用户名: 密码: 验证码:
电子封装用可控热膨胀复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负热膨胀(Negative thermal expansion简称NTE)材料是近年来兴起的一个研究热点,其中的ZrW_2O_8由于负热膨胀温度范围宽(-273-777℃)、热膨胀系数小(-8.9×10~(-6)K~(-1))且各向同性而备受关注。该材料及其复合材料在微电子、微机械、光学、医用材料、低温传感器、热电偶及日常生活等方面有巨大的潜在应用价值。
     根据ZrW_2O_8常温下亚稳态、在770℃分解的特性,选择其与环氧树脂、ZrO_2、Cu复合制备可控热膨胀电子封装用复合材料,并对所制备复合材性能作了基础性探讨。
     采用固相化学分步法合成了粒径介于0.5-1μm、平均线膨胀系数为-5.33×10~(-6)/K的高纯度ZrW_2O_8粉体。将ZrW_2O_8粉体与环氧树脂(E-51)复合制备了电子封装材料,采用超声波处理能提高粉体在基体中的均匀性;增大ZrW_2O_8粉体在复合材料中的比例能提高玻璃化转变温度、降低线膨胀系数与介质损耗、但介电常数增加;阻温特性表明在室温-163℃范围内,E-51/ZrW_2O_8复合材料的电阻率稳定在3.03×10~6Ω·m;室温下,封装材料击穿场强均大于10KV/m,满足于微电子器件封装材料的实际应用。
     E-51/ZrW_2O_8封装材料的拉伸、弯曲强度、显微硬度随ZrW_2O_8含量得到增加而增大,当E-51:ZrW_2O_8=1:1时封装材料的拉伸、弯曲强度分别达到99MPa、158MPa,而显微硬度则在E-51:ZrW_2O_8=1:0.7时达到了最佳;所制备的封装材料耐湿性较好。
     以分析纯ZrO_2、WO_3为原料,采用分步焙烧-原位反应固相法合成不同比例ZrO_2-ZrW_2O_8复合材料,此法能在1125-1200℃之间经6小时烧结合成高纯度ZrO_2/ZrW_2O_8复合材料。与直接原位反应固相法相比,降低了合成温度和反应时间,减小样品的颗粒尺寸。当复合材料中含25wt%ZrW_2O_8时,在30-600℃的平均热膨胀系数为0.2153×10~(-6)K~(-1),近似为零。添加0.5wt%Al_2O_3可以提高ZrO_2/25wt%ZrW_2O_8复合材料的致密度,达到理论致密度的96.1%。以分析纯[ZrO(NO_3)_2·5H_2O]和[H_(40)N_(10)O_(41)W_(12)·xH_2O]为原料,采用化学共沉淀法合成不同比例的ZrO_2/ZrW_2O_8复合材料,此法在1150℃烧结2h得到结晶完全、颗粒细小的ZrO_2/ZrW_2O_8复合材料,且有效提高两物相混合均匀度和样品的致密度。随着烧结时间的延长,ZrO_2/ZrW_2O_8陶瓷的结晶越来越致密化,但颗粒相应增大。随着ZrW_2O_8质量分数增加,复合材料的热膨胀系数减小,其中ZrO_2/26wt%ZrW_2O_8复合材料在30-600℃的平均热膨胀系数为-0.5897×10~(-6)K~(-1),近似为零。添加0.3wt%Al(NO_3)_3·9H_2O使得ZrO_2/26wt%ZrW_2O_8复合材料致密度提高到理论致密度的98.67%。Al_2O_3促进烧结的机理可以归结于晶界形成的低熔点液相物质Al_2(WO_4)_3,起着消除气孔促进致密化的作用。
     固相法和化学共沉淀法合成的近零膨胀ZrO_2/ZrW_2O_8复合材料的介电常数≥11.61,其介电损耗正切值在10~(-2)-10~(-1)之间,维氏硬度≥453HV,加入适量烧结助剂后可以提高复合材料的性能。机械混合法制备的ZrO_2/ZrW_2O_8复合材料体积电阻率100-500℃内表现出较强的电阻负温度变化效应,变化的幅度达到3-5个数量级;室温下近零膨胀ZrO_2/ZrW_2O_8复合材料的导热系数为14.11W/(m·K),随温度的升高,导热系数呈下降趋势。
     在超声波的辅助作用下,采用化学镀的方法在ZrW_2O_8颗粒表面进行金属Cu的包覆,用X射线衍射仪(XRD)确定复合粉体的物相组成,用扫描电镜(SEM)观察包覆效果,通过TG-DSC技术分析复合粉体在加热过程中的热量和重量的变化。结果表明,在化学镀液中添加2-2'联毗啶和亚铁氰化钾双稳定剂,显著抑制了氧化亚铜(Cu_2O)的产生。在pH值为12.5,硫酸铜(CuSO_4·5H_2O)含量为3.5g/0.2L,甲醛(HCHO)含量为2.4ml/0.2L,以及适量络合剂稳定剂共同作用下,ZrW_2O_8颗粒表面均匀包覆一层纳米级Cu。随pH值,主盐及甲醛按比例的增加,反应速度增加,包覆在ZrW_2O_8颗粒表面的Cu颗粒粒径变大。讨论了渡液成分配比对镀速、粉体增重的影响。探讨了化学镀过程中Cu_2O产生机理及消除方法。
     采用粉末冶金法制备了Cu/ZrW_2O_8复合材料,分析不同压力下复合材料的物相组成,观察了不同体积分数复合材料的显微组织及断面形貌。测试了不同压力不同体积分数Cu/ZrW_2O_8复合材料的密度、致密度,结果表明:随着压力的提高和Cu含量的增加,复合材料的密度致密度相应提高。ZrW_2O_8颗粒体积分数为45%、55%、65%的Cu/ZrW_2O_8复合材料在35-200℃之间的平均线性膨胀系数分别为9.21×10~(-6)K~(-1)、7.35×10~(-6)K~(-1)、4.85×10~(-6)K~(-1)。复合材料的热导率随着Cu含量的增加而增加,随温度的升高,复合材料的热导率降低。
Negative thermal expansion (NTE) material becomes one of the most interesting research field in recent years, Among them,ZrW_2O_8 with excellent isotropic NTE property and low thermal expansion coefficient (-8.9×10~(-6)K~(-1)) over a wide temperature range has been dramatically studied. NTE materials and its composites have potential applications in microelectronic, micromechanic, optics, medicine materials, low temperature sensor, electric thermal couple daily necessaries and so on.
