用户名: 密码: 验证码:
低膨胀系数电子封装材料ZrW_2O_8/E-51的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧树脂具有良好的粘着性、电绝缘性、耐湿性、化学稳定性和电学性能,从而在电子封装领域得到广泛的应用,约占整个塑料封装90%左右。器件和集成电路用环氧树脂封装成型后,由于器件和封装材料线膨胀系数的差异,成型固化收缩导致封装材料器件内部产生热应力,造成强度下降、耐热冲击性降低、老化开裂、封装裂纹、空洞、钝化和离层等各种缺陷。近年来材料学家发现多种负热膨胀(Negative Thermal Expansion,NTE)材料,其中以立方晶体结构的ZrW_2O_8为代表,具有各向同性负热膨胀效应,在较宽的温度区间内(0.3K~1050K),具有基本恒定的负热膨胀系数。本文以分析纯ZrO_2和WO_3为原料,采用固相分步法制备负热膨胀材料ZrW_2O_8粉体,利用其负热膨胀的特性,以ZrW_2O_8粉体作为填料,在不同填料比例下,采用钛酸三异丙醇叔胺酯(706)作为固化剂,2.4.6-三(二甲胺基甲基)苯酚(DMP-30)作为促进剂,制备ZrW_2O_8/E-51和SiO_2/E-51电子封装材料,并对所制备封装材料的组织、结构、性能及动力学进行了研究分析。
     对固相化学分步法合成的ZrW_2O_8粉体,采用扫描电镜SEM、XRD、变温XRD分析,结果表明ZrW_2O_8粉体的粒径介于0.5~1μm之间,纯度高;在20℃~700℃的区间内,平均线膨胀系数为-5.33ppm/K,具有负热膨胀特性。
     SEM分析表明,超声波处理能使SiO_2和ZrW_2O_8粉体均匀分散在环氧树脂E-51基体中。采用DSC分析材料的玻璃化转变温度,结果表明在相同添加量下,SiO_2/E-51的玻璃化转变温度与ZrW_2O_8/E-51相当;随着ZrW_2O_8颗粒填充量的增加,ZrW_2O_8/E-51材料的玻璃化转变温度随之提高,当ZrW_2O_8以质量比1:1填充E-51时,玻璃化转变温度达到147.87℃。填料的加入大幅度的降低了环氧树脂封装材料的线膨胀系数,由于ZrW_2O_8颗粒的负热膨胀特性,相同添加量下,ZrW_2O_8/E-51体系较SiO_2/E-51体系线膨胀系数下降了14.5%,随着ZrW_2O_8添加量的提高,ZrW_2O_8/E-51封装材料的线膨胀系数进一步降低。
     相同填充量下,ZrW_2O_8/E-51的介电常数高于SiO_2/E-51,介质损耗更低;随ZrW_2O_8含量的增加,ZrW_2O_8/E-51材料的介电常数ε_r不断提高,介质损耗不断下降。当ZrW_2O_8与E-51的质量比为0.7:1时,封装材料的介电常数达到最大;当ZrW_2O_8与E-51的质量比为1:1时,封装材料的介电常数有所下降。阻温特性表明在室温~163℃范围内,ZrW_2O_8/E-51材料的体积电阻率稳定在3.03×10~6Ω·m,较SiO_2/E-51材料提高了10%左右。室温下,ZrW_2O_8/E-51及SiO_2/E-51电子封装材料击穿场强均大于10KV/m,满足微电子器件封装材料的实际应用。
     相同填充量下,ZrW_2O_8/E-51的力学性能优于SiO_2/E-51。当ZrW_2O_8以质量比1:1填充E-51时,ZrW_2O_8/E-51的拉伸、弯曲强度分别达到99MPa、158MPa,较1:2填充E-51时增加了15%、13.9%。SiO_2/E-51及ZrW_2O_8/E-51封装材料的显微硬度较纯环氧树脂有所提高。当ZrW_2O_8填充量增加时,ZrW_2O_8/E-51的硬度也随之增加,加入量增加到一定程度后,表面硬度略有下降。ZrW_2O_8粉体填充环氧树脂,材料耐酸性得到提高。当ZrW_2O_8与E-51按照质量比0.7:1混合时,固化物的耐湿性较好。ZrW_2O_8/E-51材料的磨损性能优于SiO_2/E-51材料,在水润滑条件下,磨损系数和磨损率与干磨损相比大幅度下降;随着试验时间的增加,磨痕宽度变宽,磨痕的表面形貌越粗糙,比磨损率越来越小。
     采用动态DSC分析,研究了E-51封装体系反应固化动力学,根据Kissinger方程和Crane方程计算出SiO_2/E-51/706及ZrW_2O_8/E-51/706两体系的的表观活化能△E分别为:83.2KJ/mol和70.6KJ/mol,反应级数n分别为:0.9236和0.9234,确定了两体系的反应速率常数K。
Epoxy resin has been wisely used in electronic packaging industries due to its ease of processing, low cost, excellent heat, moisture, and chemical resistance, superior electrical and mechanical properties, and good adhesion to many substrates. However, current organic based board materials such as epoxy resins are not suitable to meet the electronic industry requirement because of two main limitations; lack of board dimensional control because of war-page and distortion during the thermal cycling and the large coefficient of thermal expansion (CTE) mismatch between the substrate and silicon chip leading to solder joint failures. Upon cured, this multifunctional epoxy resin provides a densely crosslink protective layer; however, because of the difference in linear expansion coefficient between filler and epoxy resin, some imperfections are bora to molding compounds during curing, such as point defect, bulk, season cracking, etc.
