用户名: 密码: 验证码:
太湖不同介质电导率时空变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and Spatial Variations in the Conductivity in Different Media in Taihu Lake,China
  • 作者:王瑞 ; 代丹 ; 张弛 ; 邓义祥 ; 何成达 ; 于涛
  • 英文作者:WANG Rui;DAI Dan;ZHANG Chi;DENG Yi-xiang;HE Cheng-da;YU Tao;College of Environmental Science and Technology,Yangzhou University;State Key Laboratory of Environment Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences;College of Water Sciences,Beijing Normal University;
  • 关键词:太湖 ; 电导率 ; 时空变化 ; 水体 ; 沉积物 ; 孔隙水
  • 英文关键词:Taihu Lake;;conductivity;;temporal and spatial variation;;water;;sediment;;pore water
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:扬州大学环境科学与工程学院;中国环境科学研究院环境基准与风险评估国家重点实验室;北京师范大学水科学学院;
  • 出版日期:2019-05-28 11:13
  • 出版单位:环境科学
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金项目(41871079);; 国家水体污染控制与治理科技重大专项(2017ZX07301-003)
  • 语种:中文;
  • 页:169-177
  • 页数:9
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X524
摘要
电导率是表征水体溶解性固体物质或盐度的重要参数,也是水体常规监测参数之一.为揭示太湖不同介质电导率的时空变化特征,对太湖水体水质历史数据(1980~2009年)以及近10年来野外监测数据(2009~2018年)进行统计分析.结果表明,近40年来太湖水体电导率呈显著上升趋势,并在1996~1997年发生突变.太湖水体电导率由1980~1996年的(239. 43±70. 60)μS·cm~(-1)增长到目前的(477. 31±23. 47)μS·cm~(-1),年均增长率10. 40μS·(cm·a)-1;空间上,西北湖区水体电导率显著高于东南湖区;水体电导率变化以主要离子变化为主导,氮营养盐的贡献基本可忽略;流域人类活动是引起水体电导率变化的主要因素.此外,太湖水体电导率受季节性径流的影响更为显著.与湖水电导率变化规律相比,西北湖区表层沉积物、孔隙水(0~10 cm)电导率均低于东南湖区,深层(> 10 cm)则相反.剖面上,西北湖区表层沉积物、孔隙水(0~10 cm)电导率和深层(> 10 cm)无显著差异,但东南湖区表层沉积物、孔隙水(0~10 cm)电导率高于深层(> 10 cm).沉积物电导率与有机质呈显著正相关(P <0. 01),与p H呈负相关(P <0. 05),表明有机质对金属离子活化迁移具有明显的促进作用,而酸性环境下更有利于离子的活化.对不同介质间电导率分析发现,表层沉积物和孔隙水(0~10 cm)电导率均与上覆水电导率呈显著正相关(P <0. 01),而深层(> 10 cm)沉积物及孔隙水电导率与上覆水电导率没有相关性,表明表层沉积物和孔隙水(0~10 cm)对上覆水电导率有明显影响.此外,整个剖面上(0~50 cm)沉积物电导率和孔隙水电导率呈显著正相关(P <0. 01),说明沉积物和孔隙水之间进行着比较充分的离子迁移交换,两者之间的相互影响总体上高于对上覆水的影响.