     According to the characteristics of ZrW_2O_8 that is metastable at room temperature and will decompose at 770℃,epoxy resin, ZrO_2 and Cu were chosen as matrix to fabricate electronic packing composite materials with controllable thermal expansion coefficient in this thesis and the properties of the obtained composites were studied.
     Pure ZrW_2O_8 powders with linear thermal expansion coefficient of -5.33×10~(-6)/K and average particle size of 0.5-1μm were synthesized via step-by-step solid state reaction method. ZrW_2O_8 and epoxy resin were used as raw materials to prepare electronic packing material, the uniformity of ZrW_2O_8 powders in the matrix was enhanced by ultrasonic wave treatment. The glass transition temperature and dielectric constant were increased with the increasing of the ratio of ZrW_2O_8 powders in the composite while the linear thermal expansion coefficient and dielectric loss were decreased. Electric resistant property was also studied and the results showed that the electrical resistivity of E-51/ZrW_2O_8 was stabilized at about 3.03×10~6Ω·m in the temperature range from room temperature to 163####.The breakdown strength of the obtained packing material was greater than 10KV/m at room temperature which meets the practical requirements of microelectronic packing material.
     The tensile strength,flexural strength and the microhardness of E-51/ZrW_2O_8 packing material have been enhanced with the increasing content of ZrW_2O_8.The tensile strength and flexural strength were 99MPa and 158Mpa, respectively, when the ratio of E-51 to ZrW_2O_8 was 1 to 1, while the optimal microhardness was obtained when the ratio of E-51 to ZrW_2O_8 was fixed at 1 to 0.7. The obtained packing materials have good waterlogging tolerance property.
     ZrO_2/ZrW_2O_8 composite materials with different ratios were prepared by step-by-step in-situ solid-state reaction using analytically ZrO_2 and WO_3 as starting materials. ZrO_2/ZrW_2O_8 composite with high purity can be obtained by sintering at 1125 to 1200℃for 6 hours Compared to the direct in-situ solid-state reaction, the reaction temperature was decreased, reaction time was reduced, and the average grain size of the sample was also decreased. The average thermal expansion coefficient of the composite with 25wt% ZrW_2O_8 was 0.2153×10~(-6)K~(-1) (nearly zero) at the temperature range 30-600℃.The density of ZrO_2/25wt%ZrW_2O_8 composite can be enhanced to 96.1% of the theoretical density when 0.5wt% Al_2O_3 was added.ZrO_2/ZrW_2O_8 composites were also prepared by chemical co-precipitation method using analytically [ZrO(NO_3)_2·5H_2O] and [H_(40)N_(10)O_(41)W_(12)·xH_2O] as starting material. ZrO_2/ZrW_2O_8 composite with good crystallinity and smallgrain size can be obtianed by sintering at 1150℃for 2 hours.The homogeneity and density of the sample were efficiently enhanced by using chemical co-precipitation method.By prolonging the sintering time, the density of the composite was improved and the particle size was increased. The average thermal expansion coefficient of ZrO_2/26wt%ZrW_2O_8 composite was -0.5897×10~(-6)K~(-1),approximate to zero, in the temperature range from 30 to 600℃.When 0.3wt % Al(NO_3)_3·9H_2O was added into ZrO_2/26wt% ZrW_2O_8 composite, the density was reached 98.67% of the theoretical density. The mechanism of the accelerating of the sintering process by adding Al_2O_3 is that liquid Al_2(WO_4)_3 with low-melting point is formed at the grain boundary, which would remove stomata to improve the density.
     The dielectric constant of the nearly zero thermal expansion ZrO_2/ZrW_2O_8 composite prepared by solid-state method and chemical co-precipitation is greater than 11.61,while its dielectric loss is between 10~(-2)and 10~(-1) and the Vickers hardness is greater than 453HV,the property of the composite can be improved by adding proper amount of sintering assistant. The volume electrical resistivity of ZrO_2/ZrW_2O_8 composite prepared by mechanical mixing method shows strong negative temperature changing property between 100 and 500℃,the changing amplitude can reach 3 to 5 of the order of magnitude. The thermal conductivity coefficient of the zero thermal expansion ZrO_2/ZrW_2O_8 composite is 14.11 W/(m·K) and the thermal conductivity coefficient will decrease with increasing temperature.
     Cu is coated on the surface of the ZrW_2O_8 particles by electroless plating method with the auxiliary action of ultrasonic wave, the phase structure of the composite powders was characterized by Powder X-ray diffraction (XRD), and the coating results were observed by scanning electron microscope (SEM) and the heat and weight change in the heating process of the composite was studied by TG-DSC method. The creation of Cu_2O was inhibited by using 2-2'bipyridine and potassium ferrocyanide as double stabilizing agent . Nano Cu can be coated on the surface on the condition that the pH value was 12.5,the content of CuSO_4·5H_2O and HCHO were 3.5g/0.2L and 2.4ml/0.2L,respectively, and proper complexing agent was added. The increasing of pH value and the ratio of salt to HCHO would enhance the reaction speed and the grain size of Cu on the surface of ZrW_2O_8 will be further increased . Effects of component ratio of plating liquid on the speed of plating and weight gain are discussed. The mechanism of the creation of Cu_2O during the electroless plating process and its elimination method is also studied.
