用户名: 密码: 验证码:
减氮施肥对春玉米-晚稻生产系统碳足迹的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of reduced nitrogen fertilization on carbon footprint in spring maize-late rice production system
  • 作者:俞祥群 ; 姜振辉 ; 王江怀 ; 林景东 ; 刘益珍 ; 杨京平
  • 英文作者:YU Xiang-qun;JIANG Zhen-hui;WANG Jiang-huai;LIN Jing-dong;LIU Yi-zhen;YANG Jing-ping;Institute of Crop (Ecology), Hangzhou Academy of Agricultural Sciences,Zhejiang Province;College of Environment and Resource Science, Zhejiang University;
  • 关键词:碳足迹 ; 春玉米-晚稻轮作 ; 减氮施肥 ; 温室气体排放
  • 英文关键词:carbon footprint;;spring maize-late rice rotation;;nitrogen reduction;;greenhouse gas emission
  • 中文刊名:应用生态学报
  • 英文刊名:Chinese Journal of Applied Ecology
  • 机构:浙江省杭州市农业科学研究院农作物(生态)研究所;浙江大学环境与资源学院;
  • 出版日期:2019-04-02 17:31
  • 出版单位:应用生态学报
  • 年:2019
  • 期:04
  • 基金:杭州市农业科研自主申报项目(20180432B19);; 国家重点研发计划项目(2016YFD0300203-4)资助~~
  • 语种:中文;
  • 页:322-328
  • 页数:7
  • CN:21-1253/Q
  • ISSN:1001-9332
  • 分类号:S181;S513;S511.33
摘要
随着对气候变化和粮食安全的的日益认识,低碳农业引起了人们的广泛关注.低碳农业的研究需要综合考虑作物产量和温室气体排放,改进氮肥管理可能有助于减缓作物生产系统的温室气体排放,同时实现对作物稳产甚至高产的需求.本试验利用生命周期法研究了不同施氮量(150、225、300 kg N·hm~(-2))对春玉米-晚稻轮作系统碳足迹的影响.结果表明:随着氮肥用量增加,两季作物生产过程中温室气体和碳足迹增加.在春玉米生产过程中,氮肥生产和施用引起的温室气体排放对碳足迹贡献最大,占36.2%~50.2%;而在晚稻生产中,甲烷的排放贡献最大,占42.8%~48.0%,并且随氮肥用量增加甲烷排放增加.当氮肥施用量减少25%(225 kg N·hm~(-2))和50%(150 kg N·hm~(-2))时,春玉米生产的温室气体排放分别下降了21.9%和44.3%,碳足迹分别下降了20.3%和39.1%;晚稻生产的温室气体排放分别下降了12.3%和20.4%,碳足迹分别降低了13.7%和16.7%.氮肥减量对春玉米产量无显著影响,而晚稻产量在225 kg N·hm~(-2)施肥量下最高.因此,春玉米氮肥用量降低至150 kg N·hm~(-2)和晚稻氮肥用量降低至225 kg N·hm~(-2)不仅能够保持作物高产,而且还能大幅度降低作物系统的碳足迹.
        With the growing concerns on global climate change and food security, low carbon agriculture in food production attracts more attention. Low carbon agriculture needs to balance higher-level crop yields and lower greenhouse gas emission in production process. Improving nitrogen mana-gement may help mitigate greenhouse gas emission and achieve stable or higher crop yields in crop production systems. In this study, we investigated the effects of nitrogen application rates(150, 225, 300 kg N·hm~(-2)) on the carbon footprint of spring maize-late rice rotation system in paddy field using the life cycle assessment. The results showed that greenhouse gas emission and carbon footprint increased with the nitrogen fertilizer application rates in both crops. Nitrogen fertilizer was the most important contributor to carbon footprint of spring maize ecosystem, accounting for 36.2%-50.2%. Methane emission increased with nitrogen fertilizer input and contributed the most to the carbon footprint of late rice production, accounting for 42.8%-48.0%. When the nitrogen application rate was reduced by 25%(225 kg N·hm~(-2)) and 50%(150 kg N·hm~(-2)), greenhouse gas emission of maize production decreased by 21.9% and 44.3%, and the carbon footprint decreased by 20.3% and 39.1%, respectively. Meanwhile, the greenhouse gas emissions of late rice decreased by 12.3% and 20.4%, and the carbon footprint of late rice decreased by 13.7% and 16.7%, respectively. The reduction of nitrogen fertilizer rate had no significant effect on maize yield, with the treatment of 225 kg N·hm~(-2) rate holding the highest yield in late rice ecosystem. The treatment of 150 kg N·hm~(-2) rate in spring maize production and 225 kg N·hm~(-2) rate in late rice production was the sustainable N fertilizer application rate for achieving high grain yield and reducing the carbon footprint in crop system.
