquids. Chemical & Engineering News, 2003, 81(1): 42
    [114] Wong, E., Giandomenico, C.M. Current status of platinum-based antitumor drugs. Chemical Reviews, 1999, 99(9): 2451-2466
    [115] Ohno, S., Siddik Z.H., Baba H., et al. Effect of carboplatin combined with whole body hyperthermia on normal tissue and tumor in rats. Cancer Research, 1991, 51(11): 2994-3000
    [116] Kysilka, V., Kalisz T., Kacer P. A process for the preparation of an oxaliplatin preparation. Agent: DICKSTEIN SHAPIRO LLP, NY, US, 2005
    [117] Matsumoto, H., Hirai, T., Hirabayashi, Y., et al. A feasible study of docetaxel/nedaplatin combined chemotherapy for relapsed or refractory esophageal cancer patients as a 2nd-line chemotherapy. Gan To Kagaku Ryoho, 2007, 34(5): 725-728
    [118] Kirpensteijn, J., Teske E., Kik M., et al. Lobaplatin as a adjuvant chemotherapy to surgery in canine appendicular osteosarcoma: a phase II evaluation. Anticancer Research, 2002, 22(5): 2765-2770
    [119] Perez, J.M., et al. Synthesis, characterization and DNA modification induced by a novel Pt(IV)-bis(monoglutarate) complex which induces apoptosis in glioma cells. Chemico-Biological Interactions, 1999, 117(17): 99-115
    [120] Zhang, X., Bi, C.F., Fan, Y.H., et al. Induction of tumor cell apoptosis by taurine Schiff base copper complex is associated with the inhibition of proteasomal activity. International journal of molecular medicine, 2008, 22(5): 677-682
    [121] Wang, R.M., Hao C.J., Wang Y.P., et al. Amino acid Schiff base complex catalyst for effective oxidation of olefins with molecular oxygen. Journal of molecular catalysis, 1999, 147(1-2): 173-178
    [122]蔡正千.热分析.北京:高等教育出版社. 1983, 258
    [123]刘振海.热分析导论.北京:化学工业出版社. 1991
    [124] Straszko, J., Olszak-Humienik, M., Mozejko, J. Kinetics of thermal decomposition of ZnSO4.7H2O. Thermochimica Acta, 1997, 292(1-2): 145-150
    [125]中本一雄.无机和配位化合物的红外和拉曼光谱.北京:化学工业出版社, 1986, 256-258
    [126]林沁,谌东中,余学海.新型大分子席夫碱配合物的合成和表征.无机化学学报, 1998, 14(3): 287-289
    [127] Young, V.R., Ajami, A.M. Glutamine: The emperor or his clothes? Journal of Nutrition, 2001, 131(9): 2449-2459
    [128] Crawford, J., Cohen, H.J. The essential role of L-glutamine in lymphocyte differentiation in vitro. Journal of Cellular Physiology, 1985, 124: 275-282
    [129] Darmaun, D., Matthews, D.E., Bier, D.M. Glutamine and glutamate kinetics in human. American Journal of Physiology, 1966, 251(11): 117-126
    [130] Newsholme, P. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery of infection? The Journal of Nutrition, 2001, 131(9): 2515-2522
    [131] Parry-Bilings, M., Evans J., Calder P.C., et al. Does glutamine contribute to immunosuppression after major burns? Lancet, 1990, 336(8714): 523-525
    [132] Saito, H., Furukawa, S., Matsuda, T. Glutamine as an immunoenhancing nutrient. Journal of Parenteral and Enteral Nutrition, 1999, 23(55): 59-61
    [133] Brosnan, J.T. Amino acids, then and now—a reflection on Sir Hans Krebs’contribution to nitrogen metabolism. IUBMB Life, 2001, 52(66): 265-270
    [134] Van-der Hulst, R.R., Van-Kreel, B.K., et al. Glutamine and the preservation of gut integrity, Lancet, 1993, 341(8857): 1361-1365
    [135] Kease, D., Arstein, D., Harper, W., et al. Depression of plasma glutamine concentration after exercise stress and its possible influence on the immune system. Medical Journal of Australia, 1995, 162(1): 15-18