     Cu/ZrW_2O_8 composite material was prepared by powder metallurgy method, the phase component of the composite material obtained under different pressures was analyzed, the microscopic structure and the fracture surface morphology of the composite material prepared with different volume percentage were observed. The density of the Cu/ZrW_2O_8 composite material with different volume percentage obtained under different pressures were also measured. The results showed that the density would increase with the increasing of the pressure and the content of Cu. The average linear thermal expansion coefficient of Cu/ZrW_O_8 composite are 9.21×10~(-6)K~(-1),7.35×10~(-6)K~(-1),4.85×10~(-6)K~(-1) in the temperature range of 35-200℃with 45vol % ,55vol % and 65vol % ZrW_2O_8 in the composites. The thermal conductivity would increase with the increasing of the content of Cu and decrease with the increasing of the temperature.
引文
[1] 张臣,沈能钰.电子封装材料现状与发展[J].新材料产业,2003,(3):5-12.
    [2] 张新平,尹立孟,于传宝.电子和光子封装无铅钎料的研究和应用发展[J].材料研究学报,2008,22(1):1-9.
    [3] 阳范文,赵耀明.电子封装用环氧树脂的研究现状与发展趋势[J].电子工艺技术,2001,11:238-241.
    [4] Wang L J, Wong C P. Syntheses and characterizations of thermally reworkable epoxy resins part I [J ]. Polym Sci Polym Chem, 1999, 37(15): 2991-3001.
    [5] Wang L J, LI H Y, Wong C P. Syntheses and characterizations of thermally reworkable epoxy resins II [J]. Polym Sci Polym Chem, 2000, 38(20): 3771-3782.
    [6] Li H Y, Wong C P. A reworkable epoxy resin for isotropically conductive adhesive [J] . IEEE Trans on Advanced Packaging, 2004,27(1): 165-172.
    [7] Wang Z G,Xie M,Zhao Y F, et al.Synthesis and properties of novel liquid ester-free reworkable cycloaliphatic diepoxides for electronic packaging application [J ] . Polymer, 2003,44(4): 923-929.
    [8] 杨邦朝,付贤民,胡永达.低温共烧陶瓷(LTCC)技术新进展[J].电子元件与材料,2008,27(6):1-5.
    [9] Wang H,Du H L, Peng Z, et al. Improvements of sintering and dielectricproperties on Bi_2O_3-ZnO-Nb_2O_5 pyrochlore ceramics by V_2O_5 substitution [J], Ceram Int, 2004, 30:1225-1229.
    [10] Zhong H, Zhang H W. Effects of different sintering temperature and Mn content on magnetic properties of NiZn ferrites [J]. J Magn Magn Mater, 2004, 283: 247-250.
    [11] Huseby I C, et al. High thermal conductivity aluminum nitride ceramic body. United States Patent, 1985, 8(6): 533-645.
    [12] 陈国华,刘心宇 尖晶石/玻璃复合材料的制备和性能研究[J],功能材料与器件学报,2005,11(4):456-460.
    [13] 周东祥,梁军,龚树萍等.二氧化硅掺杂对黑色氧化铝陶瓷的改性[J].硅酸盐学报,2007,35(9):1178-1180.
    [14] 段柏花,曲选辉,林冰涛等.Invar合金电子封装零件的制备及性能[J].电子元件与材料,2007,26(4):15-18.
    [15] 张琦.功率微电子封装用铝基复合材料[J].混合微电子技术,1997,(4):37-40.
    [16] Ruch P W, Beffort O.Selective interfacial bonding in Al (Si)-diamond composites and its effect on thermal conductivity [J]. Composites Science and Technology, 2006, (66): 2677-2681.
    [17] Kerns J A , Colella N J, Makoiecki D et al. A composite substrate for high power density electronic components [A] . Proceeding of 1995 International Symposium on Microelectronics [C], 1995, 66.
    [18] Nishibayashi, Yoshiki. Heat sink for semiconductors and manufacturing process thereof [P] .United States Patent: 6031285 , 2000.
    [19] 陈大钦,林锋,肖来荣等.DBC电子封装基板研究进展[J].材料导报,2004,18(6):76-78.
    [20] 赵龙志,何向明,赵明娟等.SiC泡沫陶瓷/Sicp/Al混杂复合材料的导热性能[J].材料工程,2008,(1):6-10.
    [21] 张强,陈国钦,武高辉等.含高体积分数SiCp的铝基复合材料制备与性能[J].中国有色金属学报,2003,13(5):1180-1183.
    [22] 克莱因T W,威瑟斯P J.金属基复合材料导论[M].冶金工业出版社,1996
    [23] 方针正,林晨光,张小勇等.金刚石/Cu复合材料的烧结致密化研究[J].稀有金属,2008,32(2):306-310.
    [24] Weber L, Tavangar R. On the influence of active element contenton the thermal conductivity and thermal expansion of Cu-X (X= Cr ,B) diamond composites [J] . Scripta Materialia,2007,57 (11): 988-993.
    [25] Weber L , Tavangar R. Metal/diamond composites for heat sink applications Laboratory of Mechanical Metallurgy [ EB] , http :PPlmm.epfl . ch/lmm/research/MetDiam2-composites. html.
    [26] Sundberg G, Paul P, Changmo Sung , et all. Fabrication of CuSiCmetal matrix composites[J].Journal of Materials Science, 2006,41(2): 485-504.
    [27] 朱德智,李风珍,陈国钦等.SiCp/Cu复合材料热膨胀性能的研究[J].哈尔滨理工大学学报,2005,10(12):125-128.
    [28] Cui Y. High volume fraction SiCp/ Al composites prepared by pressureless melt infiltration:Processing, properties and applications[J].Key Engineering Materials, 2003, 249: 45-48.
    [29] Krau G, Kubler J, Trentini E. Preparation and properties of pressureless infiltrated SiC and AlN particulate reinforced metal ceramic composites based on bronze and iron alloys[J] . Materials Science and Engineering A,2002,337(1/2):315-322.