     Negative thermal expansion (NET) materials have received considerable attention during the last decade. Cubic zirconium tungstate, ZrW_2O_8, has been used as an additive to control the thermal expansion properties of composite materials due to its relatively large isotropic, negative thermal expansion. Admixture of ZrW_2O_8 into cement, polyester, or epoxy polymers make composites exhibiting reduced thermal expansion properties. This article reported the synthesis of ZrW_2O_8 by solid-state reaction using chemical synthetic ZrO_2 and WO_3 as starting materials, and the fabrication of ZrW_2O_8/epoxy resin (E-51) polyimide electronic packaging materials in which the embedded filler particles appear to be in close contact with the polymer phase.
     Adopting High-low temperature diffraction and the Powder X software calculation, the average linear expansion coefficient of ZrW_2O_8 particle was about -5.02×10ppm/℃. Sample of SEM imaging showed the average particle diameter of ZrW_2O_8 synthesized by solid-state reaction was about 0.5~1μm.
     Compared with SiO_2/E-51 composites, ZrW_2O_8/E-51 has the better tensile strength, flexural strength and anti-acid property. With more ZrW_2O_8 content, ZrW_2O_8/E-51 composites showed a decline in linear expansion coefficient and an increase in the mic-hardness. The results show that, with more ZrW_2O_8 content, the dielectric constant of ZrW_2O_8/E-51 increase, whereas the dielectric loss decline gradually. During room temperature and 163℃, ZrW_2O_8/E-51 composites show a steady bulk resistivity about 3.03×106Ω·m, and its breakdown field strength is in excess of 10KV/m, which is available to industry application. The wear mechanism of packaging materials of epoxy resin is adherence abrasion and abrasive wear. However, the moisture absorption rate and anti-alkali property were worse than those of SiO_2/E-51 composites.
     Differential scanning calorimetric (DSC), Kissinger equation and Ozawa equation were employed to detect the kinetics of co-curing system. The apparent reactive activation energy (ΔE) of SiO_2/E-51/706 and ZrW_2O_8/E-51/706 was 83.2 KJ/mol and 70.6 KJ/mol, respectively. Also the velocity constant of the two reactions were measured.
引文
[1] Mary T.A., Evans J. S. O., Vogt T. and Sleight A.W. Negative thermal expansion from 0. 3 to1050 Kelvin in ZrW_2O_8. Science, 1996,272:90-92.
    
