用户名: 密码: 验证码:
钙钛矿型复合氧化物催化消除NO的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NO_x)是严重的大气污染物,对环境和人类都会造成极大的伤害。钙钛矿型复合氧化物由于其结构稳定,可容纳大量的金属元素,表现出独特的催化消除NO_x的性能,已引起了国内外许多科研人员的极大关注。
     本文以LaFeO_3、LaMnO_3为基础,采用柠檬酸溶胶-凝胶法合成了A位和B位掺杂改性的系列钙钛矿型复合氧化物催化剂。测试了其催化消除NO_x的性能,并分别探讨了A位和B位掺杂元素、掺杂比例对催化活性中心离子的影响。发现碱土金属对A位La的取代可以提高钙钛矿型复合氧化物的催化性能,其中以Ba的取代效果最好。X-射线衍射(XRD)结果显示当Ba的掺杂量小于等于20%时没有其它杂相,氢气程序升温还原(H_2-TPR)研究结果表明少量Ba的掺入会提高B位金属的氧化性,从而提高了催化剂的催化性能。La_(0.75)Ba_(0.25)FeO_3催化剂在850℃时N_2的生成率可达72%。本文同时考察了B位掺杂不同过渡金属对其催化活性的影响,发现分别掺杂Ni、Cu后的Fe、Mn系列催化剂的催化性能较好。氧气程序升温脱附(O_2-TPD)、氢气程序升温还原(H_2-TPR)等结果表明,B位掺入不同过渡金属会使B位金属的氧化性增强,同时会增加氧空位的浓度、提高晶格氧的活动性从而促进催化活性。La_(0.85)Ba_(0.15)Fe_(0.7)Ni_(0.3)O_3,La_(0.8)Ba_(0.2)Mn_(0.6)Cu_(0.4)O_3催化剂850℃时N_2的生成率分别可达88和90%。
Nitrogen oxides (NO_x) are serious pollutants in earth's atmosphere, they are harmful gases both to environment and human body. As one catalyst for NO_x removal, special attention has been paid to the use of perovskite mixed oxides due to their remarkable stability, and perovskite-type oxides can accommodate a large number of metal, which result in the obtained samples possessing special character.
     In this dissertation, a series of perovskite-type oxides via substituting the A or B site of LaFeO_3 and LaMnO_3 were successfully synthesized through citric acid complexing sol-gel method. The influence of doping elements in A site and B site and the doping ratio on the catalytic activity of perovskite-type oxides was also discussed in this thesis. It was found that the activity in NO direct decomposition could be improved by substituting alkaline-earth metals for La, in which the samples of substituting Ba for La performed best activity. XRD results demonstrated that perovskite phase is retained at low 20% Ba doping content, H_2 temperature programmed reduction (H_2-TPR) indicate that low substituting Ba for La performed their activity for NO removal through enhancing the oxidability of B site metal. The conversion of 1.0% NO to nitrogen over La_(0.75)Ba_(0.25)FeO_3 can attain 72% at 850℃. The influence of doping elements in B site was also discussed in this thesis. It was found that doping Fe and Mn series catalysts performed special catalytic activity. H_2-TPR and O_2 temperature programmed desorption (O_2-TPD) indicate that B site doping different transition metal can enhance the oxidability of B site metal, increase the amount of oxygen vacancy and promote the mobility of crystal lattice oxygen. The conversion of 1.0% NO to nitrogen is 88% and 90% at 850℃over La_(0.85)Ba_(0.15)Fe_(0.7)Ni_(0.3)O_3, La_(0.8)Ba_(0.2)Mn_(0.6)Cu_(0.4)O_3 catalysts, respectively.
引文
[1] Hideharu Iwakuni, Yusuke Shinmyou, Hiroshi Yano, et al. Diret decomposition of NO into N2 and O2 on BaMnO3-based perovskite oxides[J]. Applied Catalysis B: Environmental, 2007, 74: 300~307.
    [2]李兴虎.汽车环境保护技术[M].北京:北京航空航天大学出版社,2004:49.
    [3] H.Bosch,F.Janssen.Catalytic Reduction of Nitrogen Oxides[J]. Catal. Today, 1988, 2: 369~521.
    [4] Y.Li,J.N.Armor.NOx Control in Lean-Burn Engine Exhaust[J]. Appl. Catal. B: Environmental, 1993, 2(4): 38~46.
    [5] Y.Li,J.N.Armor.Catalytic Reduction of Nitrogen Oxides with Methane in the Presence of Excess Oxygen[J]. Appl. Catal. B: Environmental, 1992, 1(4): 31~40.