    [30] 刘庆华,李亚东.超细AlN填充环氧树脂热性能研究[J].传感器技术,2005,24(11):36-38.
    [31] 关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1998:119-130。
    [32] Ho Y. Thermal expansion of solids, ASM Int.,1998.
    [33] Chawla K K. Ceramic matrix composites[M]. London: Chapman & Hall,1993.
    [34] 阿本,谢于深,徐超译著.玻璃化学[M].北京:中国建筑工业出版社,1981:33-34.
    [35] 王聪,王天民,沈容.新型负热膨胀氧化物材料的研究[J].物理,2001,30(12):772-777
    [36] Oikawa,K, Kamiyams T, Hashimoto T et al. Structure phase transition of orthorhombic LaCrO_3 studied by neutron powder diffraction[J]. J. Solid State Chem., 2000,154: 524-529.
    [37] Amos T G,Yodochi A, Slieight A W. Phase transition and negative thermal expansion in tetragonal NbOPO_4[J].Solid State Chem.,1998,14:303-307.
    [38] Haruna K, Maeta H, Ohashi K et al.Thenegative thermal expansion coefficient of GaP crstal at low temperatures[J]. J. Phys. C: Sol. Stat. Phys.,1986,19:5149-5154.
    [39] Sleight A.W. Thermal contraction[J].Endeavour, 1995,19:64-68.
    [40] Holcombe C E, Smith D D. Characterization of the thermally contracting tungstates Ta_(22)W_4O_(67),Ta_2WO_8 and Ta_(16)W_(18)O_(94)[J]. J. Am. Ceram. Soc, 1978, 61: 163-169.
    [41] Lightfoot P, Woodcock D A, Maple M J et al. The widespread occurrence of negative thermal expansion in zerolites[J]. Mater. Chem., 2001, 11:212-216.
    [42] Martin P A, Sleight A W. Exceptional negative thermal expansion in A1PO_4-17[J] .Chem,Mater., 1998,10:2013-2019.
    [43] Wright A F,leadbetter A J.[J].Philos Mag,1975, 31 :1391-1396.
    [44] Hummel F A. [J ]. J Am Ceram Soc, 1951,34: 235-239.
    [45] Korthuis V, Khosrovani N, Sleight A W, et al. Negative Thermal Expansion and Phase Transition in the ZrV_(2-X)P_XO_7 Series[J]. Chen. Mater., 1995, 7: 412-417.
    [46] Sleight A W, Mary T A, Evans J S O.Negative Thermal Expansion Material[P]. USA, Patent:No.5514360, 1995-03-01.
    [47] Mary T A,Evans J S O, Vogt T, et al. Negative thermal expansion from 0.3 to 1050 kelvin in ZrW_2O_8 [J].Science, 1996, 272 (5): 90-92.
    [48] Evans J S O,Mary T A, Sleight A W. Negative Thermal Expansion in a large Molybdate and Tungstate Family [J]. Journal of Solid State Chemistry, 1997,133(2): 580-583.
    [49] N. Khosrovani, A. W. Sleight, T. Vogt. Structure of ZrV_2O_7 from -263 to 470℃[J].Journal of Solid State Chemistry,1997,132(2): 355-360.
    [50] Evans J S O,Mary T A, Sleight A W. Negative Thermal Expansion in Sc_2(WO_4)_3[J]. Journal of Solid State Chemistry, 1998,137(1): 148-160.
    [51] Forster P M, Yokochi A, Sleight A W. Enhanced Negative thermal Expansion in Lu_2W_3O_(12)[J] .J.Solid State Chem., 1998,140(1): 157-158.
    [52] Cora L, Angus P W, HuZhongbo, et al. Synthesis and properties of the negative thermal expansion material cubic ZrMo_2O_8[J]. Chem. Mater., 1998, 10(9): 2335-2337.
    [53] 程晓农,孙秀娟,杨娟,徐桂芳.固相法合成负热膨胀性粉体ZrW2O8[J].江苏大学学报(自然科学版),2005,26(4):350-353.
    [54] 杜学丽,田华,郭瑞松等.新型负膨胀系数材料ZrW_2O_8的合成与特性[J].天津理工学院学报,2002,3(18):64-66
    [55] 佟林松,樊建中,肖伯律,左涛.烧结工艺对固相法合成ZrW_2O_8纯度的影响[J].稀有金属,2008,32(1):38-42.
    [56] 邓学彬,赵新华,韩京萨.酸蒸气水热前驱物热分解法制备立方ZrW_2O_8类型化合物[J].无机化学学报,2005,21(9):1357-1362.
    [57] 沈容,王天民,白海龙,熊常健.共沉淀法合成负热膨胀材料ZrW_2O_8[J].材料工程,2003, (3):3-6.
    [58] 邢奇风,邢献然,杜凌.水热法合成负热膨胀材料ZrW2O8[J].金属学报,2005,41(6):669-672.
    [59] 严学华,杨新波,程晓农等.燃烧法合成高纯度负热膨胀材料ZrW_2O_8粉体[J].硅酸盐学报,2006,34(9):1066-1069.
    [60] Evans J S O. NegativeThermal Expansion[J]. J.Chem.Soc.,DaltonTrans., 1999: 3317-3326.
    [61] Evans J S O, Hanson J C, Sleight A W. Room-temperature superstructure of ZrV_2O_7[J] .Acta,cryst.,1998, B54: 705-713.
    [62] Pryde AKA,Hammonds KD,Dove MT et al.Origin of the negative thermal expansion in ZrW_2O_8 and ZrV_2O_7[J]. J. Phys. Condens. Matter., 1996, 8:10973-1 0982.
    [63] Evans JSO, Mary TA, Vogt T, Subramanian MA, Sleight AW. Negative thermal expansion in ZrW_2O_8 and HfW_2O_8[J]. Chem.Mater., 1996, 8: 2809-2823.