    [2] Alexandra K A Pryde, Kenton D Hammonds, Martin T Dove, et al. Origin of the negativethermal expansion in ZrW_2O_8 and ZrV_2O_7. J. Phys. Condens. Matter. 1996(8): 10973-10982.
    
    [3] Jason N. Hancock, Chandra Turpen, Zack Schlesinger. Unusual low-energy phonon dynamicsin the negative thermal expansion compound ZrW_2O_8. Phys. Rev. Letters. 2004(26): 225501.
    
    [4] D. Cao, F. Bridges, G. R. Kowach, A. P. Ramirez. Frustrated soft modes and negative thermalexpansion in ZrW_2O_8. Phys. Rev. Letters. 2002(21): 215902.
    
    [5] D. Cao, F. Bridges, G R. Kowach, et al. Correlated atomic motions in the negative thermalexpansion material ZrW_2O_8: A local structure study. Physical Review B. 2003(68): 14303.
    
    [6] Sleight A.W. Isotropic Negative Thermal Expansion. Annu. Rev. Mater. Sci., 1998,28:29-43.
    
    [7] Evans J. S. O., David W. I. F and Sleight A.W. Acta. Cryst, Sect. B: Struct. Sci., 1999,55:333-340
    
    [8] Evans J. S. O., Mary T. A., Vogt T. and Sleight A.W. Negative thermal expansion in ZrW_2O_8and HfW_2O_8. Chem. Mater., 1996, 8:2809-2823.
    
    [9] Evans J. S. O., Hu Z., Jorgensen J. D., Argyriou D. N., Short S. and Sleight A.W.Compressibility, Phase Transitions, and Oxygen Migration in Zirconium Tungstate, ZrW_2O_8.Science, 1997,275:61-65.
    
    [10]李钢,姚杰,王克宇,周耀明,张宇.一种负热膨胀性材料的物相结构分析.南京师大学 报(自然科学版),2000,23(1):56-59.
    
    [11]沈容,王聪,王天民.“负热膨胀”氧化物材料ZrW_2O_8的研究进展.无机材料学报,2002, 17(6):1089-1094.
    
    [12]程晓农,孙秀娟,杨娟,徐桂芳.固相法合成负热膨胀性粉体ZrW_2O_8.江苏大学学报(自 然科学版),2005,26(4):350-353.
    
    [13]孔向阳,吴建生,曾振鹏.ZrW_2O_8微波合成、表征及负膨胀行为研究.硅酸盐学报,1999, 27(3):265-269.
    
    [14]沈容,王天民,白海龙等.共沉淀法合成负热膨胀材料ZrW_2O_8.材料工程,2003,3:3-6.
    
    [15]孙秀娟,杨娟,刘芹芹,程晓农.共沉淀法制备负热膨胀性ZrW_2O_8粉体及其粒径控制初 探.无机化学学报,2005,9:1412-1416.
    
    [16]邢奇凤,邢献然,杜凌等.水热法合成负热膨胀材料ZrW_2O_8.金属学报,2005(6):669-672
    
    [17] U. Kameswari, Sleight A.W., Evans J. S. O. Rapid synthesis of ZrW_2O_8 and related phases andStructure refinement of ZrWMoOg. Int .J .Inorganic Materials, 2000,2:333-337.
    
    [18] Oralind, Angus. P. Wilkinson. Seeding and the Non-Hydrolytic Sol-Gel Synthesis of ZrW_2O_8??and ZrMo_2O_8. J. Sol-Gel Sci. and Tech. 2002(25): 51-56
    
    [19] Qifeng Xing, Xianran Xing, Ranbo Yua, et al. Single crystal growth of ZrW_2O_8 byhydrothermal route. J. Crystal Growth. 2005(283): 208-214.
    
