用户名: 密码: 验证码:
小球藻与不动杆菌联合处理高氮磷废水的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on Removal of Phosphorus from Nitrogen and Phosphorus Wastewaters by the Chlorella Vulgaris and Acinetobacter
  • 作者:钟玉鸣 ; 邓启华 ; 王伟 ; 李焕垲 ; 童英林 ; 王琴 ; 刘建高 ; 金益曼 ; 刘晖
  • 英文作者:Zhong Yuming;Deng Qihua;Wang Wei;Li Huankai;TongYinglin;Wang Qin;Liu Jiangao;Jin Yiman;Hui Liu;College of Environmental Science and Engineering,Zhongkai Unitersity of Agriculture and Engineering;
  • 关键词:小球藻 ; 不动杆菌 ; 废水 ; ;
  • 英文关键词:chlorella vulgaris;;acinetobacter;;wastewaters;;nitrogen;;phosphorus
  • 中文刊名:广东化工
  • 英文刊名:Guangdong Chemical Industry
  • 机构:仲恺农业工程学院环境科学与工程学院;广州希望饲料有限公司;
  • 出版日期:2019-02-15
  • 出版单位:广东化工
  • 年:2019
  • 期:03
  • 基金:广州市对外合作项目(201807010056);; 广东省科技计划(2015A020215016);; 2019攀登计划专项
  • 语种:中文;
  • 页:113-115
  • 页数:3
  • CN:44-1238/TQ
  • ISSN:1007-1865
  • 分类号:X703
摘要
随着养殖业的迅猛发展,高氮磷废水大量排放导致的水体富营养化,是生态防治的重要内容之一。在高氮磷废水中,小球藻与不同类型的聚磷菌群体有互作关系,其中与不动杆菌呈现出多层次、复杂的网络式互动联系,本文综述了小球藻(Chlorellavulgaris)与不动杆菌(Acinetobacter)联合去除氮磷废水中磷的作用机制,显示小球藻与不动杆菌如何通过特定联动机制相互促进从而有效吸收废水中的污染物。
        With the rapid development of the aquaculture industry, a large amount of wastewaters containing high level nitrogen and phosphorus resulted in eutrophication of water, which is one of the important issues for ecological remediation. Chlorella vulgaris interacts with different types of polyphosphate groups,especially with acinetobacter presents a multi-level, complex network of interactions in wastewaters containing high level nitrogen and phosphorus. In this study, the phosphorus removal mechanism for the combined chlorella vulgaris with acinetobacter was summarized, both chlorella and acinetobacter could promote the adsorption efficiencies of pollutants through a specific linkage mechanism.
引文
[1]中华人民共和国环境保护部等.2010第一次全国污染源普查公报[J].2010.
    [2]Copetti D,et al.Eutrophication management in surface waters using lanthanum modified bentonite[J].Water Res,2016,97:162-74.
    [3]Nyenje P M,et al.Eutrophication and nutrient release in urban areas of sub-Saharan Africa[J].Sci Total Environ,2010,408(3):447-55.
    [4]Cao L,et al.Environmental impact of aquaculture and countermeasures to aquaculture pollution in China[J].Environ Sci Pollut Res Int,2007,14(7):452-62.
    [5]Bashar R,et al.Cost effectiveness of phosphorus removal processes in municipal wastewater treatment[J].Chemosphere,2018,197:280-290.
    [6]Lee D J,Chang J S,Lai J Y.Microalgae-microbial fuel cell[J].Bioresour Technol,2015,198:891-5.
    [7]Schmollinger S,et al.Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome,the Proteome,and Photosynthetic Metabolism[J].Plant Cell,2014,26(4):1410-1435.
    [8]Kang Z,et al.A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength[J].Microbiol Biotechnol,2015,25(1):109-18.
    [9]Mieszkin S,Callow M E,Callow J A.Interactions between microbial biofilms and marine fouling algae[J].Biofouling,2013,29(9):1097-113.
    [10]Quinn J C,Davis R.The potentials and challenges of algae based biofuels:a review of the techno-economic,life cycle,and resource assessment modeling[J].Bioresour Technol,2015,184:444-52.
    [11]Li Y,et al.Characterization of a microalga Chlorella sp.well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production[J].Bioresour Technol,2011,102(8):5138-44.
    [12]Mennaa F Z,Arbib Z,Perales J A.Urban wastewater treatment by seven species of microalgae and an algal bloom:Biomass production,N and Premoval kinetics and harvestability[J].Water Res,2015.83:42-51.
    [13]Abdelaziz A E,Ghosh D,Hallenbeck P C.Characterization of growth and lipid production by Chlorella sp.PCH90,a microalga native to Quebec[J].Bioresour Technol,2014,156:20-8.
    [14]Hong J W,Jo S W,Yoon H S.Research and development for algae-based technologies in Korea:a review of algae biofuel production[J].Photosynth Res,2015,123(3):297-303.
    [15]Lam M K,Lee K T.Microalgae biofuels:A critical review of issues,problems and the way forward[J].Biotechnol Adv,2012,30(3):673-90.
    [16]Mello F D,et al.Mechanisms and Effects Posed by Neurotoxic Products of Cyanobacteria/Microbial Eukaryotes/Dinoflagellates in Algae Blooms[J].Neurotox Res,2018.33(1):153-167.