    [64] Ernst G, Broholm C, Kowach G R et al. Phone density of state and negative thermal expansion in ZrW_2O_8 [J]. Nature, 1998, 12: 147-149.
    [65] Perottoni C A, Jornada J A H. Pressure-induced amorphization an negative thermal expansion in ZrW_2O_8[J]. Science , 1998, 280: 886-889.
    [66] Jun-ichi Tani, Hiroyasu Kido. Precursor effects on ZrW_2O_8 formation kinetics[J].Ceramics International, 2008, 34(6): 1533-1537.
    [67] P. M. Forster, A. W. Sleight. Negative thermal expansion in Y_2W_3O_(12)[J].International Journal of Inorganic Materials, 1999,1(2):123-127.
    [68] David A, Woodcock, Philip Lightfoot, Clemens Ritter. Negative Thermal Expansion in Y_2(WO_4)_3[J].Sol.Sta.Chem., 2000,149(1):92-98.
    [69] Seo D K,Wangbo M H. Symmetric Stretching Vibrations f two-coordinate Oxygen Bridges as a Cause for Negative thermal Expansion in ZrV_XP_(2-X)O_7 and AW_2O_8(A=Zr,Hf)at high temperature[J]. Solid State Chem.,1997,129(1):160-163.
    [70] 谭强强,张中太,方克明.复合氧化物负热膨胀材料研究进展[J].功能材料,2003,34(4):353-356.
    [71] 谭强强,方克明.复合氧化物材料的负热膨胀机理[J].耐火材料,2001,35(5):296-298.
    [72] Pryde A K A,Hammonds K D, Dove M T, et al. Rigid unit modes and the negative thermal expansion in ZrW_2O_8[J]. Phis Trans,1997,(61):141-143.
    [73] Yamamura Y, Nakjima N, Tsuji T. Heat capacity anomaly due to the a-to-p structure phase transition in ZrW_2O_8[J].Solid state commu.,2000,114(9): 453-455.
    [74] 邢献然.氧化物材料负热膨胀机理[J].北京科技大学学报,2000,22(1):56-58.
    [75] Yamamura Y, Tsuji T, Saito K,Et al. Heat capacity and order-disorder phase transition in negative thermal expansion compound ZrW_2O_8[J]. J.Chem.thermodynamics, 2004, (36):525-531.
    [76] Sleight A W. Compound that contract on heating[J]. Inorg. Chem.,1998,37: 2854-2860
    [77] J. Graham, A. D. Wadsley. Strong anisotropic thermal rxpansion in oxide, ZrW2O8[J] .Journal of the American ceramic Society, 1959, 42(11):570-575.
    [78] Evans J S O,Hu Z, Jorgensen J D, et al.Compressibility, Phase transistions and oxygen migration in zirconium tungstate, ZrW_2O_8[J].Science, 1997, 275: 61-65.
    [79] Cao D, Bridges F, Kowach G R et al.Frustrated soft modes and the negative thermal expansion in ZrW_2O_8[J].Phys.rev.Lett., 2002, 89(21):215902-1-215902-4.
    [80] Ramirez A P, Kowach G R. Large low temperature specific heat in the negative thermal expansion compound ZrW_2O_8[J].Phys. Rev.Lett.,1998,20 (22): 4903-4096.
    [81] Ravindran T R., Arora A K, Mary T A. High pressure behavior of ZrW_2O_8:Gruneisen parameter and thermal properties[J]. Phys. Rev. Lett., 2000, 84: 3879-3882.
    [82] Chang L L Y, Scroger M G,Philipis B. Condensed phase relations in the systems ZrO_2-WO_2-WO_3 and HfO_2-WO_2-WO_3[J]. J Am Ceram Soc, 1967, 50(4):211-213.
    [83] 沈容,王聪,王天民.“负热膨胀”氧化物材料ZrW_2O_8的研究进展[J].无机材料学报,2002,17(6):1089-1094.
    [84] Luke L Y Chang, M G Scroger, Bert Philips. Condensed phase relation in the systems ZrO_2-WO_2-WO_3 and HfO_2-WO_-2WO_3 [J]. J. Ame.Ceram. Society, 1967, 50(4): 210-215.
    [85] J Z Tao, A W Sleight. The role of rigid unit modes in negative thermal expansion[J]. Journal of Solid State Chemistry, 2003,173: 442-448.
    [86] Jason N Hancock, Chandra Turpen, Zack Schlesinger. Unusual low-energy phonon dynamics in the negative thermal expansion compound ZrW_2O_8[J]. Phys. Rev. Letters., 2004, (26): 225501.
    [87] D Cao, F Bridges, G R Kowach, A P Ramirez. Frustrated soft modes and negative thermal expansion in ZrW_2O_8[J]. Phys.Rev.Letters., 2002(21):215902.
    [88] D Cao, F Bridges, G R Kowach, et al. Correlated atomic motions in the negative thermal material ZrW_2O_(8:) ALocal structure study[J]. Physical Review B, 2003, (68): 14303.
    [89] Sleight A W, Mary T A , Evans J S O.Negative thermal expansion materials [P]. US:5514360,1995-03-01.
    [90] U Kameswari, A W Sleight, J S O Evans. Rapid synthesis of ZrW2O8 and related phases and structure refinement of ZrWMoO_8[J]. Int. J.Inorg. Mater., 2000 (2): 333-337.
    [91] Y Morito, S Wang, Y Ohshima,et al. Preparation of dense negative thermal expansion oxide by rapid quenching of ZrW2O8 melt[J]. J. Ceram. Soc. Jpn., 2002 (110): 544-548.
    [92] 刘芹芹,杨娟,孙秀娟等.同相法制备超细ZrW_2O_8粉体及其负热膨胀特性的研究[J].材料工程,2006,增1:147-150.