    [20] De Meyer C, Van. Driessche, I. and Hoste, S. Synthesis of the negative thermal expansioncompound ZrW_2O_8 by the spray drying technique. Key Eng. Mater., 2002,11:206-213.
    
    [21] Glen R.Xowach. Growth of single crystals of ZrW_2O_8. J. Crystal Growth. 2000(212): 167-172
    
    [22] F. R. Drymiotis, H. Ledbetter, J. B. Berts et al. Monocrystal elastic constants of the negativethermal expansion compound zirconium tungstate (ZrW_2O_8). Phy. Rev. Letters. 2004(2):25502.
    
    [23] Yilmaz S., Dunand D. C. Finite-element analysis of thermal expansion and thermal mismatchstresses in a Cu60vol%-ZrW_2O_8 composite. Comp. Sci. Tech., 2004,64:1895-1898.
    
    [24] Holzer. H and Dunand D. C. Phase transformation and thermal expansion of Cu/ ZrW_2O_8. J.Mater. Res., 1999,14(3): 780-789.
    
    [25] Yilmaz S. Thermal mismatch stress development in Cu-ZrW_2O_8 composite investigated bysynchrotron X-ray diffraction. Comp. Sci. Technol. 2002,62:1835-1839.
    
    [26] Matsumoto A., Kobayashi K., Nishio T and Ozaki K. Fabrication and thermal expansion ofAl-ZrW_2O_8 composites by pulse current sintering. Mater. Sci. Forum. 2003,426(4): 2279.
    
    [27] Eiki Niwa, Shuhji Wakamiko, Takaaki Ichikawa, et.al. Preparation of dense ZrO_2/ZrW_2O_8cosintered ceramics with controlled thermal expansion coefficients. J. Jap. Ceram. Soc. 2004,112(5): 271-275.
    
    [28] Lommens. P., Meyer C. De, Bruneel K. De, I. Van Driessche, S. Hoste. Synthesis and thermalexpansion of ZrO_2/ZrW_2O_8 composites. J. Eur. Ceram. Soc, 2005,25: 3605-3610.
    
    [29] De Buysser, Klaartje, Lommens, P., De Meyer, C. Bruneel, Els; Hoste, Serge; Van Driessche,Isabel. ZrO_2-ZrW_2O_8 composites with tailor-made thermal expansion. Ceram Silikaty, 2004 ,48: 139-144.
    
    [30]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1998,P_(119)-P_(130).
    
    [31] J. Graham, A.D. Wadsley, J. H. Weymouth, etal. J. Am. Ceram. Soc, 1959,42: 570.
    
    [32] Martinek C, Hummel F.A. J Am. Ceram. Soc, 1968,51:227-228.
    
    [33] Chang, L. L. Y, Scrober, M.G and Phillips, B. Condensed phase relations in the systems ZrO_2- WO_2 - WO_3 and HfO_2 - WO_2 - WO_3. J. Am. Ceram. Soc, 50 (1967) 211-216.
    
    [34] Kofteros M., Rodriguez S., Tandon V, Murr L.E. A preliminary study of thermal expansioncompensation in cement by ZrW_2O_8 additions. Scripta. Materialia, 2001,45: 369-374.
    
    [35] Lisa. M. S. and Charles M. L. Zirconium Tungstate (ZrW_2O_8)/Polyimide NanocompositesExhibiting Reduced Coefficient of Thermal Expansion. Chem. Mater., 2005,17:2136-2141.
    
    [36] J. D. Shi, Z. J. Pu, K. H. Wu et al. Composite materials with adjustable thermal expansion forelectronic applications. Materials Research Society Symposium Proceedings. 1997(445):229-234.
    
