用户名: 密码: 验证码:
多壁碳纳米管的改性及NO吸附—脱附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用碱活化法(KOH)、环糊精非共价法对多壁碳纳米管进行改性,并制备了氮、硼掺杂的碳纳米管。采用SEM、TG-MS、XRD、XPS、FT-IR、Raman等对所制备和改性的碳纳米管进行了表征。结果表明碱活化后的碳纳米管其比表面积较碱活化前的碳纳米管明显增大,SEM图片显示碱活化后的碳纳米管变直变短;而经环糊精改性的碳纳米管表面被环糊精所包裹,XRD和Raman研究表明,碱活化法和环糊精改性的碳纳米管结构并没有发生变化。而氮硼掺杂改性的碳纳米管Raman谱图G峰峰位向波数大的方向偏移,表现出半导体的特性。
     NO吸附-脱附研究结果发现:经碱活化和环糊精改性的碳纳米管,对NO吸附的能力明显增强。因为碱活化后的碳纳米管的比表面积增大,增强了碳纳米管对NO的吸附能力;而环糊精特有的空腔和多羟基结构对NO具有选择吸附性能。
     用氮、硼掺杂改性的碳纳米管,制备碳纳米管修饰电极,进行NO在碳纳米管修饰电极上的电氧化研究。研究发现氮、硼掺杂改性的碳纳米管修饰电极NO电催化反应活性增加,反应的活化能降低,提高了NO电化学氧化反应的灵敏度。
In this article, muli-walled carbon nanotubes modified by KOH,β-Cyclodextrin , and doped with B or N have been synthesized. The samples are characterized by SEM, TG-MS, XRD, FT-IR, Raman and XPS. The results demonstrate that the BET surface area of MWCNTs activated by KOH is higher than those of unactivated MWCNTs. And SEM images show that MWCNTs activated by KOH becomes shorter and straighter. While MWCNTs were modified withβ-Cyclodextrin,β-Cyclodextrin enwrapped the surface of MWCNTs. MWCNTs activated by KOH and modified byβ-Cyclodextrin were characterized by the means of XRD and Raman, it was found the structure of the MWCNTs didn’t changed. The results of NO adsorption-desorption showed that the adsorption of NO of MWCNTs activated by KOH and modified byβ-Cyclodextrin are obviously higher than that of MWCNTs. Because of the larger BET surface area of MWCNTs activated by KOH, therefore the NO adsorption capability of MWCNTs activated by KOH was improved; andβ-Cyclodextrin that wrapped MWCNTs has unique cavum and NO can be adsorbed inside it, the adsorption amount of NO of MWCNTs modified byβ-Cyclodextrin increased comparison of MWCNTs. The Raman G bands of MWCNTs dopped with N and B happen to red shift, which show the characteristic of semiconductor obviously.
     Electrocatalytic oxidation of nitric oxide (NO) at the modified electrodes of MWCNTs dopped with N and B were studied with cyclic voltammetric determination.
     The activity of modified electrode of MWCNTs dopped with N and B were better than that of MWCNTs, MWCNTs activated by KOH and modified byβ-Cyclodextrin. The activation energy (anode potential of MWCNTs dopped with N and B) of NO oxidation decreased. The result demonstrates that sensitivity of NO electrocatalytic oxidation reaction of MWCNTs dopped with N and B was enhanced.
引文
[1] Kroto H. W., Heath J. R., O'Brien S. C., et al. C60: Buckminster fullerene[J]. Nature, 1985, 318(6042): 162-163.
    [2] Iijima S. Helical microtubes of graphite carbon[J]. Nature, 1991, 354(6348): 56-58.
    [3] Iijima S., Ichihashi T. Single-shell carbon nanotube of 1-nm diameter[J]. Nature, 1993, 363(6430): 603-605.
    [4] Dai H. J., Rinzler A. G., Nikolaev P., et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide[J]. Chemical Physics Letters, 1996, 260(3-4): 471-475.
