用户名: 密码: 验证码:
城镇化流域降水径流氢氧同位素特征及洪水径流分割
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of hydrogen and oxygen isotopes in precipitation and runoff and flood hydrograph separation in an urbanized catchment
  • 作者:谢林环 ; 江涛 ; 曹英杰 ; 张得胜 ; 黎坤 ; 唐常源
  • 英文作者:XIE Linhuan;JIANG Tao;CAO Yingjie;ZHANG Desheng;LI Kun;TANG Changyuan;School of Geography and Planning,Sun Yat-sen University;School of Environmental Science and Engineering,Sun Yat-sen University;Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology;
  • 关键词:氢氧同位素 ; 二元混合模型 ; 径流分割 ; 城镇化 ; 石马河流域
  • 英文关键词:hydrogen and oxygen isotopes;;two-component mixing model;;hydrograph separation;;urbanization;;Shima River catchment
  • 中文刊名:地理学报
  • 英文刊名:Acta Geographica Sinica
  • 机构:中山大学地理科学与规划学院;中山大学环境科学与工程学院;广东省环境污染控制与修复技术重点实验室;
  • 出版日期:2019-09-23 17:08
  • 出版单位:地理学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金青年项目(41501512);国家自然科学基金项目(41471020);; 广东省自然科学基金项目(2017A030313231);; 广州市科技计划项目(201510010300)~~
  • 语种:中文;
  • 页:29-40
  • 页数:12
  • CN:11-1856/P
  • ISSN:0375-5444
  • 分类号:P333
摘要
为研究人类活动影响下河流降水径流响应特征,以珠江三角洲典型城镇化流域石马河为研究对象,采集2017年1-12月日降水、河水样品和3场台风期间的时段降水、洪水样品,通过测定其氢氧稳定同位素组成(δD、δ~(18)O),分析流域降水、径流氢氧同位素组成特征,并利用同位素二元混合模型,分割3场台风降水事件中事前水及事件水对流量过程的贡献。结果表明,研究区域大气降水δD、δ~(18)O的变化范围分别为-105.10‰~+9.98‰和-14.80‰~-0.55‰,年加权平均值为-57.88‰和-8.61‰,大气降水线为δD=7.70δ~(18)O+8.61(R~2=0.98);河水δD、δ~(18)O的变化范围分别为-91.23‰~-15.96‰和-12.66‰~-4.01‰,δD-δ~(18)O基本落在局地大气降水线上,表明降水是石马河径流的主要来源。3场台风期间,事件水占洪水总径流量的比例分别为59.7%、55.0%和69.4%,均高于事前水占比。洪水涨水初期事前水和事件水同步增长,涨水后期事件水比例逐渐增大,洪峰期间比例大于80%,成为径流主导成分,表明流域城镇化过程中下垫面不透水面积的增加会显著改变水文循环过程。本研究成果可为珠江三角洲城镇化流域水文预报提供理论基础。
        In order to study the response characteristics of precipitation-runoff under the influence of human activities, this paper took Shima River, a typical urbanized catchment in the Pearl River Delta as the research area. Daily samples of precipitation and river water were collected from January to December and hourly samples were collected during three typhoon rainstorms in 2017. Based on the stable isotope data(δD, δ~(18) O), the characteristics of hydrogen and oxygen isotopes were analyzed. Two-component isotope-based hydrograph separation was used to study the contribution of pre-event water and event water to the runoff process during three typhoon events. The results showed that δD and δ~(18) O in precipitation ranged from-105.10‰ to 9.98‰ and-14.80‰ to-0.55‰, respectively, and the annual weighted mean values were-57.88‰ and-8.61‰. The Local Meteoric Water Line was δD=7.70δ~(18) O+8.61(R~2=0.98). δD and δ~(18) O in river water ranged from-91.23‰ to-15.96‰ and-12.66‰ to-4.01‰,respectively. δD-δ~(18) O basically fell on the LMWL indicated that precipitation was the main source of runoff in the Shima River catchment. During the three typhoons, the proportion of event water was 59.7%, 55.0% and 69.4%, respectively, which was higher than that of preevent water. In the early stage of flood, pre-event water and event water increased synchronously. In the late stage of flood, the proportion of event water increased gradually which was more than 80% during the peak period. This indicated that the increase of impervious areas in the urban regions would significantly alter the hydrological cycle. The results of this study could provide the theoretical foundations for hydrological forecast of urbanized basins in Pearl River Delta.
引文
[1] Yang Shengtian, Yu Xinyi, Ding Jianli, et al. A review of water issues research in Central Asia. Acta Geographica Sinica,2017, 72(1):79-93.[杨胜天,于心怡,丁建丽,等.中亚地区水问题研究综述.地理学报, 2017, 72(1):79-93.]
    [2] Xia Jun, Zuo Qiting. China's decade summary and prospect of water resources academic exchange. Journal of Natural Resources, 2013, 28(9):1488-1497.[夏军,左其亭.我国水资源学术交流十年总结与展望.自然资源学报, 2013, 28(9):1488-1497.]
