用户名: 密码: 验证码:
高导热低膨胀环氧塑封料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电子信息技术飞速发展,对电子产品的小型化、便携化、多功能和高可靠性等提出了越来越高的要求。芯片集成度的迅速增加,必然导致发热量提高,电路的工作温度不断上升。同时,元器件封装成型后,由于材料线膨胀系数不同,成型固化收缩导致封装器件内部产生热应力,将造成强度下降、耐热冲击差、开裂离层等缺陷。此时,开发一种既具有高导热系数、低热膨胀系数又具有良好电学、力学等综合性能的新型封装材料,使电子元器件能在正常的温度范围内稳定地工作就显得非常重要。
     由于塑料封装具有质轻、成本低、成型工艺简单和耐冲击性能好等优点,其使用已占到整个封装材料的95%以上,其中环氧树脂基电子封装材料(简称环氧塑封料)又占塑料封装的90%左右,特别是近年来,国内外新型环氧塑封料的发展非常迅速。在此背景下,本文用固相反应法合成了负热膨胀填料—ZrW_2O_8粉体,与另一种高导热纳米氮化铝填料混杂添加到邻甲酚甲醛线性环氧树脂基体中,制备出一种高导热低膨胀的环氧塑封料。分析比较了ZrW_2O_8粉体和纳米AlN的用量、粒径、配比和表面处理方法等对复合材料热膨胀系数、导热系数、电学性能和弯曲力学性能的影响,结果表明:ZrW_2O_8粉体的大量引入对复合材料热膨胀系数的降低效果明显,纳米AlN粉体的引入可大大提高复合材料的导热系数,混杂添加50%微米级ZrW_2O_8和50%纳米级AlN,可将复合材料的热膨胀系数降低到0.87x10~(-5)/K,是无填料固化体系下的12.0%;同时,材料的导热系数由0.218W·m~(-1)·K~(-1)提高到3.885 W·m~(-1)·K~(-1),变为原来的17.8倍;调整两种填料的用量及配比,可根据不同封装要求在一定范围内制备出一系列可控导热系数和热膨胀系数的高性能电子封装材料。经分析比较各种添加成分用量及配比和工艺方法对所制复合材料综合性能的影响后,得出:混杂添加50%ZrW_2O_8和20%纳米AlN制得的环氧塑封料综合性能相对最好(导热系数为2.083 W·m~(-1)K~(-1),是无填料固化体系下的9.6倍;热膨胀系数为1.25x10~(-5)/K,是无填料固化体系下的17.3%;弯曲强度为168.5 MPa,相比无填料固化体系提高了39.0%),在保证材料具有较好的电学性能和抵抗弯曲歼裂能力前提下,较大程度地提高了环氧塑封料的导热系数,降低了材料的热膨胀系数。
With the rapid development of electronic information technology,multifunctional and high-performance encapsulating materials are required.Especially with the progress of microelectronics industry,heat-producing capability of electronic component increases greatly,leading to the need of electronic packaging materials with high thermal properties.Current encapsulating materials fail to meet the electronic industry requirement because of two main limitations:low thermal conductivity and high thermal expansion coefficient.The large coefficient mismatch of thermal expansion between the substrate and silicon chip would result in too much distortions during the thermal cycling.So it is one of the most important projects for electronic encapsulating materials to improve its thermal conductivity and reduce its thermal expansion coefficient.
     The usage of plastic package in electronic packaging materials accounts for above 95%because of its excellent performances,such as low density,low price,easy molding technology,excellent shock resistance and so on.Among the plastic packaging materials, modem epoxy electronic encapsulating materials have developed rapidly and reached about 90%of the total application in the past few years.Herein,ZrW_2O_8 powders with negative thermal expansion properties prepared via solid-state reaction method,together with high-thermal-conducting nano-A1N powders were used as inorganic fillers and mixed into o-cresol formaldehyde epoxy resin to improve the thermal performance of the resulting composites.Results indicated that the thermal expansion coefficient of the composites was greatly reduced by adding ZrW_2O_8 fillers,and the thermal conductivity was greatly improved with the adding of A1N fillers.The adding of 50% micrometer-ZrW_2O_8 and 50%nano-A1N fillers reduced the thermal expansion coefficient to 0.87×10~(-5)/K,12%of the composites without fillers,and improved the thermal conductivity to 3.885 W·m~(-1)·K~(-1),16.8 times higher than the non-fillers composites.After the comparison of the effects of the fillers sizes and content on the properties of the composites,the author found that the thermal properties of the composites could be adjusted by changing the contents and mixture ratio of the fillers, and the epoxy electronic encapsulating material mixed with 50%ZrW208 and 20% nano-A1N had the most excellent properties(its thermal conductivity is 2.083 W·m~(-1)·K~(-1), thermal expansion coefficient is 1.25x10-5/K,and bending strength is 168.5 MPa).In this material,the thermal conductivity was greatly improved and the thermal expansion coefficient was greatly reduced,while the electrical and mechanical properties were maintained.