    [5] Dresselhaus M. S., Dresselhaus G., Eklund P. C., et al. Science of fullences and carbon nanotubes[M]. San Diego, Academic Press, 1996, 757-758.
    [6] Liu B. B., W?gberg T., Olsson E., et al. Synthesis and characterization of single-walled nanotubes produced with Ce/Ni as catalysts[J]. Chemical Physics Letters, 2000, 320(3-4): 365-372.
    [7] Liu C., Cheng H. M., Cong H. T., et al. Synthesis of macroscopically long ropes of single-walled carbon nanotubes[J]. Advanced Materials, 2000, 12(16): 1190-1192.
    [8] Kokai F., Takahashi K., Yudasaka M., et al. Laser ablation of graphite-Co/Ni and growth of single-wall carbon nanotubes in vortexes formed in He and Ar atmosphere[J]. Journal of Physical Chemistry B, 2000, 104(29): 6777-6784.
    [9] Marco V. A., Renzo M., Radenka K., et al. Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments [J]. Carbon, 2003, 41(12): 2393-2401.
    [10]王新庆,王淼,李振华等.高效循环电弧放电法大量制备单壁纳米碳管的研究[J].物理学报, 2004, 53(7): 2254-2257.
    [11] Li L. X., Li F., Liu C., et al. Synthesis and characterization of double-walled carbon nanotubes by hydrogen-arc discharge [J]. Carbon, 2005, 43(3): 623-629.
    [12] Tang D. S., Sun L. F., Zhou J. J., et al. Two possible emission mechanisms involved in thearc discharge method of carbon nanotube preparation[J]. Carbon, 2005, 43(13): 2812-2816.
    [13] Lob?o D. C., Povitsky A. Furnace geometry effects on plume dynamics in laser ablation for nanotubes synthesis[J]. Mathematics and Computers in Simulation, 2004, 65(4-5): 365-383.
    [14] Bolshakov A. P., Uglov S. A., Saveliev A. V., et al. A novel CW laser-powder method of carbon single-wall nanotubes production[J]. Diamond and Related Materials, 2002, 11(3-6): 927-930.
    [15] Gao J. S., Umeda K., Uchino K., et al. Control of sizes and densities of nano catalyst for nanotube synthesis by plasma breaking method[J]. Materials Science and Engineering B, 2004, 107(2): 113-118.
    [16] Chen C. X., Chen W. Z., Zhang Y. F., et al. Synthesis of carbon nanotubes by pulsed laser ablation at normal pressure in metal nano-sol[J]. Physical E, 2005, 28(2): 121-127.
    [17] Ivanov V., Nagy J. B., Lambin P., et al. The study of carbon nanotubes produced by catalytic method[J]. Chemical Physics Letters, 1994, 223(4): 329-335.
    [18] Flahaut E., Govindaraj A., Peigney A., et al. Synthesis of single-walled carbon nanotubesusing binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solidsolutions[J]. Chemical Physics Letters, 1999, 300(1-2): 236-242.
    [19] Jeong H. J., Hyeok A. K., Lim S. C., et al. Narrow diameter distribution of single-walled carbon nanotubes grown on Ni-MgO by thermal chemical vapor deposition[J]. Chemical Physics Letters, 2003, 380(3-4): 263-268.
    [20] Hiroki A., Kazuhiro N., Imamura S., et al. Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO[J]. Chemical Physics Letters, 2004, 391(4-6): 308-313.
    [21] Seidel R., Duesberg G. S., Unger E., et al. Chemical vapor deposition growth of single-wall carbon nanotubes at 600℃and a simple growth model[J]. Journal of Physical Chemistry B, 2004, 108(6): 1888-1893.
    [22] López P. N., Ramos I. R., Ruiz A. G., et al. A study of carbon nanotubes formation by C2H2 decomposition on iron based catalyst using a pulsed method[J]. Carbon, 2003, 41(13): 2509-2517.