    [136] Souba, W.W., Herskowitz, K., Austgen, T.R., et al.. Glutamine nutrition: theoretical considerations and therapeutic impact. Journal of Parenter and Enteral Nutrirtion,1990, 14(5): 237-243
    [137] Souba, W.W., Klimberg, V.S., Plumley, D.A., et al. The role of glutamine in maintaining a healthy gut and supporting the metabolic response to injury and infection, Journal of Surgical Research, 1990, 48(4): 383-391
    [138] Roziere, J., Potier, J. Journal of Inorganic and Nuclear Chemistry, 1973, 35: 1170-1179
    [139]Shen, X.Q., Li, Z.J., Zhang, H.Y., et al. Mechanism and kinetics of thermal decomposition of 5-benzylsulfanyl-2-amino-1,3,4-thiadiazole. Thermochimica Acta, 2005, 428: 77-81
    [140]陈德余,张平,史卫良.邻香草醛缩天冬氨酸铜、锌、钴、镍配合物的合成.应用化学, 1999, 16(2): 76-77
    [141]范玉华,毕彩丰.邻香草醛缩邻苯二胺与Y(Ⅲ)、Pr(Ⅲ)、Er(Ⅲ)配合物的合成与表征.合成化学, 1997, 5(1): 79-82
    [142]乔艳红,孙命.邻香兰素-氨基酸席夫碱及其配合物对O2-·的抑制作用.化学研究与应用, 2003, 15(4): 583-587
    [143] Chen, D., Cui, Q.C., Yang H., et al. Clioquinol, a therapeutic agent for alzheimer’s disease, has proteasome-inhibitory, androgen receptor–suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts. Cancer Research, 2007, 67(4): 1636-1644
    [144] Santner, S.J., Dawson, P., Tait, L., et al. Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Research and Treatment, 2001, 65(2): 101-110
    [145]毕思玮,刘树祥.氨基酸水杨醛席夫碱与铜(II)配合物的合成及其抗菌活性和稳定性、结构间的关系.无机化学学报, 1996,12(4): 423-425
    [146]倪嘉缵.稀土生物无机化学.北京:科学出版社. 1995
    [147] Chen, S.H., Lin, J.K., Lin, S.H., Liang, Y.C., Lin-Shiau, S.Y. Apoptosis of cultured astrocytes induced by copper and neocuproine complex through oxidative stress and JNK activation. Toxicological Sciences, 2008, 102(1): 138-149
    [148] Pauling, L. Evolution and the need for ascorbic acid. In Proceedings of National Academy of Sciences of the United States of America, 1970, 67: 1643–1648
    [149] Khanna, S., Roy, S., Parinandi, N.L. Maurer M and Sen CK. Characterization of the potent neuroprotective properties of the natural vitamin Eα-tocotrienol. Journal of Neurochemistry, 2006, 98:1474-1486
    [150] Kim, J.K., Pedram, A., Razandi, M., Levin, E.R. Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. The Journal of Biological Chemistry, 2006, 281(10): 6760-6767
    [151] Kawamoto, T., Ikeda, Y., Teramoto, A. Protective effect of L-histidine (singlet oxygen scavenger) on transient forebrain ischemia in the rat. Brain and Nerve, 1997, 49(7): 612-618
    [152] EI-Wahsh M, Fuller BJ, Sreekumar NS, Burroughs AK, Dhillon PA, Davidson BR and Rolles K. Effect of free radical scavenger (reduced glutathione) on PECAM expression in liver transplantation. Biochemical Society Transactions, 1997, 25(3): 501S
    [153] Bhat, S.H., Azmi, A.S., Hanif, S., Hadi, S.M. Ascorbic acid mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: A putative mechanism for anticancer properties. The International Journal of Biochemistry & Cell Biology, 2006, 38: 2074-2081
    [154] Rietgens, I. M. C. M., Boersma, G. M., Haan, L., Spenkelink, B.,Awad, M. H., Cnubben, et al. The pro-oxidant chemistry of the natural antioxidant Vitamin C, Vitamin E, carotenoids and flavonoids. Environmental Toxicology and Pharmacology, 2002, 11: 321–333.