引文
[1]Tobias Merkel,Michael Graeber,Lienhard Pagel.A new technology for fluidic microsystems based on PCB technology[J].Sensors and Actuators,1999,77:98-105.
    [2]Yang D G,Jansen K M B,Wang L G et al.Micromechanical modeling of stress evolution induced during cure in a particle-filled electronic packaging polymer[J].IEEE T.Compon.Pack.T.,2004,27(4):676-683.
    [3]Yang D G,Jansen K M B,liang J S et al.Warpagebased optimization of the curing profile for electronic packaging polymers.In:Fifth international conference on electronic packaging technology.Proceedings(IEEE Cat.No.03EX750),2003:345-350.
    [4]Grujicic M,Zhao C L,Dusel E C.The effect of thermal contact resistance on heat management in the electronic packaging[J].Appl.Surf.Sci.,2005,246(1-3):290-302.
    [5]孙守金,张名大.用镀Cu-Fe碳纤维制备的铜基复合材料[J].材料工程,1991(1):21-24.
    [6]郝洪顺,付鹏.电子封装陶瓷基片材料研究现状[J].陶瓷,2007(5):24-27.
    [7]陈仕国,戈甲.川等.聚合物基电子封装复合材料研究进展[J].宁航材料工艺,2007(5):4-7.
    [8]张臣,沈能珏.电子封装材料现状与发展[J].新材料产业,2003(3):5-11.
    [9]谢广超.浅析全球环氧塑封料的发展状况[J].电子与封装,2006,6(8):6-9.
    [10]杨士勇.高性能聚酰亚胺材料在MCM-D中的应用[J].半导体技术,1998,23(6):41-45.
    [11]杨文彬,芦艾等.聚苯硫醚的纯化研究进展[J].现代化工,2007,27(1):126-130.
    [12]郭岳,余自立等.电子封装用聚苯硫醚高性能复合材料的研制[J].功能材料,2006,37(3):402-404.
    [13]余自力,郭岳等.高性能聚苯硫醚电子封装材料[J].化丁新型材料,2005,33(4):10-12
    [14]Huntsman A,Huntsman A H.Study on dielectric properties of a new polyimide film suitable for interlayer dielectric material in microelectronics applications[J].Microelectronics Journal,2000,31:629-634.
    [15]Xu J M.Plastic electronics and future trends in microelectronics[J].Synthetic Metals,2000,115:1-3.
    [16]Rimouski S,Ishida H.Development of new class of electronic packaging materials based on ternary systems of benzoxazine,epoxy,and phenol resins[J].Polymer,2000,41:7941-7949.
    [17]李晓云,张之圣等.环氧树脂在电子封装中的应用及发展方向[J].电子元件与材料,2003(2):36-37.
    [18]阳范文,赵耀明.电子封装用环氧树脂的研究现状与发展趋势[J].电子工艺技术,2001,22(6):238-241.
    [19]成晓情,刘丽等.一种低黏度高热可靠性苯并噁嗪电子封装材料[J].热固性树脂,2006,21(3):22-24.
    [20]洪晓斌,谢凯等.有机硅改性双酚F环氧树脂热性能研究[J].热固性树脂,2007,22(2):7-15.
    [21]林艳芬,李国明.互穿网络聚合物的研究进展[J].广州化工,2006,34(4):16-18.
    [22]冯海波,卿宁.聚氨酯互穿网络结构聚合物研究进展及其应用[J].皮革化工,2004,21(3):4-9.
    [23]Jia Q M,Zheng M,Chen H X,et al.Synthesis and characterization of polyurethane/epoxy interpenetrating network nano-composites with organoclays[J].Polymer Bull,2005,54(1):65-68.
    [24]Hong Shinn Gwo,Chart Chau Kai.The curing behaviors of the epoxy/dicyanamide system modified with epoxidized natural rubber[J].Thermochimica Acta,2004,417(1):99-101.