    [23] Li Y. D., Chen J. L., Chang L., et al. Catalytic of carbon fibers from methane on a nickel-alumina composite catalyst prepared from feitknecht compound precursor[J]. Applied catalysis A: General, 1997, 163(1-2): 45-47.
    [24] Bento A. M., Maniette Y., Munce E., et al. Carbon nanotubes production by catalytic pyrolysia of bezene[J]. Carbon, 1998, 36(5): 681-683.
    [25] Hernadi K., Fonseca A., Nagy J. B., et al. Production of nanotubes by the catalytic decomposition of different carbon-containing compounds[J]. Applied Catalysis A:general, 2000, 199(2): 245-255.
    [26] Pei L., Yan L., Li G., et al. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry [J]. Journal of Analytical Atomic Spectrometry, 2004, 19(11): 1489-1492.
    [27] Muoz J., Gallego M., Valcárcel M., et al. Speciation of organometallic compounds in environmetal samples by gas chromatography after flow preconcentration on fullerenes and nanotubes[J]. Analytical Chemistry, 2005, 77(16): 5389-5395.
    [28] Cai Y. Q., Jiang G. B., Liu J. F., et al. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-Nonylphenol, and 4-tert-Octylphenol [J]. Analytical Chemistry, 2003, 75(10) : 2517-2521.
    [29] Cai Y. Q., Cai Y., Mou S. F., et al. Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples [J]. Journal of Chromatography A, 2005, 108(2): 245-247.
    [30] Zhou Q. X., Xiao J. P., Wang W. D., et al. Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector [J]. Talanta, 2006, 68(4): 1309-1315.
    [31] Zhou Q. X., Wang W. D., Xiao J. P., et al. Preconcentration and determination of nicosulfuron, thifensulfuron-methyl and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high performance liquid chromatography [J]. Analytica Chimica Acta, 2006, 559(2): 200-206.
    [32] Langer L., Bayot V., Grivei E., et al. Quantum transportin a multiwalled carbon nanotube [J]. Physical Review Letters, 1996, 76(3): 479-482.
    [33] Tans S. J., Devoret M. H., Dai H. J., et al. Individual single-wall carbon nanotubes as quantum wires [J]. Nature, 1997, 386(6645): 474-477.
    [34] Zhu W., Bower C., Kochanski G. P., et al. Electron field emission from nano structured diamond and carbon nanotubes[J]. Solid-State Electronics, 2001, 45(6): 921-924.
    [35] Jonge N., Lanny Y., Schools K., et al. High brightess electron beam from a multi-walled carbon nanotubes[J]. Nature, 2000, 420(6811): 393-395.
    [36] Wang Z. H., Xiao S. F., Chen Y., et al. Electrocatalytic and analytical response of -cyclodextrin incorporated carbon nanotubes-modified electrodes toward guanine [J]. Electroanalysis, 2005, 17(22): 2057-2061.
    [37] He J. B., Lin X. Q., Pan J., et al. Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin: a comparison with graphite paste electrode via voltammetry and chronopotentiometry [J]. Electroanalysis, 2005, 17(18): 1681-1686.
    [38] Lu G. H., Jiang L. Y., Song F., et al. Determination of uric acid and norepinephrine by chitosan-multiwall carbon nanotube modified electrode[J]. Electroanalysis, 2005, 17(10): 901-905.
    [39] Merkoi A., Pumera M., Llopis X., et al. New materials for electrochemical sensing VI: carbon nanotubes [J]. Trends Analytical Chemistry, 2005, 24(9): 826-838.
    [40] Heller I., Kong J., Heering H. A., et al. Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry[J]. Nano Letters, 2005, 5(1): 137-142.
    [41]孙延一,吴康兵,胡胜水等.阿霉素在多壁碳纳米管膜电极上的电化学行为及其分析研究[J].分析科学学报, 2004, 20(1): 26-28.
    [42] Zhu N. N., Chang Z., He P. G., et al. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes [J]. Analytica Chimica Acta, 2005, 545(1): 21-26.