    [93] C Closmann, A W Sleight, J C Haygarth. Low-temperature synthesis of ZrW_2O_8 and Mo-substituted ZrW_2O_8[J]. Journal of Solid State Chemistry, 1998, 139(2): 424-426.
    [94] 严学华,程晓农,张美芬.溶胶-凝胶法合成亚微米α-ZrW_2O_8的研究[J].材料工程,2006,增1:47-50.
    [95] Klaartje De Buysser, Philippe F Smet, Bart Schoofs, et al. Aqueous sol-gel processing of precursor oxides for ZrW2O8 synthesis[J]. J Sol-Gel Sci Techno, 2007,43:347-353.
    [96] K.De Buysser, I Van Driessche, J Schaubroeck, S Hoste. EDTA assisted sol-gel synthesis of ZrW_2O_8[J].J Sol-Gel Sci Technol, 2008, 46: 133-136.
    [97] Oralind, A P Wilkinson. Seeding and the Non-Hydrolytic Sol-Gel Synthesis of ZrW_2O_8 and ZrMo2O8[J]. Journal of Sol-Gel Science and Technology, 2002,25:51-55.
    [98] A P Wilkinson, C Linda,S Pattanaik. A new polymorph of ZrW_2O_8 prepared using nonhydrolytic sol-gel chemistry[J]. Chem.Mater, 1999 (11):101-108.
    [99] 张美芬,杨娟,严学华,程晓农.ZrW_2O_8的合成及高温转变过程[J].功能材料,2004,35(5):568-570.
    [100] 孙秀娟,杨娟,刘芹芹,程晓农.共沉淀法制备负热膨胀性ZrW_2O_8粉体及其粒径控制初探[J].无机化学学报,2005,21(9):1412-1416.
    [101] 邢奇风,邢献然,杜凌.水热法合成负热膨胀材料ZrW_2O_8[J].金属学报,2005,41(6):669-672.
    [102] 严学华,杨新波,程晓农等.燃烧法合成高纯度负热膨胀材ZrW_2O_8粉体[J].硅酸盐学报,2006,34(9):1066-1069.
    [103] C Martinek, F A Hummel. Journal American Ceramic Society,1968, 51:227-228.
    [104] Withers R L, Evans J S O,Hanson J, et al.An in situ temperature-dependent electron and X-ray diffraction studty phase transition in ZrV_2O_7[J]. Solid state Chem.,1998,137(l):161-167.
    [105] Sleight A.W. Isotropic Negative Thermal Expansion[J] . Annu. Rev. Mater. Sci., 1998, 28:29-43.
    [106] T Hashimoto, T Katsube, Y Morito. Observation of two kinds of phase transitions of ZrW_2O_8 by power-compensated differential scanning calorimetry and high temperature X-ray diffraction[J]. Solid State Commun, 2000,(116):129-132.
    [107] J C Chen,G C Huang, C Hu, J P Weng. Synthesis of negative-thermal-expansion ZrW_2O_8 substrates[J]. Scripta Materialia 2003 (49): 261-266.
    [108] Ravindran T R, Arora A K, Mary T A. High pressure behavior of ZrW_2O_8:Gruneisen parameter and thermal roperties[J]. Phys Rev Lett, 2000, 84(17): 3879-3882.
    [109] Kowach G R. Growth of single crystals of ZrW_2O_8[J].Cryst. Growth,2000,212:167-172.
    [110] Qifeng Xing, Xianran Xing, Ranbo Yua,et al. Single crystal growth of ZrW2O8 by hydrothermal route[J]. Journal of Crystal Growth, 2005,283: 208-214.
    [111] A M Srivastava,H A Comanzo, L.M.Levinson. On the luminescence of ZrW_2O_8 [J]. Materials research bulltin, 1998, 33(1):103-107.
    [112] Catherine A Kennedy, Mary Anne White. Unusual thermal conductivity of the negative thermal expansion material, ZrW_2O_8 [J]. Solid State Communications, 2005,134: 271-276.
    [113] L A Reznitskii. Enthalpies of formation of negative thermal expansion mixed oxides[J] .Inorganic Materials, 2002, 38(10): 1020-1021.
    [114] Lisa M Sullivan, Charles M Lukehart. Zirconium Tungstate (ZrW_2O_8)/Polyimide Nanocomposites Exhibiting Reduced Coefficient of Thermal Expansion [J].Chem.Mater.,2005, 17:2136-2141.
    [115] J D Sh, Z J Pu, K H Wu, et al.Composite materials with adjustable thermal expansionfor electronic applications, Materials research society symposium-proceedings, 199, 445:229-234.
    [116] Eiki Niwa,Shuhji Wakamiko, Takaaki Ichikawa,et al.Preparation of dense ZrO_2-ZrW_2O_8 cosintered ceramics with controlled thermal expansion coefficients[J].J.Jap.Ceram.Soc,2004, 112(5):271-275.
    [117] Lommens P,Meyer DC, Bruneel E, et al. Synthesis and thermal expansion of ZrO_2-ZrW_2O_8 composites [J]. J . Eur. Ceram. Soc, 2005, 25: 3605-3610.
    [118] 程晓农,付廷波,杨新波,严学华.ZrO_2粒径对ZrO_2/ZrW_2O_8复合材料性能的影响[J].江苏大学学报(自然科学版),2007,28(6):27-30.
    [119] 杨新波,程晓农,严学华.ZrW_2O_8/rO_2可控热膨胀复合材料的制备[J].复合材料学报,2007,24(3):147-153.
    [120] Nishiyama,Yoshida, Hattori. [C]. Ann Meet. of the Ceram. Soc. Jap., 2002 , 205.
    [121] Kofteros M., Rodriguez S, Tandon V, Murr L E. A preliminary study of thermal expansion compensation in cement by ZrW_2O_8 additions [J]. Scripta. Materialia,2001,45:369-374.
    [122] Verdon C, Dunand D C. High-temperature reactivity in the ZrW_2O_8 /Cu system [J] . Acta Metall, 1997,36(9): 1075-1080.