    [6] T.Nakatsuji,A.Miyamoto.Removal Technology for Nitrogen Oxides and Sulfur Oxides from Exhaust Gases[J]. Catal. Today, 2003, 10 (1): 21~31.
    [7] F.Janssen, R.Meijer. Quality Control of DeNOx Catalysts:Performance Testing.Surface Analysis and Characterization of DeNOx Catalysts[J]. Catal. Today, 1993, 16(2): 157~185.
    [8]邱运仁,张启修.汽车排气净化催化剂及其载体的研究[J].现代化工, 2001,21(3): 19~22.
    [9] Haifeng Huang, Yaqin Liu, Wei Tang, Yinfei Chen,Catalytic activity of nanometer La1_xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion[J]. Catalysis Communications, 2008, 9: 5559.
    [10] Runduo Zhang, Adrian Villanueva, Houshang Alamdari, Serge Kaliaguine,Crystal structure, redox properties and catalytic performance of Ga-based mixed oxides for NO reduction by C3H6[J]. Catalysis Communications, 2008, 9 : 111~116.
    [11]陈建军,王帅帅,冯长根.汽车尾气中NO的消除方法[J].化学通报,2004,9: 656~660.
    [12] Naoki Takahashi, Hirofumi Shinjoh, Tomoko Iijima, Naoto Miyoshi, et al.The new concept 3-way catalyst for automotive lean-burn engine:NOx storage and reduction catalyst[J]. Catalysis Today, 1996, 27: 63~69.
    [13] Erik Fridell, Magnus Skoglundh, Bjorn Westerberg, Stefan Johansson, and Gudmund Smedler. NOx Storage in Barium-Containing Catalysts[J]. Journal of Catalysis, 1999, 183: 196~209.
    [14]嵇玉书,魏诠.铁系复合氧化物催化性质的研究[J].高等学校化学学报, 1990, 5: 491~495.
    [15]薛屏,蔡超,吴晓红.负载型La0.8Sr0.2CoO3燃烧催化剂的XPS表征[J].宁夏大学学报(自然科学版), 2001, 22(2): 143~144.
    [16] M.Iwamoto,H.Furukawa,Y.Mine,F.Uemara,S.Mikuriya,S.Kagawa. Copper (II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide[J]. Chem.Soc.Chem.Commun, 1986, 1272~1273.
    [17]肖霞,何新秀.我国汽车尾气污染的催化净化[J].环境科学研究, 1998,1(5): 26~33.
    [18] P.W.Bachman,G., B.Taylor. Decomposition of Nitric Oxide by Platinum at Elevated Temperature and Its Retardation by Oxygen[J]. J.Phys.Chem.,1999, 33: 447~455.
    [19] R.R.Sakaida,R.G.Rinker,et al. Catalytic Decomposition of Nitric Oxide[J]. AIChE Journal, 1961, 7(4):658~663.
    [20] [20] A.Ogata,A.Obuchi,K.Mizuno,et al. Enhancement Effect of Mg2+ Ion on Direct Nitric Oxide Decomposition over Supported Palladium Catalysts[J]. Appl. Catal. A: General, 1990, 65: 115~118.
    [21]杜高辉,陆路等.三效催化转化器研究进展[J].环境污染治理技术与设备,2005, 1(2): 52~57.
    [22] G.J.Li,F.Dong,Y.D.Xu.Nitric Oxide Decomposition on Alkali -PromotedPd/A1203 Catalysts[J]. Chi. Chem. Lett., 2004, 5: 951~952.
    [23]翁端,吴晓东,徐鲁华.我国稀土汽车尾气净化器应用现状及发展趋势[J].工业催化,2001,4:72~75.
    [24] Tang S, Gao L. NO Decomposition over Carbon Nanotubes(CNTs) Rh/CNTs and Rh/A12O3[J]. Journal of Natural Gas Chemistry, 2001, 10 (3): 196~202.
    [25]高娃.汽车尾气净化催化剂及其金属载体的研究进展[J].兵器材料科学与工程, 2000, 23(4): 67~70.
    [26]龚茂初,林之恩,袁书华等.成胶条件对耐高温表面积氧化铝热稳定性的影响[J].催化学报, 2001, 22(6): 520~522.
    [27] M.Iwamoto,H.Hamada. Removal of nitrogen monoxide from exhaust gases through novel catalytic processes[J]. Catal. Today, 1991, 10: 57~71.