    [43] Zhang M., Gorski W. Electrochemical sensing based on redox mediation at carbon nanotubes [J]. Analytical Chemistry , 2005, 77(13): 3960-3965.
    [44] Cheng G. F., Zhao J., Tu Y. H., et al. A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole [J]. Analytica Chimica Acta, 2005, 533(1): 11-16.
    [45] Kong J., Franklin N. R., Zhou C. W., et al. Nanotube molecular wires as chemical sensors[J]. Science, 2000, 287(5453): 622-625.
    [46] Collins P. G., Bradley K., Ishigami M., et al. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes[J]. Science, 2000, 287(5459) : 1801-1804.
    [47] Peng S., Cho K. Ab initio study of doped carbon nanotube sensors[J]. Nano Letters, 2003, 3(4): 513-517.
    [48] Silva L. B., Fagan S. B., Mota R., et al. Ab Initio Study of Deformed Carbon Nanotube sensors for carbon monoxide molecules [J]. Nano Letters, 2004, 4(1) : 65-67.
    [49] Zhou L., Sun Y., Yang Z. G., et al. Hydrogen and methane sorption in dry and water-loaded multiwall carbon nanotubes[J]. Journal of Colloid and Interface Science, 2005, 289(2): 347-351.
    [50] Tsang S. C., Chen Y. K., Harris, et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature, 1994, 372(6479): 159-162.
    [51] Hamon M. A., Chen J., Hu H., et al. Dissolution of single-walled carbon nanotubes [J]. Advanced Materials, 1999, 11(10): 835-840.
    [52] Niyogi S., Hamon M. A., Hu H., et al. Chemistry of single-walled carbon nanotubes[J]. Accounts of Chemical Research, 2002, 35(12): 1105-1113.
    [53] Banerjee S., Wong S. S. Synthesis and characterization of carbon nanotube nano crystal heterostructures[J]. Nano Letters, 2002, 2(3): 195-200.
    [54] Ellis A. V., Vijayamohanan K., Goswami R., et al. Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes[J]. Nano Letters, 2003, 3(3): 279-282.
    [55] Hazani M., Naaman R., Hennrich F., et al. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes[J]. Nano Letters, 2003, 3(2): 153-155.
    [56] Huang W. J., Taylor S., Fu K. F., et al. Attaching proteins to carbon nanotubes viadiimide-activated amidation[J]. Nano Letters, 2002, 2(4): 311-314.
    [57] Balasubramanian K., Burghard M. Chemically functionalized carbon nanotubes[J]. Small, 2005, 1(2), 180-192.
    [58] Holzinger M., Abraham J., Whelan P., et al. Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes[J]. Journal of the American Chemical Society, 2003, 125(28): 8566-8580.
    [59] Umek P., Seo J., Hernadi K., et al. Addition of carbon radicals generated from organic peroxides to singlewall carbon nanotubes[J]. Chemistry of Materials, 2003, 15(25): 4751-4755.
    [60] Mickelson E. T., Huffman C. B., Rinzler A. G., et al. Fluorination of single-wall carbon nanotubes[J]. Chemical Physics Letters, 1998, 296(1-2): 188-194.
    [61] Saini R. K., Chiang I. W., Peng H. Q., et al. Covalent sidewall functionalization of single-wall carbon nanotubes[J]. Journal of the American Chemical Society, 2003, 125(12): 3617-3621.
    [62] Hamwi A., Alevergnat H., Bonnamy S., et al. Fluorination of carbon nanotubes [J]. Carbon, 1997, 35(6): 723-728.
    [63] Mickelson E. T., Chiang I. W., Zimmerman J. L., et al. Solvation of fluorinated single-wall carbon Nanotubes in alcohol solvents[J]. Journal of Physical Chemistry B, 1999, 103(21): 4318-4322.