    [3] Xu Guanglai, Xu Youpeng, Xu Hongliang. Advance in hydrologic process response to urbanization. Journal of Natural Resources, 2010, 25(12):2171-2178.[徐光来,许有鹏,徐宏亮.城市化水文效应研究进展.自然资源学报, 2010, 25(12):2171-2178.]
    [4] He Daming, Liu Changming, Feng Yan, et al. Progress and perspective of international river researches in China. Acta Geographica Sinica, 2014, 69(9):1284-1294.[何大明,刘昌明,冯彦,等.中国国际河流研究进展及展望.地理学报,2014, 69(9):1284-1294.]
    [5] Ala-aho P, Soulsby C, Pokrovsky O S, et al. Using stable isotpes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. Journal of Hydrology, 2018,556:279-293.
    [6] Wang Jiyang, Chen Jiansheng, Lu Baohong, et al. Review and prospect of isotope hydrology. Journal of Hohai University(Natural Sciences), 2015, 43(5):406-413.[汪集旸,陈建生,陆宝宏,等.同位素水文学的若干回顾与展望.河海大学学报(自然科学版), 2015, 43(5):406-413.]
    [7] Yang Q, Mu H, Wang H, et al. Quantitative evaluation of groundwater recharge and evaporation intensity with stable oxygen and hydrogen isotopes in a semi-arid region, Northwest China. Hydrological Processes, 2018, 32:1130-1136.
    [8] Lv Yuxiang, Hu Wei, Luo Shunqing, et al. Research progress in hydrograph separation based on isotope and hydrochemical methods. Journal of China Hydrology, 2010, 30(1):7-13.[吕玉香,胡伟,罗顺清,等.流量过程线划分的同位素和水文化学方法研究进展.水文, 2010, 30(1):7-13.]
    [9] Buttle J M. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Process in Physical Geography, 1994, 18(1):16-41.
    [10] Sklash M G, Farvolden R N, Fritz P. A conceptual model of watershed response to rainfall, developed through the use of oxygen-18 as a natural tracer. Canadian Journal of Earth Sciences, 1976, 13:271-283.
    [11] Sklash M G, Farvolden R N. The role of groundwater in storm runoff. Journal of Hydrology, 1979, 43:45-65.
    [12] Blume T, Zehe E, Bronstert A. Investigation of runoff generation in a pristine, poorly gauged catchment in the Chilean Andes II:Qualitative and quantitative use of tracers at three spatial scales. Hydrological Processes, 2008, 22(18):3676-3688.
    [13] Dewalle D R, Swistock B R, Sharpe W E. Three-component tracer model for stormflow on a small Appalachian forested catchment. Journal of Hydrology, 1988, 104:301-310.
    [14] Ogunkoya O O, Jenkins A. Analysis of storm hydrograph and flow pathways using a three-component hydrograph separation model. Journal of Hydrology, 1993, 142:71-88.
    [15] Hooper R P, Christophersen N, Peters J. Modelling streamwater chemistry as a mixture of soilwater end-members:An application to the Panola Mountain catchment, Georgia, U.S.A. Journal of Hydrology, 1990, 116:321-343.
    [16] Phillips D L, Gregg J W. Source partitioning using stable isotopes:coping with too many sources. Oecologia, 2003, 136:261-269.
    [17] Fischer B M C, van Meerveld H J, Seibert J. Spatial variability in the isotopic composition of rainfall in a small headwater catchment and its effect on hydrograph separation. Journal of Hydrology, 2017, 547:775-769.
    [18] McDonnell J J, Stewart M K, Owens I F. Effect of catchment-scale subsurface mixing on stream isotopic response.Water Resources Research, 1991, 27(12):3065-3073.
    [19] Delsman J R, Oude Essink G H P, Beven K J, et al. Uncertainty estimation of end-member mixing using generalized likelihood uncertainty estimation(GLUE), applied in a lowland catchment. Water Resources Research, 2013, 49:4792-4806.
    [20] Genereux D. Quantifying uncertainty in tracer-based hydrograph separations. Water Resources Research, 1998, 34(4):915-919.
    [21] Bansah S, Ali G. Evaluating the effects of tracer choice and end-member definitions on hydrograph separation results across nested, seasonally cold watersheds. Water Resources Research, 2017, 53(11):8851-8871.
    [22] Genereux D P, Hopper R P. Chapter 10:Oxygen and hydrogen isotopes in rainfall-runoff studies. Isotope Tracers in Catchment Hydrology, 1998, 319-346.
    [23] Sharma A, Kumar K, Laskar A, et al. Oxygen, deuterium, and strontium isotope characteristics of the Indus River water system. Geomorphology, 2017, 284:5-16.
    [24] Renshaw C E, Feng X, Sinclair K J, et al. The use of stream flow routing for direct channel precipitation with isotopically-based hydrograph separations:The role of new water in stormflow generation. Journal of Hydrology, 2003,273(1):205-216.