    [28] Voorheove R.J, Burton J.J, Carter R.C. Advanced Materials in Catalysis [M]. NewYork:Academic Press Inc., 1997, 129.
    [29] Iwamoto M., Hidenori Y. Novel Catalytic Decomposition and Reduction of NO [J]. Catalysis Today, 1994, 22 (1): 15~18.
    [30] Shelef M. Stability of the Square-Planar Cu2+ Sites in ZSM-5: Effect of Preparation, Heat Treatment and Modification[J]. J. Catal., 1999, 186(2): 334~344.
    [31] Spoto G, Zecchina A, Bordiga S, et al. Cu(I)-ZSM-5 Zeolites Prepared by Reaction of H-ZSM-5 with Gaseous CuCl: Spectroscopic Sharacterization and Reactivity towards Carbon Monoxide and Nitric Oxide[J]. Applied Catalysis B:Enviromental, 1994, 3(2-3): 151~172.
    [32] Valyon J, Hall W. K. Studies of the Desorption of Oxygen from Cu-Zeolites during NO Decomposition [J]. J. Catal, 1993, 143(2): 520~532.
    [33] Shuibo Xie, Michael P, Rosynek, Jack H. Lunsford.Catalytic Reactions of NO over 0–7mol% Ba/MgO Catalysts I: The Direct Decomposition of NO[J]. J. Catal., 1999, 188(1): 4~31.
    [34] Libby W. F. Promising Catalyst for Auto Exhaust[J]. Science, 1971, 171 (3970):499~500.
    [35] Pedersen L. A , Libby W. F. Unseparated Rare Earth Cobalt Oxide as Auto Exhaust Catalysts [J]. Science, 1972, 176 (4041): 1355~1366.
    [36] Balz D, Plieth K. The Structure of K2NiF4[J]. Electrochem., 1955, 59: 545.
    [37] Ruddlesdon S. N, Popper P. M. The Structure of La2CuO4 and LaSrVO4 [J]. J. Solid State Chem., 1973, 6(4): 525531.
    [38] Burns G, Dacol F. H, Shafer W. Raman Measurement of Materials with the K2NiF4 Structure[J]. Solid State Commun., 1987, 62(10): 687~689.
    [39] Goodenough J. B, Ramasesha S. Further Evidence for the Coexistence of Localized and Itinerant 3d Electrons in La2NiO4[J]. Mater. Res. Bull., 1982, 17(3): 383~390.
    [40] Mizuno N, Yamato M, Tanaka M, Misono M. Reactions of CO and NO over La2-xA’xCu1-yBy’O4 A K2NiF4-type mixed oxide[J]. Chem Mater 1989, 1: 232~236.
    [41] Tabata K. Decomposition of NO by Ba2YCu3O7-y[J]. J Mater Sci Lett 1988, 7:147~148.
    [42] Yamazoe N, Teraoka Y. Oxidation Catalysis of Perovskites- Relationships to Bulk Structure and Composition (valency, defect, etc.)[J]. Catalysis Today, 1990, 8 (2): 175~199.
    [43] Hirohisa Tanaka, Makoto Misono. Advances in designing perovskite catalysts[J]. Current Opinion in Solid State and Materials Science , 2001, 5: 381~387.
    [44]康振晋,孙尚梅,郭振平.钙钛矿结构类型的功能材料的结构单元和结构演变[J].化学通报, 2000, 4: 23~26.
    [45] Wang Z L, Kang Z C. Functional and Smart Materials:Structural evolution and structure analysis[M]. New York: Plenum Press, 1998: 93~149.
    [46]吴越.氧化物的非化学计量性和催化作用[J].科学通报,1992,37(2):97~106.
    [47] Wu Y, Yang T, Du B. S, et al. A Comparative Study on Perovskite-type Mixed Oxide Catalysts A′xA1 ? xBO3 ?λ(A′= Ca, Sr, A = La, B = Mn, Fe, Co) for NH3Oxidation[J]. J. Catal., 1989, 120(1): 88~107.
    [48] Yasutake Teraoka, Tomohiro Harada and Shuichi Kagawa. Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides[J]. J. Chem. Soc. Faraday Trans. , 1998, 94(13): 1887~1891.
    [49]刘卫,邓增强,张霄,金鑫,陈初升. La1-xSrxCoO3-D体系中缺陷形成与输运过程研究[J].化学物理学报, 2000, 13 (5) :599~604.