    [64] Dyke C. A., Tour J. M. Wavelength-dependent photochemistry of diazo meldrum's acid and its spirocyclic isomer, diazirino meldrum's acid: wolff rearrangement versus isomerization[J]. Journal of the American Chemical Society, 2003, 125(5): 1156-1157.
    [65] Stevens J. L., Huang A. Y., Peng H. Q., et al. Sidewall Amino-Functionalization of Single-Walled Carbon Nanotubes through Fluorination and Subsequent Reactions with Terminal Diamines [J]. Nano Letters, 2003, 3(3): 331-336.
    [66] Michael H., Johannes S., Damien S., et al. Cycloaddition for cross-linking SWCNTs[J]. Carbon, 2004, 42(5): 941-947.
    [67] Khare B. N., Meyyappan M., Cassell A. M., et al. Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge[J]. Nano Letters, 2002,2(1): 73-77.
    [68] Chen R. J., ZhangY. G., Wang D. W., et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J]. Journal of the American Chemical Society, 2001, 123(16): 3838-3839.
    [69] Petrov P., Stassin F., Pagnoulle C., et al. Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers[J]. Chemical communications, 2003, 23(23): 2904-2905.
    [70] Zhu J., Kase D., Shiba K., et al. A surface modification approacto the patterned assembly of single-walled carbon nanomaterials[J]. Nano Letters, 2003, 3(8): 1033-1036.
    [71] Zhao J. J., Lu J. P., Han J., et al. Noncovalent functionalization of carbon nanotubes by aromatic organic molecules[J]. Applied Physics Letters, 2003, 82(21): 3746-3748.
    [72] Connell M. J., Boul P., Ericson L. M. et al. Reversible water-solubilization of single-walled carbon nanotubes by polymerwrapping[J]. Chemical Physics Letters, 2001, 342(3/4): 265-271.
    [73] Carrillo A., Swartz J. A., Gamba J. M., et al. Noncovalent functionalization of graphite and carbon nanotubes with polmer multilayers and gold nanoparticles[J]. Nano Letters, 2003, 3(10): 1437-1440.
    [74] Azamian B. R., Davis J. J., Coleman K. S., et al. Bioelectrochemical single-walled carbon nanotubes[J]. Journal of the American Chemical Society, 2002, 124(43): 12664-12665.
    [75] Ito T., Sun L., Crooks R. M., et al. Observation of DNA transportthrough a single carbon nanotube channel using fluorescence microscopy[J]. Chemical communications, 2003, 7(13): 1482-1483.
    [76] Dieckmann G. R., Dalton A. B., Johnson P. A., et al. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices[J]. Journal of the American Chemical Society, 2003, 125(7): 1770-1777.
    [77] Zhang J., Lee J. K., Wu Y., et al. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes[J].Nano Letters, 2003, 3(3): 403-407.
    [78] Murakami H., Nomura T., Nakashima N., et al. Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites [J]. Chemical Physics Letters, 2003, 378(5-6): 481-485.
    [79] Wang Z. H., Wang Y. M., Luo G. A., et al. A selective voltammetric method for uric acid detection atβ-cyclodextrin modified electrode incorporating carbon nanotubes[J]. The Analyst, 2002, 127(10): 1353-1358.
    [80]王宗花,罗国安,肖素芳等.α-环糊精复合碳纳米管电极对异构体的电催化行为[J].高等学校化学学报, 2003, 24(5): 811-813.
    [81] Lee Y. T., Kim N. S., Bae S. Y., et al. Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900-1100℃[J]. Journal of Physical Chemistry B, 2003, 107(47): 12958-12963.
    [82] Tao X. Y., Zhang X. B., Sun F. Y., et al. Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1-xMoO4 catalyst[J]. Diamond & Related Materials, 2007, 16(3): 425-430.
    [83] Liu J. W., Webster S., Carroll D. L., et al. Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method[J]. Journal of Physical Chemistry B, 2005, 109(33): 15769-15774.