    [37]阳范文,赵耀明.电子封装用环氧树脂的研究现状与发展趋势.电子工艺技术,2001,11: 238
    
    [38]陈平 王德中《环氧树脂及应用》,化学工业出版社,2004.2
    
    [39]孙勤良,环氧树脂在封装材料中的应用概况,热固性树脂,Vol15,Nol,2000,p47-51
    
    [40]哈恩华 寇开昌 陈立新,环氧灌封材料的研究进展,化工进展,Vol22Nol0,2003, P1057-1060
    
    [41]成兴明,环氧模塑料性能及其发展趋势半导体技术,Vol29Nol 2004.1,p40-45
    
    [42] I. Glavchev, K. Petrova, I. Devedjiev, Determination of the rate of cure of epoxy resin/maleicanhydride/Lewis acids, Polymer Testing 21 (2002), p89-91
    
    [43] P. Punchaipetch, V. Ambrogi, M. Giamberini, Epoxy +liquid crystalline epoxy coreactednetworks: I. Synthesis and curing kinetics, Polymer 42 (2001), p2067-2075
    
    [44]杨霜 孙康 吴人洁,E-51固化体系的研究,玻璃钢/复合材料,2002.3 p32-35
    
    [45]伍敏扬,日本封装材料用环氧树脂动向,化工新型材料,Vol27,P22-25
    
    [46] Kim G G, Kim J H, Kang J A, et al. Study on the pretreatment method of glass-epoxy resin inthe presence of TiO_2 sol prepared by hydrothermal method. Catalysis Communications 2007,8:861
    
    [47] Ramajo L, Reboredo M, Castro M. Dielectric response and relaxation phenomena incomposites of epoxy resin with BaTiO3 particles. Composites:Part A,2005,36:1267
    
    [48] Cho S D, Lee J Y, Hyun J G, et al. Study on epoxy/BaTiO3 composite embedded capacitorfilms (ECFs) for organic substrate applications. Materials Science and Eegineering B2004,110:233
    
    [49]寇开昌 陈立新.环氧灌封材料的研究进展.化工新型材料,2003,22(10):1057
    
    [50] Li H Y , Zhang Z S , Ma X F,et al. Synthesis and characterization of epoxy resin modified with nano-SiO2 and y-glycidoxypropyltrimethoxy silane. Surface and Coatings Technology,2005,4:423
    
    [51]简本成,陈燕.氧化铝填料性能对环氧树脂浇注制品性能的影响.现代技术陶瓷.2004,1: 18
    
    [52] Zen X H, Fan H Q, Zhang J. Modeling the Al_2O_3 particle-polymer composites for the packingof the shock-ware pulsed transducer. Sensors and Actuators A 2006,1:9
    
    [53] Zhou T L, Gu M Y, Jin Y P, et al. Effects of nano-sized carborundum particles and aminosilane coupling agent on the cure reaction kinetics of DGEBA/EMI-2,4 system..Polymer,2005,46:6216
    
    [54] Chisholm N, Mahfuz H, Vijaya K, et al. Fabrication and mechanical characterization ofcarbon/SiC-epoxy Nanocomposites. Composite Structures 2005,67:115
    
    [55] Teh P L, Mariatti M, Akil H M, et al. The properties of epoxy resin coated silica fillerscomposites. Materials Letters 2006,1:3
    
    [56] Zhang X H, Xu W J, Xia X N, et al. Toughening of cycloaliphatic epoxy resin by nanosize??silicon dioxide. Materials Letters,2006,60:3319
    
    [57]景晓燕,李晓东,催向红.填料在环氧树脂浇注料中的应用.化学工程师,2004,11:11
    
    [58] Wang J J, Yi X S. Effects of interfacial thermal barrier resistance and particle shape and sizeon the thermal conductivity of AlN/PI composites. Composites Science and Technology,2004,64:1623
    
    [59] Xie S H, Zhu B K, Li J B, et al. Preparation and properties of polyimide/aluminum nitridecomposites. Polymer Testing,2004,23: 797
    
    [60] Goyal R K, Negi Y S, Tiwari A N. Preparation of high performance composites based onaluminum nitride/poly(ether-ether-ketone) and their properties. European Polymer Journal,2005,41:2034
    