引文
[1] International Organization for Standardization. ISO 14067: 2013 Greenhouse Gases-Carbon Footprint of Products-Requirements and Guidelines for Quantification and Communication. (2012-06-06) [2019-03-19]. https://www.iso.org/standard/71206.html
    [2] Ju XT, Xing GX, Chen XP, et al. From the cover: Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Procee-dings of the National Academy of Sciences of the United States of America, 2009, 106: 3041-3046
    [3] Zhang WF, Dou ZX, He P, et al. New technologies reduce greenhouse gas emissions from nitrogenous ferti-lizer in China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 8375-8380
    [4] Gan YT, Liang C, May W, et al. Carbon footprint of spring barley in relation to preceding oilseeds and N fertilization. International Journal of Life Cycle Assessment, 2012, 17: 635-645
    [5] Gan YT, Liang C, Huang GB, et al. Carbon footprint of canola and mustard is a function of the rate of N fertili-zer. International Journal of Life Cycle Assessment, 2012, 17: 58-68
    [6] Cheng K, Pan GX, Smith P, et al. Carbon footprint of China’s crop production: An estimation using agro-statistics data over 1993-2007. Agriculture, Ecosystems and Environment, 2011, 142: 231-237
    [7] Shi L-G (史磊刚), Chen F (陈阜), Kong F-L (孔凡磊), et al. The carbon footprint of winter wheat-summer maize cropping pattern on North China Plain. China Population, Resources and Environment (中国人口·资源与环境), 2011, 21(9): 93-98 (in Chinese)
    [8] Kecao L-M (柯曹黎明), Li M-B (李茂柏), Wang X-Q (王新其), et al. Life cycle assessment of carbon footprint for rice production in Shanghai. Acta Ecologica Sinica (生态学报), 2014, 34(2): 491-499 (in Chinese)
    [9] Wang Y-Q (王钰乔), Zhao X (赵鑫), Li K-J (李可嘉), et al. Dynamics of carbon footprint for wheat production in the North China Plain. China Population, Resources and Environment (中国人口·资源与环境), 2015, 25(11): 258-261 (in Chinese)
    [10] Rebolledo-Leiva R, Angulo-Meza L, Iriarte A, et al. Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production. Science of the Total Environment, 2017, 36: 593-594
    [11] Clavreul J, Butnar I, Rubio V, et al. Intra- and inter-year variability of agricultural carbon footprints: A case study on field-grown tomatoes. Journal of Cleaner Production, 2017, 158: 156-164
    [12] Lu F (逯非), Wang X-K (王效科), Han B (韩冰), et al. Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China’s cropland soil. Chinese Journal of Applied Ecology (应用生态学报), 2008, 19(10): 2239-2250 (in Chinese)
    [13] West TO, Marland G. Net carbon flux from agricultural ecosystems: Methodology for full carbon cycle analyses. Environmental Pollution, 2002, 116: 439-444
    [14] Zhang XQ, Pu C, Zhao X, et al. Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat-summer maize cropping system of the North China Plain. Ecological Indicators, 2016, 67: 821-829
    [15] IPCC. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013
    [16] Liu S (刘松), Wang X-Q (王效琴), Hu J-P (胡继平), et al. Effects of fertilization and irrigation on the carbon footprint of alfalfa in Gansu Province. Scientia Agricultura Sinica (中国农业科学), 2018, 51(3): 556-565 (in Chinese)
    [17] Xu X, Lan Y. Spatial and temporal patterns of carbon footprints of grain crops in China. Journal of Cleaner Production, 2017, 146: 218-227
    [18] Yan M, Cheng K, Luo T, et al. Carbon footprint of grain crop production in China: Based on farm survey data. Journal of Cleaner Production, 2015, 104: 130-138
    [19] Weller S, Kraus D, Ayag KRP, et al. Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutrient Cycling in Agroecosystems, 2015, 101: 37-53
    [20] Hillier J, Hawe C, Squire G, et al. The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 2009, 7: 107-118
    [21] Chen X, Cui Z, Fan M, et al. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489
    [22] Deng J, Zhou Z, Zhu B. Modeling nitrogen loading in a small watershed in southwest China using a DNDC model with hydrological enhancements. Biogeosciences, 2011, 8: 6383-6413
    [23] Ge J-Z (葛均筑), Li S-Y (李淑娅), Zhong X-Y (钟新月), et al. Effects of nitrogen application and film mulching on yield performance parameters and nitrogen use efficiency of spring maize in the middle reaches of Yangtze River. Acta Agronomica Sinica (作物学报), 2014, 40(6): 1081-1092 (in Chinese)
    [24] Ju X-T (巨晓棠), Zhang F-S (张福锁). Nitrate accumulation and its implication to environment in north China. Ecology and Environment (生态环境), 2003, 12(1): 24-28 (in Chinese)
    [25] Ladha JK, Krupnik TJ, Six J, et al. Efficiency of ferti-lizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy, 2005, 87: 85-156
    [26] Gan YT, Liang C, Chai Q, et al. Improving farming practices reduces the carbon footprint of spring wheat production. Nature Communications, 2014, 5: 5012-5025
    [27] Qian L, Chen L, Joseph S, et al. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture: A field experiment in a rice paddy from Anhui, China. Carbon Management, 2014, 5: 145-154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700