    [155] Hadi, S. M., Asad, S. F., Singh, S., Ahmad, A. Putative mechanism for anticancer and apoptosis inducing properties of plant-derived polyphenolic compounds. International Union of Biochemistry and Molecular Biology Life, 2000, 50: 167–171
    [156] Zhu, B.Z., Chevion,M. Copper-mediated toxicity of 2,4,5-trichlorophenol: biphasic effect of the copper(I)-specific chelator neocuproine. Archives of Biochemistry and Biophysics, 2000, 380(2): 267-273
    [157] Trzaska, S. Cisplatin. C & EN News, 2000, 83(25)
    [158] Pruefer, F.G., Lizarraga F., Maldonado V., et al. Participation of omi htra2 serine-protease activity in the apoptosis induced by cisplatin on SW480 colon cancer cells. Journal of Chemotherapy, 2008, 20(3): 348-354
    [159] Stordal, B., Davey, M. Understanding cisplatin resistance using cellular models. IUBMB Life, 2007, 59(11): 696-699
    [160]廖英俊,汤浩,金亚平.抗癌药顺铂对小鼠的耳、肾和肝毒性及其机制的研究.中国药理学通报, 2004, 20(1): 82-85
    [161] Perez, J.M., Fuertes M.A., Alonso C., et al. Current status of the development of trans-platinum antitumor drugs. Critical reviews in oncology/hematology, 2000, 35(2): 109-120
    [162] Nam, S., Smith, D.M., Dou, Q.P. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. Journal of Biological Chemistry, 2001, 276(16): 13322-13330
    [163] Nam, S., Smith, D.M., Dou, Q.P. Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G1 arrest and apoptosis. Cancer Epidemiology Biomarkers and Prevention, 2001, 10(10): 1083-1088
    [164] Dou, Q.P. Lessons learned from art pardee in cell cycle, science, and life. Journal of cellular physiology, 2006, 209(33): 663-669
    [165] Filho, V., Correa R., Vaz, Z., et al. Further studies on analgesic activity of cyclic imides. Farmaco, 1998, 53(1): 55-57
    [166] Rosu, T., Pasculescu, S., Lazar, V., et al. Copper(II) complexes with ligands derived from 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazoline-5-one. Molecules, 2006, 11(11): 904-914
    [167] Turhan-Zitouni, G., Sivaci M., Kilic F.S., et al. Synthesis of some triazolyl-antipyrine derivatives and investigation of analgesic activity. European Journal of Medicinal Chemistry, 2001, 36(7-8): 685-689
    [168] Collen, S.A.J., Everaerts, F.M., Huf, F.A. Characterization of 60Coγ-radiation induced radical products of antipyrine by means of high-performance liquid chromatography, mass spectrometry, capillary zone electrophoresis, micellar electrokinetic capillary chromatography and nuclear magnetic resonance spectrometry. Journal of Chromatography A, 1997, 788: 95-103
    [169] Cunha, S., Oliveira S.M., Rodrigues, M.T., et al. Structural Studies of 4-Aminoantipyrine Derivatives Journal of Molecular Structure, 2005, 752(1-3): 32-39
    [170] Gilman, A.G., Goodman, L.S., Gilman, A. The Pharmacological Basis of Therapeutics. New York, USA: Macmillan, 1980
    [171] Bueger's Medicinal Chemistry and drug discovery. 5th ed., editor: Wolff, M.E., New York, USA: Wiley. 1970
    [172] Chandra, S., Jain, D., Sharma, A.K., et al. Coordination modes of a Schiff base pentadentate derivative of 4-Aminoantipyrine with cobalt(II), nickel(II) and copper(II) metal ions: synthesis, spectroscopic and antimicrobial studies. Molecules, 2009, 14(1): 174-190
    [173] Guo, F., Bi, C.F., Fan, Y.H., et al. Synthesis, crystal structure and antibacterial properties of N-(2-Hydroxy-1-naphthalidene)-4-aminoantipyrine. Asian Journal of Chemistry, 2007, 19(3): 1846-1852
    [174] Raman, N., Raja, S.J., Sakthivel, A. Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives-a review. Journal of Coordination Chemistry, 2009, 62(5): 691-709
    [175]赵剑英. 4-氨基安替比林缩对苯二甲醛双希夫碱的结构优化及其与钴离子作用的光谱研究.淮阴师范学院学报(自然科学版), 2003, 2(3): 207-211
    [176] SHELXTL-97. Program for crystal structure refinement. In: Sheldrick GM, editor: Gottingen (Germany): Univ. of Gottingen. 1997
    [177] Gaussian 03 RB. Gaussian 03. In: G.W.T. M. J. Frisch HBS, G. E. Scuseria, et al., Editors, editor: Gaussian, Inc.,Pittsburgh PA. 2003
    [178] Kohn, W. Density functional theory in 1997. Strongly Coupled Coulomb Syst. Strongly Coupled Coulomb Systems in Proceedings of an International Conference on Strongly Coupled Coulomb Systems. Chestnut Hill, Mass, 1997
    [179] Ma, H.X., Song, J.R., Hu, R.Z. Non-isothermal Kinetics of the Thermal Decomposition of 3-Nitro-1,2,4-triazol-5-one Magnesium Complex. Chinese Journal of Chemistry, 2003, 21(12): 1558-1561
    [180]马海霞,宋纪蓉,徐抗震. 3-硝基-1,2,4-三唑-5-酮二甲胺盐(CH3)2NH2+C2N4O3H-的合成、晶体结构和量子化学研究.化学学报, 2003, 61(11): 1819-1823

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700