    [50] J.J.Zhu, D.H.Xiao, J.Li, X.G.Yang. Kinetics and Mechanism of NO Decomposition over La0.4Sr0.6Mn0.8Ni0.2O3 Perovskite-Type Oxides[J]. J. Molecular Catalysis A: Chemical, 2005, 236(1-2): 182~186.
    [51]朱君江,杨向光,许雪莲,魏可镁. Sr含量对La2?xSrxNiO4 (x = 0.0~1.2)上NO分解的影响[J].中国科学B辑化学, 2006, 36 (6): 465~470.
    [52] C.Tofan, D.Klvana, J.Kirchnerova. Direct Decomposition of Nitric Oxide over Perovskite-Type Catalysts PartⅡ:Effect of Oxygen in the Feed on the Activity of Three Selected Compositions[J]. Appl. Catal.A: General, 2002, 226(1-2): 225~240.
    [53] Tatsum Ishihara,Makoto Ando,Kenji Sada,Keiko Takiishi,Keiji Yamada,Hiroyasu Nishiguchi,Yusaku Takita. Direct decomposition of NO into N2 and O2 over La(Ba)Mn(In)O3 perovskite oxide[J]. Journal of Catalysis, 2003, 220: 104~114.
    [54] C.Tofan, D.Klvana, J.Kirchnerova. Direct Decomposition of Nitric Oxide over Perovskite-Type Catalysts PartⅠ: Activity when no oxygen is addid to the feed [J]. Appl. Catal. A: General, 2002, 223: 275~286.
    [55] C.Tofan, D.Klvana, J.Kirchnerova. Direct Decomposition of Nitric Oxide over Perovskite oxide catalysts: effect of CO2, H2O and CH4. Appl Catal B, 2002,36:311~323.
    [56] Liu Z, Hao J, Fu L, Zhu T. Study of Ag/La0.6Ce0.4CoO3 catalysts for direct decomposition and reduction of nitrogen oxides with propene in the presence of oxygen. Appl Catal B, 2003, 44: 355~370.
    [57] Teraoka Y, Harada T, Kagawa S. Reaction mechanism of direct decomposition ofnitric oxide over Co- and Mn-based perovskite-type oxides. J Chem. Soc,Faraday Trans, 1998, 94(13):1887~1892.
    [58] S.Royer, D.Duprez, S.Kaliaguine. Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1-x FexO3 [J]. Journal of Catalysis, 2005, 234: 364~375.
    [59] Zhao Z, Yang X G , W u Y. Comparative Study of Nickel-based Perovsk ite-like Mixed Oxide Catalysts for Direct Decomposition of NO [J]. Appl Catal B: Environmental, 1996, 8 (3): 281~297.
    [60]赵震,杨向光,刘钰等. LnSrNiO4-λ系列复合氧化物的物化性质与对NO分解的催化性能[J].中国稀土学报, 1998, 16(4: 325~331.
    [61]赵震.氮氧化物(NOx)分解-还原复合氧化物催化剂的研究[D].长春:中国科学院长春应用化学研究所, 1996.
    [62] C.Tofan, D. Klvana, J. Kircherova. Direct decomposition of nitric oxide over perovskite-type catalysts PartⅠA ctivity when no oxygen is added to the feed[J]. Applied Catalysis A: General, 2002, 223: 275~286.
    [63]余家国,张联盟.高纯超细陶瓷粉料溶胶凝胶法制备工艺.硅酸盐通报,1990, 18:44~49.
    [64] Charles D. E. Lakeman and David A. Payne. Sol-Gel Processing of Electrical and Magnetic Ceramics[J]. Materials Chemistry and Physics, 1994, 38: 305~324.
    [65]熊兆贤等.无机材料研究方法-合成制备、分析表征与性能检测[M].第一版.厦门:厦门大学出版社., 2001: 30~31.
    [66]汪信,郝青丽,张莉莉.软化学方法导论[M].科学出版社, 2007.
    [67] Park J S, Han Y H. Nano size BaTiO3 powder coated with silica[J]. Ceram. Int., 2005, 31(6): 777~782.
    [68] Qing Xu, Duan-ping Huang, Wen Chen et al. Citrate method synthesis characterization and mixed electronicionic conduction properties of La0.6Sr0.4Co0.8Fe0.2O3 perovskite-type complex oxides[J]. J. Scripts Materialia,2004, 50: 165~170.
    [69]揭雪飞.甲烷直接氧化SOFC阳极电催化剂的研究[D].华南理工大学硕士学位论文, 2002.