    [25]Mimura K,Ito H,Fujioka H.Toughening of epoxy resin modified with in situ polymerized thermoplastic polymers[J].Polymer,2001,42(22):9223-9227.
    [26]穆志远,苏义华.耐开裂环氧灌封料的研究进展[J].化学工程师,2007,143(8):36-39.
    [27]苏宪君等.超细硅微粉在塑料、橡胶及涂料中的应用[J].中国粉体技术,2003(5):43-45.
    [28]李春彬等.环氧树脂浇注开裂性研究[J].上海大中型电机,2003(4):14-16.
    [29]谢广超等.封装树脂用添充剂的研究[J].电子与封装,2006,6(5):9-11.
    [30]Li Haiying,Jacob K I,Wang C P.An improvement of thermal conductivity of under fill material for flip-chip packages[J].IEEE Trans on Advanced Packaging,2003,26(1):25-32.
    [31]哈恩华,寇开昌等.原位聚合法制备环氧树脂/纳米SiO_2灌封材料的性能研究[J].材料工程,2005(8):32-34
    [32]余志伟等.粉石英在环氧树脂封装材料中的应用[J].非金属矿,2002,25(2):32-34.
    [33]赵敏,高俊刚等.纳米有机蒙脱土改性邻甲酚醛环氧树脂的研究[J].粘接,2005,26(1):9-11.
    [34]哈恩华,寇开昌等.插层聚合制备环氧树脂/蒙脱土灌封材料的研究[J].化工进展,2004,23(4):385-396.
    [35]王立新,张福强等.环氧树脂/粘土纳米复合材料的合成与表征[J].河北工业大学学报,1999,28(1):20-23.
    [36]王立新,蹇锡高等.环氧树脂/蒙脱石纳米复合材料制备与形成机理[J].大连理工大学学报,2000,40(6):681-684.
    [37]张洁,王炜.氮化铝颗粒增强聚合物基板材料的制备及介电性能研究[J].航空材料学报,2006,26(3):341-342.
    [38]刘庆华等.超细AIN填充环氧树脂热性能研究[J].传感器技术,2005,24(11):36-38.
    [39]甘文君等.电子元气件封装材料的研制[J].上海工程技术大学学报,2001,15(2):150-153.
    [40]闵新民,安继明.聚合物基纳米复合材料热导率计算[J].武汉理工大学学报,2007,29(7):26-29.
    [41]简本成等.氧化铝填料性能对环氧树脂浇注制品性能的影响[J].现代技术陶瓷,2004(1):18-20.
    [42]邹德荣等.环氧树脂/低分子聚酰胺密封剂研制与应用[J].化学建材,2004(2):43-45.
    [43]陈名华,姚武文等.纳米T102对环氧树脂胶粘剂性能影响的研究[J].粘接,2004,25(6):12-15.
    [44]郑立胜,李远才.环氧复合材料用微波同化技术及其展望[J].玻璃钢/复合材料,2006(3):53-56.
    [45]张远方,刘学清等.微波固化环氧树脂/氨基二苯醚树脂的耐热性能研究[J].中国塑料,2005,19(1):18-21.
    [46]丁涛,葛杏心等.微波固化的环氧/酚封端聚氨酯相结构及相容性研究[J].绝缘材料,2006,39(5):33-39.
    [47]刘学清,王源升.微波同化环氧树脂/SiO_2复合材料及其性能的研究[J].热固性树脂,2003,18(2):8-11.
    [48]刘学清等.微波固化环氧树脂(E44/DDM)的热性能及膨胀性能[J].高分子材料科学与工程,2004,20(3):111-117.
    [49]黄道生等.环氧树脂灌封料及其工艺和常见问题[J].电子与封装,2007,7(3):1-3.
    [50]孙曼灵.环氧树脂应用原理与技术[M].第一版.北京:机械工业出版社,2002.
    [51]王德中.环氧树脂生产与应用[M].第二版.北京:化学工业出版社,2001.
    [52]陈平,王德中.环氧树脂及其应用[M].第一版.北京:化学工业出版社,2004.
    [53]Yilmaz S,Dunand D C.Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu/ZrW_2O_8 composite[J].Comp.Sci.Tech.,2004,(64):1895-1898.
    [54]Eiki Niwa,Shuhji Wakamiko,Takaaki Ichikawa et al.Preparation of dense ZrO_2/ZrW_2O_8 cosintered ceramics with controlled thermal expansion coefficients[J].Jap.Ceram.Soc.,2004,112(5):271-275.