    [61] Pezzotti G, Kamada I, Miki S. Thermal conductivity of AlN/polystyrene interpenetratingnetworks. Journal of the European Ceramic Society, 2000,20:1197
    
    [62]李庆华,李亚东.超细AlN填充环氧树脂热性能研究.传感器技术,2005,24:36
    
    [63] Hsiue G H, Wei H F, Shiao S J, et al. Chemical modification of dicyclopentadiene-basedepoxy resins to improve compatiliblity and thermal properties. Polymer Degradation andStability,2001,73:309
    
    [64] Han S O , Lawrence T D.Curing characteristics of carboxyl functionalized glucose resin andepoxy resin. European Polymer, 2003,39:1377
    
    [65] Kim G G, Kang J A, Kim J H, et al. Metallization of polymer through a novel surfacemodification applying a photocatalytic reaction. Surface and Coatings Technology, 2006:4862.
    
    [66] Frohlich J, Kautz H, Thomann R, et al. Reactive core/shell type hyperhbranchedblockcopolyethers as new liquid rubbers for epoxy toughening. Polymer, 2004,45:2155
    
    [67] Xu K, Chen M C, Zhang K,et al. Syntheses and characterization of novel epoxy resin bearingnaphthyl and limonene moieties, and its cured polymer. Polymer ,2004,45:1133
    
    [68]马德柱,何平笙,徐种德等.《高聚物的机构与性能》[M],科学出版社,2000.
    
    [69]张明艳 孙婷婷 张晓虹等,蒙脱土改性环氧树脂复合材料的制备及性能研究[J],电工技 术学报,2006,21(4):29-34.
    
    [70]何曼君,陈维孝,董西侠.高分子物理[M],复旦大学出版社,2001.
    
    [71]杨晓军 杨志民 毛昌辉等.高介电常数EP/BT复合材料介电性能的研究[J].化工新型材 料,2006.34(12):27-30.
    
    [72]纪秋龙,章明秋,容敏智.纳米碳化硅填充环氧树脂复合材料的摩擦磨损特性[J].复合材料 学报,2004,21(6):14-20
    
    [73]石光,章明秋,容敏智等.纳米Al_2O_3填充环氧树脂复合材料的摩擦学性能[J].摩擦学学 报,2003,23(3):211-215
    
    [74]王世凯,陈晓红,宋怀河等.多壁碳纳米管/环氧树脂纳米复合材料的摩擦磨损性能研究[J].??摩擦学学报,2004,24(5):387-39
    
    [75]刘振海,《热分析导论》,化学工业出版社,1990,51-77
    
    [76] Alessia Catalani and Maria Grazia Bonicelli, Kinetics of the curing reaction of a diglycidylether of bisphenol A with a modified polyamine, Thermochimica Acta, Volume 438, Issues1-2,1 November 2005, Pages 126-129
    
    [77] Sacher E. Kinetics of epoxy cure:3.Systems bisphenol-A epoxieds/dicy[J]. Polymer 1973,14:91-95
    
    [78] Liu Yanfang, Zhao Min, Shen 5higang. Curing kinetics, thermal property and stability oftetrabromo-bisphenol-A epoxy resin with 4, 4'-dianunodiphenyl ether[J].J Appl PolymSci,1998,70:1991-2000
    
    [79] Prime R.B. Thermal Characterization of Polymer Materials[J]. E.A.Ed, Newyork,1981:Chapter SDifferent scanning calorimetry of the epoxy cure reaction[J] .PolymerEngineering&Science, 1973,13 (5): 365-371
    
    [80]葛建芳,茅素芬.钦酸脂催化环氧树脂固化动力学研究[J].高分子材料科学与工程,1992,8 (2):20-26
    
    [81] Lu M.G, Shim M, Kim S.W. Effect of filler on cure behavior of an epoxy system:cure modeling. Polymer Engineering&Science, 1999,39 (2): 274-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700