    [123] Yilmaz S, Dunand D C. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu60vol %/ ZrW_2O_8 composite [J]. Comp. Sci.Technol, 2004,64:1895-1898.
    [124] Holzer H, Dunand D C. Phase transformation and thermal expansion of Cu- ZrW_2O_8[J].J Mater. Res., 1999,14(3): 780-789.
    [125] Yilmaz S. Thermal mismatch stress development in Cu/ZrW_2O_8 composite investigated by synchrotron X-ray diffraction [J]. Comp.Sci.Technol,2002, 62: 1835-1839.
    [126] Matsumoto A, Kobayashi K, Nishio T, Ozaki K. Fabrication and thermal expansion of Al/ZrW_2O_8 composites by pulse current sintering [J]. Mater. Sci.Forum, 2003, 426(4): 2279.
    [127] 黄兰萍,陈康华.近零膨胀ZrW_2O_8/Al6013复合材料的制备与性能[J].金属热处理,2006,31(1):20-22.
    [128] 戴恩斌,陈康华,罗丰华,黄兰萍.铝基钨酸锆复合材料的压力浸渗制备与性能[J].粉末冶金材料科学与工程,2005,10(5):286-289.
    [129] 张楷亮,王立新,王芳.酸酐固化环氧树脂-有机蒙脱土纳米复合材料的制备及性能研究[J].复合材料学报,2004,21(1):114-118.
    [130] 朱兴松,刘立柱,张国伟等.环氧树脂/蒙脱土纳米复合材料的介电性能研究[J].绝缘材料,2005,(2):27-30.
    [131] 徐曼,曹晓珑,俞秉莉.纳米SiO_2/环氧树脂复合体系性能研究-(Ⅱ)复合材料的介电特性和力学特性[J].高分子材料科学与工程,2005,21(1):156-159.
    [132] 孙曼灵,吴良义.环氧树脂应用原理与技术[M].机械工业出版社,2002,第一版.
    [133] kameswari U, Sleight A W, Evans J S O.Rapid syntsis of ZrW_2O_8 and related phase,and structure refinement of ZrWMoO_8[J].Inter.J.Inorg.Mater., 2000, (2): 333-337.
    [134] 孔向阳,吴建生,曾振鹏.ZrW_2O_8微波合成、表征及负膨胀行为研究[J].硅酸盐学报,1999,27(3):265-269.
    [135] 邢奇凤,邢献然,杜凌等.水热法合成负热膨胀材料ZrW_2O_8[J].金属学报,2005,41(6):669-672.
    [136] Qifeng Xing, Xianran Xing, Ranbo Yua,et al.Single crystal growth of ZrW_2O_8 by hydrothermal route[J]. Cryst. Growth, 2005, 283: 208-214.
    [137] Meyer D C, Driessche I V, Hoste S. Synthesis of the negative thermal expansion compound ZrW_2O_8 by the spray drying technique[J]. Key Eng. Mater., 2002,11:206-213.
    [138] 沈容,王天民,白海龙等.共沉淀法合成负热膨胀材料ZrW_2O_8[J].材料工程,2003,3:3-6.
    [139] 孙秀娟,杨娟,刘芹芹,程晓农.共沉淀法制各负热膨胀性ZrW_2O_8粉体及其粒径控制初探[J].无机化学学报,2005,9:1412-1416.
    [140] Lu M G,Shim M, Kim S W. Effect of filler on cure behavior of an epoxy systemxure modeling[J]. Polymer Engineering&Science, 1999, 39 (2): 274-285.
    [141] 马德柱,何平笙,徐种德等.高聚物的机构与性能[M].科学出版社,2000.
    [142] 杨晓军,杨志民,毛昌辉等.高介电常数EP/BT复合材料介电性能的研究[J].化工新型材料,2006,34(12):27-30.
    [143] 张明艳,孙婷婷,张晓虹等.蒙脱土改性环氧树脂复合材料的制备及性能研究[J].电工技术学报,2006,21(4):29-34.
    [144] 何曼君,陈维孝,董西侠.高分子物理[M].复旦大学出版社,2001.
    [145] Xinbo Yang, Xiaonong Cheng, et al. Synthesis of ZrO_2/ZrW_2O_8 composites with low thermal expansion[J]. Comp. Sci. Techn., 2007, 67:1167-1171.
    [146] Klaartje D B, Lommens P, Meyer D C, et al. ZrO_2-ZrW_2O_8 composites with tailor-made thermal expansion[J]. Ceramics-Silikaty, 2004, 48(4):139-144.
    [147] 李海滨,梁开明,顾守仁.溶胶-凝胶法制备的二氧化锆粉中t-ZrO_2的稳定性[J].清华大学学报,2001,41(10):13-15.
    [148] 尹衍升,李嘉.氧化锆陶瓷及其复合材料[M].北京:化学工业出版社,2004:2
    [149] 仲剑初.二氧化锆制备技术进展及发展趋势[J].辽宁化工,1996,3:4-7.
    [150] 廖恒成,张春燕,孙国雄.铝原位合成复合材料的反应模式与机理[J].铸造,1999,1:43-47.
    [151] Gao Y,Jia J. Microstucture and composition of Al/Al_2O_3 composites made by reactive metal penetration[J]. Mater. Sci.,1996, 31(15): 4025-4032.
    [152] Breslin M C, Ringnalda J. Processing microstructure and property of co-cotinuous alumina-aluminum composites[J]. Mater. Sci. Eng, 1995, A195(1-2):113-119.
    [153] German R M. Powder metallurgy science. [M] . New Jersey:Metal Powder Industries Federation, 1994.
    [154] Mori M, Abe T, Itoh H, et al[J]. Solid State Ionics., 1994, 74:157-194.
    [155] Gandhi A S, Jayaram V, Chokshi A H. Dense amorphous zirconia-alumina by low-temperature consolidation of spray-pyrolyzed powders[J].Am. Ceram.Soc.,1999,10:2613-2618.