    [84] Mondal K. C., Coville N. J., Witcomb M. J., et al. Boron mediated synthesis of multiwalled carbon nanotubes by chemical vapor deposition[J]. Chemical Physics Letters, 2007, 437(1-3): 87-91.
    [85] Xu Q., Zhang L., Zhu J., et al. Controlled growth of composite nanowires based on coating Ni on carbon nanotubes by electrochemical deposition method[J]. Journal of Physical Chemistry B, 2003, 107(33): 8294-8296.
    [86] Che G. L., Lakshmi B. B., Fisher E. R., et al. Carbon nanotubule membranes for electrochemical energy storage and produceion[J]. Nature, 1998, 393(6683): 346-349.
    [87] Nojeh A., Lakatos G. W., Peng S., et al. A carbon nanotube cross structure as a nanoscale quantum device [J]. Nano Letters, 2003, 3(10): 1469-1469.
    [88] Fridell E., Skoglundh M., Westerberg B., et al. NOx storage in barium-containing catalysts [J]. Journal of Catalysis, 1999, 183(2): 196-199.
    [89] Perdana I., Creaser D., ?hrman O., et al. NOx adsorption over a wide temperature range on Na-ZSM-5 films [J]. Journal of Catalysis, 2005, 234(1): 219-229.
    [90] Huuhtanen M., M??tt? T., Rahkamaa K., et al. Adsorption of propene in the presence and absence of oxygen or nitric oxide on Pt-loaded ZSM-5, beta, Y, and ferrierite zeolites [J]. Topics Catalysis, 2004, 30/31(1): 359-363.
    [91] Jacquot F., Logie V., Brilhac J., et al. Kinetics of the oxidation of carbon black by NO2 influence ofthe presence of water and oxygen[J]. Carbon, 2002, 40(3): 335-343.
    [92] Yang J., Mestl G., Herein D., et al. Reaction of NO with carbonaceous materials reaction and adsorption of NO on ashless carbon black[J]. Carbon, 2000, 38(5): 715-727.
    [93] Baughman R. H., Zakhidov A. A., Heer W. A., et al. Carbon nanotubes the route toward applications[J] Science, 2002, 297(5582): 787-792.
    [94]朱宏伟,徐才录,陈桉等.碳纳米管表面处理对储氢性能的影响[J].炭素技术, 2000, 109(4): 12-13.
    [95] Jiang Q., Qu M. Z., Zhang B. L., et al. Preparation of activated carbon nanotubes [J]. Carbon, 2002, 40(14): 2743-2745.
    [96]江奇,卢晓英,赵勇等.碳纳米管的活化处理及对其电化学容量影响的研究[J].物理化学学报, 2004, 62(8): 829-832.
    [97]江奇,卢晓英,赵勇等.活化条件对活性碳纳米管比表面积的影响[J].物理化学学报, 2006, 22(1): 42-47.
    [98]立本英畿,安部郁夫.活性炭的应用技术[M].东南大学出版社, 2002, 39-40.
    [99] Zhao J. J., Buldum A., Han J., et al. Gas molecule adsorption in carbon nanotubes and nanotube bundles[J]. Nanotechnology, 2002, 13(2): 195-200.
    [100] Bao J. C., Tie C. Y., Xu Z., et al. A Facile Method for Creating an Array ofMetal-Filled Carbon Nanotubes[J]. Advanced Materials, 2002, 14(20): 1483-1486.
    [101] Li W. Z., Xie S. S., Qian L. X., et al. Large-Scale Synthesis of Aligned Carbon Nanotubes[J]. Science. 1996, 274(5293): 1701-1703.
    [102] Varghese O. K., Kichambre P. D., Gong D., et al. Gas sensing characteristics of multi-wall carbon nanotubes[J]. Sensors and Actuators B: Chemical, 2001, 81(1): 32-41.
    [103] Sotiropoulou S., Chaniotakis N. A. Carbon nanotube array-bassed biosensor[J]. Analytical and Bioanalytical Chemistry, 2003, 375(1): 103-105.