    [25] Brown V A, McDonnell J J, Burns D A, et al. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow. Journal of Hydrology, 1999, 217:171-190.
    [26] Klaus J, McDonnell J J. Hydrograph separation using stable isotopes:Review and evaluation. Journal of Hydrology,2013, 505:47-64.
    [27] Buda A R, DeWalle D R. Dynamics of stream nitrate sources and flow pathways during stormflows on urban, forest and agricultural watersheds in central Pennsylvania, USA. Hydrological Process, 2009, 23:3292-3305.
    [28] Meriano M, Howard K W F, Eyles N. The role of midsummer urban aquifer recharge in stormflow generation using isotopic and chemical hydrograph separation techniques. Journal of Hydrology, 2011, 396:82-93.
    [29] Xu Xueqiang, Li Xun. Review and preview of the urbanization in Pearl River Delta in the past 30 years of reform and opening up. Economic Ceography, 2009, 29(1):13-18.[许学强,李郇.改革开放30年珠江三角洲城镇化的回顾与展望.经济地理, 2009, 29(1):13-18.]
    [30] Gao Lei, Chen Jianyao, Wang Jiang, et al. Temporal-spatial variation and source identification of hydro-chemical characteristics in Shima River Catchment. Dongguan City. Environmental Science, 2015, 36(5):1573-1581.[高磊,陈建耀,王江,等.东莞石马河流域水化学特征时空差异及来源辨析.环境科学, 2015, 36(5):1573-1581.]
    [31] Liu Jianrong, Song Xianfang, Yuan Guofu, et al. Characteristics ofδ18O in precipitation over Northwest China and its water vapor sources. Acta Geographica Sinica, 2008, 63(1):12-22.[柳鉴容,宋献方,袁国富,等.西北地区大气降水δ18O的特征及水汽来源.地理学报, 2008, 63(1):12-22.]
    [32] Gu Weizu. On the hydrograph separation traced by environmental isotopes. Advances in Water Science, 1996, 7(2):105-111.[顾慰祖.论流量过程线划分的环境同位素方法.水科学进展, 1996, 7(2):105-111.]
    [33] Hooper R P, Shoemaker C A. A comparison of chemical and isotopic hydrograph separation. Water Resources Research,1986, 22(10):1444-1454.
    [34] Araguás-Araguás L, Froehlich K, Rozanski K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrological Processes, 2000, 14:1341-1355.
    [35] Liu J, Song X, Yuan G, et al. Stable isotopic compositions of precipitation in China. Tellus B, 2014, 66:22567.
    [36] Wei Keqin, Lin Ruifen. The influence of the monsoon climate on the isotopic composition of precipitation in China.Geochimica, 1994, 23(1):33-41.[卫克勤,林瑞芬.论季风气候对我国雨水同位素组成的影响.地球化学, 1994, 23(1):33-41.]
    [37] Clark I D, Fritz P. Environmental Isotopes in Hydrogeology Lewis. Springer-Verlag, 1997.
    [38] Craig H. Isotopic Variations in Meteoric Waters. Science, 1961, 133(3465):1702-1703.
    [39] Liu Jianrong, Song Xianfang, Yuan Guofu, et al. Characteristics ofδ18O in precipitation over Eastern Monsoon China and the water vapor sources. Chinese Science Bulletin, 2009, 54(22):3521-3531.[柳鉴容,宋献方,袁国富,等.中国东部季风区大气降水δ18O的特征及水汽来源.科学通报, 2009, 54(22):3521-3531.]
    [40] Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16(4):436-468.
    [41] Kendall C, Coplen T B. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrological Processes, 2001, 15:1363-1393.
    [42] Nolan K M, Hill B R. Storm-runoff generation in the Permanente Creek drainage basin, west central California:An example of flood-wave effects on runoff composition. Journal of Hydrology, 1990, 113:343-367.
    [43] Li Jize. Identification of river flood wave types. Journal of Hydraulic Engineering, 1994, 8:27-35.[李记泽.河道洪水波波型识别.水利学报, 1994, 8:27-35.]
    [44] Du Zhiwei, Li Xun. Growth or shrinkage:New phenomena of regional development in the rapidly-urbanising Pearl River Delta. Acta Geographica Sinica, 2017, 72(10):1800-1811.[杜志威,李郇.珠三角快速城镇化地区发展的增长与收缩新现象.地理学报, 2017, 72(10):1800-1811.]
    [45] Dongguan Statistical Bureau, Dongguan Investigation Team of National Statistical Bureau. Dongguan Statistical Yearbook(2016). Beijing:Chinese Statistics Press, 2016.[东莞市统计局、国家统计局东莞调查队编.东莞统计年鉴(2016).北京:中国统计出版社, 2016.]
    [46] Liu X, Hu G, Chen Y. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sensing of Environment, 2018, 209:227-239.
    [47] Germann P F. Rapid drainage response to precipitation. Hydrological Processes, 1986, 1:3-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700