    [17]Gentil J,et al.Origin of complex algae by secondary endosymbiosis:a journey through time[J].Protoplasma,2017,254(5):835-1843.
    [18]Dalrymple O K,et al.Wastewater use in algae production for generation of renewable resources[J].Aquat Biosyst,2013,9(1):2.
    [19]Carl Safi B Z,Othmane Merah,Pierre-Yves Pontalier,et al.Morphology,composition,production,processing and applications of Chlorella vulgaris[J].Renewable and Sustainable Energy Reviews,2014,35:265-278.
    [20]Valderrama L T,et al.Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula[J].Water Res,2002,36(17):4185-92.
    [21]Wang Y,et al.Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture:enhancing microalgae harvesting and lipid content[J].Lett Appl Microbiol,2015,60(5):497-503.
    [22]He P J,et al.The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters[J].Bioresour Technol,2013,146:562-8.
    [23]Lee J,et al.Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris[J].Bioresour Technol,2013,131:195-201.
    [24]Doucha J,et al.Production of Chlorella biomass enriched by selenium and its use in animal nutrition[J].Appl Microbiol Biotechnol,2009,83(6):1001-8.
    [25]Unnikrishnan S P,Jayasri A M.Marine algae as a prospective source for antidiabetic compounds[J].Curr Diabetes Rev,2016.
    [26]Liu Y,Tay J H.State of the art of biogranulation technology for wastewater treatment[J].Biotechnol Adv,2004,22(7):533-63.
    [27]Kim B H,et al.Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater[J].J Microbiol Biotechnol,2014,24(8):1123-32.
    [28]Liu J,et al.,Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria[J].Bioresour Technol,2017,241:1127-1137.
    [29]Boelee N C T,Janssen H,Buisman M,et al.Balancing the organic load and light supply in symbiotic microalgal-bacterial biofilm reactors treating synthetic municipal wastewater[J].Ecological Engineering,2014,64:213-221.
    [30]Oyserman,B.O.,et al.,Community Assembly and Ecology of Activated Sludge under Photosynthetic Feast-Famine Conditions.[J]Environ Sci Technol,2017.51(6):p.3165-3175.
    [31]Liu H,et al.Isolation of a bacterial strain,Acinetobacter sp.from centrate wastewater and study of its cooperation with algae in nutrients removal[J].Bioresour Technol,2017.235:59-69.
    [32]Zhang Y,et al.Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp[J].Sci Total Environ,2009,407(12):3702-6.
    [33]Liu Y,et al.Heterotrophic nitrogen removal by Acinetobacter sp.Y1isolated from coke plant wastewater[J].J Biosci Bioeng,2015,120(5):549-54.
    [34]Zakaria Z A,et al.Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater[J].J Hazard Mater,2007,146(1-2):30-8.
    [35]Yang L,et al.Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater[J].Bioresour Technol,2015,193:227-33.
    [36]Li H,et al.Simultaneous Microcystis Algicidal and Microcystin Degrading Capability by a Single Acinetobacter Bacterial Strain[J].Environ Sci Technol,2016,50(21):11903-11911.
    [37]Chun C L,et al.Virulence and biodegradation potential of dynamic microbial communities associated with decaying Cladophora in Great Lakes[J].Sci Total Environ,2017,574:872-880.
    [38]Su J F,et al.Algicidal and denitrification characterization of Acinetobacter sp.J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water[J].Mar Pollut Bull,2016,107(1):233-239.
    [39]Ji X,et al.The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater[J].Bioresour Technol,2018,247:44-50.
    [40]Seyedsayamdost M R,et al.The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis[J].Nat Chem,2011,3(4):331-5.
    [41]Amin S A,et al.Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria[J].Nature,2015,522(7554):98-101.
    [42]Jonsson P R,Pavia H,Toth G.Formation of harmful algal blooms cannot be explained by allelopathic interactions[J].Proc Natl Acad Sci U S A,2009,106(27):11177-82.
    [43]Henderson R K,et al.Characterisation of algogenic organic matter extracted from cyanobacteria,green algae and diatoms[J].Water Res,2008,42(13):3435-45.
    [44]Gonzalez L E,Bashan Y.Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense[J].Appl Environ Microbiol,2000,66(4):1527-31.
    [45]Gonzalez J M,et al.Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom[J].Appl Environ Microbiol,2000,66(10):4237-46.
    [46]Ramanan R,et al.Algae-bacteria interactions:Evolution,ecology and emerging applications[J].Biotechnol Adv,2016,34(1):14-29.
    [47]Cho D H,et al.Organic carbon,influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater[J].Bioresour Technol,2015,191:481-7.
    [48]Cho D H,et al.Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community[J].Bioresour Technol,2015,175:578-85.
    [49]Geng H,Belas R.Molecular mechanisms underlying roseobacter-phytoplankton symbioses[J].Curr Opin Biotechnol,2010,21(3):332-8.
    [50]Liu H,et al.Isolation of a non-fermentative bacterium,Pseudomonas aeruginosa,using intracellular carbon for denitrification and phosphorus-accumulation and relevant metabolic mechanisms[J].Bioresour Technol,2016,211:6-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700