    [104] Ashish M., Nikhil K., Pulickel M., et al. Miniaturized gas ionization sensors using carbon nanotubes[J]. Nature, 2003, 424(6945) :171-174.
    [105] Debjit C., Galeska I., Fotios P., et al. A Route for Bulk Separation of Semiconducting from MetallicSingle-Wall Carbon Nanotubes[J]. Journal of the American Chemical Society, 2003, 125(11):3370-3375.
    [106] Krupke R., Hennrich F., Kappes M., et al. Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes[J]. Nano Letters, 2004, 4(8): 1395-1399.
    [107] Kim Y., Hong S., Sehun Jung, et al. Dielectrophoresis of Surface Conductance Modulated Single-Walled Carbon Nanotubes Using Catanionic Surfactants[J]. Journal of Physical Chemistry B, 2006, 110(4): 1541-1545.
    [108] Xiao K., Liu Y. Q., Hu P. A., et al. N-type field-effect transistors made of an individual nitrogen-doped multiwalled carbon nanotube[J]. Journal of the American Chemical Society, 2005, 127(24): 8614-8617.
    [109] Kong J., Chapline M. G., Dai H., et al. Functionalized corbon nanotube for molecular hydrogen sensors[J]. Advanced Materials, 2001, 13(18): 1384-1386.
    [110] Duclaux L. Review of the doping of carbon nanotubes (multiwalled and single-walled)[J]. Carbon. 2002, 40(10): 1751-1764.
    [111] Zhou Z., Gao X., Yan J., et al. Enhanced lithium absorption in single-walled carbon nanotubes by boron doping[J]. Journal of Physical Chemistry B, 2004, 108(26): 9023-9026.
    [112] Han W., Bando Y., Kurashima K., et al. Boron-doped carbon nanotubes preparedthrough a substitution reaction[J]. Chemical Physics Letters, 1999, 299(5): 368-373.
    [113] Borowaik E., Pichler T., Fuentes G. G., et al. Effcient production of B-subsitituted single-walled carbon nanotubes[J]. Chemical Physics Letters, 2003, 378(5-6): 516-520.
    [114] Jhi S., Louie S. G., Cohen M. L., et al. Electronic properties of oxidized carbon nanotubes[J]. Physical Review Letters, 2000, 85(8): 1710-1715.
    [115] Peng, S., Cho K. Chemical control of nanotube electronics[J]. Nanotechnology, 2000, 11(2): 57-60.
    [116] Han W. Q., Cumings J., Huang X. S., et al. Synthesis of aligned BxCyNz nanotubes by a substitution-reaction route[J]. Chemical Physics Letters, 2001, 346(5-6): 368-372.
    [117] Kaufman J. H., Metin S., Saperstein D. D., et al. Symmetry breaking in nitrogen-doped amorphous carbon: Infrared observation of the raman-active G and D bands[J]. Physical Review B, 1989, 39(18): 13053-13060.
    [118] Yap Y. K., Kida S., Aoyama T., et al. Influence of negative dc bias voltage on structural transformation of carbon nitride at 600°C[J]. Applied Physics Letters, 1998, 72(7): 915-918.
    [119] Zhao, Q., Nardelli M. B., Lu, W., et al. Carbon Nanotube-metal cluster composites: a new road to chemical sensors[J]. Nano Letters, 2005, 5(5): 847-851.
    [120] Redlich P., Loeffler M. J., Ajayan P. M., et al. B-C-N nanotubes and boron doping of carbon nanotubes[J]. Chemical Physics Letters, 1996, 260(3-4): 465-470.
    [121] Hsu W. K., Firth S., Redlich P., et al. Boron-doping effects in carbon nanotubes[J]. Journal of Materials Chemistry, 2000, 10(6): 1425-1430.
    [122] Lee C. J., Son K. H., Park J., et al. Low temperature growth of vertically aligned carbon nanotubes by thermal chemical vapor deposition[J]. Chemical Physics Letters, 2001, 338(2-3): 113-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700