    [156] Balmer M L,Lange F F, Jayaram V, et alv Development of nano-composite microstructures in ZrO_2-Al_2O_3 via the solution precursor method[J]. Am. Ceram. Soc, 1995, 6: 1489-1494.
    [157] Susnik D, Hole J, Hrovat M, et al. Influence of alumina addition on characteristics of cubic zirconia[J]. Mater. Sci. Lett., 1997,16:1118-1120.
    [158] Achary S N, Mukherjee G D, Tyagi A K, et al. Preparation, thermal expansion, high pressure and high temperature behavior of Al_2(WO_4)_3[J].Mater. Soc, 2002, 37: 2501-2508.
    [159] 郑昌琼,冉均国.新型无机材料[M].北京:科学出版社,2003:244-254.
    [160] 邓学彬,赵新华,韩京萨.酸蒸汽水热前驱物热分解法制备立方ZrW_2O_8类型化合物[J].无机化学学报,2005,9(21):1357-1362.
    [161] Fleming D A,, Evans John S. Article comprising a temperature compensated optical fiber refractive index grating [P]. US Patent: 5694503,1996-09-09.
    [162] 崔香枝,贾晓林,钟香崇.氢氧化铝热分解制备α-Al_2O_3纳米粉体[J].耐火材料,2006,40(5):353-357.
    [163] Yen F S, Wang M Y, Chang J L. Temperature reduction of y to a phase transformation induced by high-pressure pretreatments of nano-sized alumina powders derived from boehmite[J]. Cryst.Growth, 2002, 236(2): 197-209.
    [164] 叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社(第2版),2002:1200.
    [165] Yasuhisa Yamamura,Toshihide Tsuji, Kazuya Saito, et al. Heat capacity and order-disorder phase transition in negative thermal expansion compound ZrW_2O_8[J]. Chem.Thermodynamics,2004,36:525-531.
    [166] 竞成,罗青,唐羽章.复合材料理化性能[M].长沙:国防科技大学出版社,1998:39.
    [167] Hashimoto T, Kuwahara J, Yoshida M, et al. Thermal conductivity of negative-thermal-expansion oxide, Zr_(1-X)Y_XW_2O_8(x=0.00,0.01)-temperature dependence and effect of structural phase transition[J]. Solide State Commu., 2004, 131: 217-221.
    [168] 张海坡,阮建明.电子封装材料及其技术发展状况[J].粉末冶金材料科学与工程,2003,8(3):216-223.
    [169] 渡边秀美,木村修.粉体および粉末冶金[M].东京,1991,33(3):331.
    [170] Chang H, Pitt C H, Alexander R G B.Electroless silver plating of oxide particles in aqueous solution[J]. Journal of Materials Science, 1993, 2: 5207-5210.
    [171] Rai R.,Thompson L R. Design of the microstructural scale for optimum toughening in metallic composites [J]. Acta Metallurgica et Materialia,1994,42(12): 4135-4142.
    [172] enonas Jusys, Algirdas Vaskelis. The kinetic H/D isotope efect in electroless copper plating.ADMS study [J]. Electrochimica Acta,1997,42(3): 449-454.
    [173] osi Shacham-Diamand, Valery M.Dubin. Copper electroless deposition technology for ultra -large-scale-integration (ULSI) metallization[J] . Microelectronic Engineering, 1997, 33 (1):47-58.
    [174] henwei. Depositing processess of electroless Cu plating and properties of deposit [J] . Journal Of Materials Protection, 2000, 33(1):33-35.
    [175] R Beck, H.Warren. Kinetic and Mass Transfer Processes in Electroless Copper Plating, In Application of Polarization Measurements in the Control of Metal Deposition[M] . The Netherlands, 1984:158-176.
    [176] Matsuoka,Y Yoshida,C Iwakura. The Efects of Aeration and Accumulation of Carbonate Ions on the Mechanical Properties of Electroless Copper Coatings[J] . Electrochem.Soc,1995, 142:87-91.
    [177] Duan N, Kameswari U, Sleight A W. Further contraction of ZrW_2O_8 [J]. Am Chem Soc,1999,121:10432-10433.
    [178] Hashimoto, T Katsube, Y Morito. Observation of two kinds of phase transitions of ZrW_2O_8 by power-compensated differential scanning calorimetry and high-temperature X-ray diffraction [J]. Solid State Communications, 2000,116:129-132.
    [179] A Perottoni, J E Zorzi, J A H da Jornada. Entropy increase in the amorphous-to-crystalline phase transitionin zirconium tungstate [J]. Solid State Communications, 2005,134: 319-322.
    [180] 成义,张丽英.冶金成型力学原理[M].北京:冶金工业出版社,2003:4-11.
    [181] Jose Manuel Gallardo-Amores,Ulises Amador, Emilio Moran,et al.XRD study of ZrW_2O_8 versus temperature and pressure[J] . International Journal of Inorganic Materials, 2000, (2):123-129.
    [182] J D Jorgensen, D N Argyriou, S. Short, et al. Pressure-induced Cubic-to-orthorhombic phase transition in ZrW_2O_8 [J]. Physical Review B, 1999, 59: 215-225.
    [183] J O S Evans, J. D. Jorgensen, W I F David, et al. Thermal expansion in the orthorhombic γ phase of ZrW_2O_8 [J]. The American Physical Society, 1999, 60: 14643-14648.
    [184] C A Perottoni, J A H da Jornada. Pressure-Induced Amorphization and Negative Thermal Expansion in ZrW_2O_8 [J].science, 1998, 5365(280): 886-889.
    [185] D P H Hasselman. Effeect of Reinforcement Particle Size on the Thermal Conductivity of Particulate-Silicon Carbide-Rreinforce Al Matrix Composite [J]. J Am Ceramic,1992,75(11):3137-3140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700