    [70] G.Shabbir, A.H.Qureshi, K.Saeed. Naon-crystalline LaFeO3 powders synthesized by the citrate-gel method[J]. Materials Letters, 2006,60: 3706~3709.
    [71] Gina Pecchi, Patricio Reyes, Rau′l Zamora, Claudia Campos,Luis E. Cadu′s, Bibiana P. Barbero . Effect of the preparation method on the catalytic activity of La1_xCaxFeO3 perovskite-type oxides[J]. Catalysis Today , 2008,133–135 : 420–427.
    [72] Zhiming Liu, Jiming Hao, Lixin Fu. Study of Ag/La0.6Ce0.4CoO3 Catalysts for Direct Decomposition and Reduction of Nitrogen Oxides with propene in the pres- ence of oxygen[J]. Appl. Catal. B: Environmental, 2003, 44(4): 355~370.
    [73] Liang Zhencheng,Qin yongning,Liao qiaoli et al. Properties of perovskite–type La1-xCuxMnO3 catalysts[J].应用化学, 1997, 14(1): 11~15.
    [74] Bibiana P, Barbero, Julio Andrade Gamboa, Luis E, Cadus. Synthesis and characterisation of La1-xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compouds[J]. Applied Catalysis B: Environmental, 2006, 65: 21~30.
    [75] N.Ogita, M.Udagama, K.Kojima , K.Ohbayashi, J. Physical.Society of Japan, 1988 , 57: 3932.
    [76] Runduo Zhang, Adrian Villanueva, Houshang Alamdari, Serge Kaliaguine. Cu-and Pd-substituted nanoscale Fe-based perovskites for selective catalytic reduction of NO by propene[J]. Journal of Catalysis , 2006, 237: 368~380.
    [77] Nora A.Merino, Bibiana P.Barbero, Paul Grange, Luis E.Cadus. La1?xCaxCoO3 perovskite-type oxides: preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane[J]. Journal of Catalysis, 2005, 231: 232~244.
    [78] Junjiang Zhu, Dehai Xiao, Jing Li, Xiaofan Xie, Xiangguang Yang. Recycle-newpossible mechanism of NO decomposition over perovskite(-like) oxides[J]. J Mol Catal A, 2005, 233: 29.
    [79]朱君江.富氧条件下NO分解催化剂及反应机理的研究[D].中国科学院博士学位论文, 2005年6月.
    [80]俞守耕.贵金属催化净化汽车尾气中稀土氧化物的助催化和稳定化[J].化学通报,2001,22(2):62-66.
    [81]王东.类钙钛矿型复合氧化物催化分解氮氧化物的研究[D].黑龙江大学硕士学位论文, 2007年6月.
    [82] Mchida M,Uto M, Kurogi D, Kijima T. Solid-gas interaction of nitrogen oxide adsorbed on MnOx-CeO2:a DRIFTS study[J]. J.Mater.Chem. 2001,11: 900~904.
    [83] Shin S , Arakawa H,Shimomura K,et al. Absorption of NO in the lattice of an oxygen deficient perovskite SrFeO3-x and the infrared spectroscopic study of the system NO-SrFeO3-x [J]. Mat Res Bull, 1979, 14(2): 633~639.
    [84] Moden B,Costa P D, Iglesia E, et al. Kinetics and mechanism of steady-state catalytic NO decomposition reactions on Cu-ZSM5[J]. Journal of Catalysis, 2002, 209(1): 71~76.
    [85] G. Pecchi, P. Reyes, R. Zamora, L.E. Cadu′s, J.L.G. Fierro. Surface properties and performance for VOCs combustion of LaFe1_yNiyO3 perovskite oxides[J]. Journal of Solid State Chemistry ,2008,181: 905–912.
    [86]许树军.La-Ba-Co基钙钛矿型复合氧化物催化分解氮氧化物的研究[D].黑龙江大学硕士学位论文, 2006年6月.
    [87] L.C. Moreno, J.S. Valencia, D.A. Land?′nez Te′llez, J. Arbey Rodr?′guez M., M.L. Mart?′nez, J. Roa-Rojas, F. Fajardoc. Preparation and structural study of LaMnO3 magnetic material[J]. Journal of Magnetism and Magnetic Materials , 2008 ,320: e19~e21.
    [88] Runduo Zhang, Adrian Villanueva, Houshang Alamdar, Serge Kaliaguin- e. SCR of NO by Propene over Nanoscale LaMn1-xCuxO3 Perovskites [J]. Applied Catalysis A: General, 2006, 307(1): 85~97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700