    [55]Lommens P,Meyer C De,Bruneel K De,I Van Driessche,S Hoste.Synthesis and thermal expansion of ZrO_2/ZrW_2O_8 composites[J].Eur.Ceram.Soc.,2005,25:3605-3610.
    [56]Jason N,Hancock,Chandra Yurpen,Zack Schlesinger.Unusual low-energy phonon dynamics in the negative thermal expansion compound ZrW_2O_8[J].Phys.Rev.Letters.,2004(26):225501-225503.
    [57]Cao F,Bridges G R,Kowach A P.Ramirez.Frustrated soft modes and negative thermal expansion in ZrW_2O_8[J].Phys.Rev.Letters.,2002(21):215902-215904.
    [58]Cao F,Bridges G R,Kowach et al.Correlated atomic motions in the negative thermal expansion material ZrW_2O_8:A local structure study[J].Physical Review B.,2003(68):14303-14305.
    [59]De Buysser,Klaartje Lommens P,De Meyer C et al.ZrO_2/ZrW_2O_8 composites with tailor-made thermal expansion[J].Ceram Silikaty,2004,48:139-144.
    [60]Lisa M S,Charles M L.Zirconium tungstate ZrW_2O_8/polyimide nano-composites exhibiting reduced coefficient of thermal expansion[J].Chem.Mater.,2005(17):2136-2141.
    [61]高菊,金戈等.端羧酸丁腈橡胶环氧基酯增韧剂的合成与应用[J].热固性树脂,2005,20(5):21-23.
    [62]李振华,曹有名等.丁腈橡胶胶粘剂的研究进展[J].中国胶粘剂,2007,16(4):48-56.
    [63]李志民,刘文西等.环氧胶粘剂增韧改性剂[J].中国胶粘剂,2003,12(5):46-51.
    [64]李芝华,丑纪能等.弹性体增韧环氧树脂研究进展[J].广州化学,2007,32(2):73-78.
    [65]苏航,魏伯荣等.橡胶增韧环氧树脂的研究[J].中国胶粘剂,2007,16(11):4-7.
    [66]卢少杰等.橡胶增韧环氧树脂低温韧性的研究[J].中国胶粘剂,2003,12(6):5-7.
    [67]Ramos Valeria D,Da Costa Helson M,Soares Vera L Pet al.Modification of epoxy resin:comparison of different types of elastomer[J].Polymer Testing,2005,24(3):387-394.
    [68]Glen R Kowach et al.Growth of single crystals of ZrW_2O_8[J].Crystal Growth,2000(212):167-172.
    [69]马德柱,何平笙等.高聚物的结构与性能[M].第二版.北京:科学出版社,1999.
    [70]何曼君等.高分子物理[M].第二版.上海:复旦大学出版社,2007.
    [71]黄文霖,单国荣.双酚A及端羧基丁腈橡胶对环氧树脂的增韧作用[J].合成橡胶 工业,2007,30(2):119-123.
    [72]苏航,魏伯荣.橡胶增韧环氧树脂的研究[J].中国胶粘剂,2007,16(11):4-7.
    [73]T Hashimoto,J Kuwahara,T Yoshida et al.Thermal conductivity of negativethermal-expansion oxide,Zr_(1-x)Y_xW_2O_8(x=0.00-0.01)—temperature dependence and effect of structural phase transition[J].Solid State Communications,2004(131):217-221.
    [74]李侃社,王琪.聚合物复合材料导热性能的研究[J].高分子材料科学与工程,2002,18(4):10-14.
    [75]Lopes C M A,Felisberti M I.Thermal conductivity of PET/LDPE/A1 composites determined by MDSC[J].Polymer Test,2004,23(6):637-643.
    [76]Xu Y,Chung D L,Mroz C.Thermally conducting aluminum nitride polymer matrix composites[J].Compos.Part.Appl.,2001,32(12):1749-1757.
    [77]奄尔斯A哈珀.电子封装材料与工艺[M].第一版.北京:化学工业出版社,2006.
    [78]刘建科等.分形介质中导热问题中的卢子的作用[J].陕西科技大学学报,2003,21(5):49-52.
    [79]周文英,齐暑华等.导热硅橡胶复合材料研究[J].航空材料学报,2007,27(1):33-36.
    [80]肖忠柏等.纳米粒子对环氧树脂的增韧改性研究[J].胶体与聚合物,2006,24(2):34-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700