        Conductivity is an important parameter for characterizing dissolved solids and salinity in water,and is also one of the routinely measured parameters in water quality monitoring. To reveal temporal and spatial variations in conductivity in different media in Taihu Lake,historical data( 1980-2009) were collected and field monitoring data( 2009-2018) were analyzed. The results indicated that water conductivity in Taihu Lake has shown a significant increasing trend over the past 40 years and diverged in 1996-1997.Conductivity values increased from( 239. 43 ± 70. 60) μS·cm~(-1) in the period 1980-1996 to( 477. 31 ± 23. 47) μS·cm~(-1) in the present day,with an average annual increase of 10. 40 μS·( cm·a)-1. Spatially,the conductivity of water in the northwest part of the lake was significantly higher than the southeast part. These changes in conductivity are dominated by changes in major ions,and the contribution of nitrogen was essentially negligible. Human activities in the basin have been the main factors causing changes in water conductivity.In addition,conductivity is significantly affected by seasonal runoff. Compared with the water,the conductivity of the surface sediments and pore water( 0-10 cm) in the northwest part of the lake were lower than in the southeast part,while this trend was opposite in the deeper sediments( > 10 cm). The conductivity of the sediment and pore water were no different between surface( 0-10 cm) and deeper( > 10 cm) sediments in the northwest lake,while these were higher in the surface sediments in the southeast part of the lake.Sediment conductivity was positively correlated with organic matter( P < 0. 01) and was negatively correlated with p H( P < 0. 05).This indicated that organic matter promotes the activation and migration of metal ions,which are more activated under acidic conditions. We found that conductivity in the surface sediments and pore water( 0-10 cm) were significantly positively correlated with conductivity in the overlying water( P < 0. 01). In contrast,the conductivity of overlying water was not correlated with the conductivity of deeper sediments and pore water( > 10 cm). These patterns indicated that surface sediments and pore water have a significant effect on the conductivity of overlying waters. In addition,there was a significant positive correlation between the conductivity of sediment and pore water( P < 0. 01) within the entire sedimentary section( 0-50 cm),indicating efficiency ion-exchange between the two. The interaction between sediment and pore water was generally stronger than their interaction with the overlying water.
引文
[1] MorganⅡR P, Kline K M, Kline M J, et al. Stream conductivity:relationships to land use,chloride,and fishes in Maryland streams[J]. North American Journal of Fisheries Management,2012,32(5):941-952.
    [2] Rodhe W. The ionic composition of lake waters[J]. SIL Proceedings,1922-2010,1949,10(1):377-386.
    [3]陈静生.河流水质原理及中国河流水质[M].北京:科学出版社,2006.
    [4]李娣,李旭文,牛志春,等.太湖浮游植物群落结构及其与水质指标间的关系[J].生态环境学报,2014,23(11):1814-1820.Li D,Li X W,Niu Z C,et al. Structure of phytoplankton community and relationship between phytoplankton community and water quality in Taihu Lake[J]. Ecology and Environmental Sciences,2014,23(11):1814-1820.
    [5] Caedo-Argüelles M,Kefford B J,Piscart C,et al. Salinisation of rivers:an urgent ecological issue[J]. Environmental Pollution,2013,173:157-167.
    [6] Millennium Ecosystem Assessment. Ecosystems and human wellbeing:biodiversity synthesis[M]. Washington, DC:Island Press,2005.
    [7] Jackson R B,Jobbágy E G. From icy roads to salty streams[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(41):14487-14488.
    [8] Megan M H,Nash M S,Neale A C,et al. Biological integrity in mid-atlantic coastal plains headwater streams[J]. Environmental Monitoring and Assessment,2007,124(1-3):141-156.
    [9] Kelly V R,Lovett G M,Weathers K C et al. Long-term sodium chloride retention in a rural watershed:legacy effects of road salt on streamwater concentration[J]. Environmental Science&Technology,2008,42(2):410-415.
    [10] Biggs B J F. Patterns in benthic algae of streams[A]. In:Stevenson R J,Bothwell M L,Lowe R L(Eds.). Algal Ecology[M]. San Diego,California:Academic Press,1996.
    [11] Leland H V. Distribution of phytobenthos in the Yakima River basin,Washington,in relation to geology,land use and other environmental factors[J]. Canadian Journal of Fisheries and Aquatic Sciences,1995,52(5):1108-1129.
    [12]陈静生,夏星辉,张利田,等.长江、黄河、松花江60—80年代水质变化趋势与社会经济发展的关系[J].环境科学学报,1999,19(5):500-505.Chen J S,Xia X H,Zhang L T,et al. Relationship between water quality changes in the Yangtze,Yellow and Songhua rivers and the economic development in the river basins[J]. Acta Scientiae Circumstantiae,1999,19(5):500-505.
    [13]陈静生,夏星辉,蔡旭贻.川贵地区长江干支流河水主要离子含量变化趋势及分析[J].中国环境科学,1998,18(2):131-135.Chen J S,Xia X H,Cai X Y. Evolution trend and analysis of major ion contents in the mainstream and some tributaries of Yangtse River in Sichuan and Guizhou Provinces[J]. China Environmental Science,1998,18(2):131-135.
    [14] Yu T,Zhang Y,Wu F C,et al. Six-decade change in water chemistry of large freshwater Lake Taihu, China[J].Environmental Science&Technology,2013,47(16):9093-9101.
    [15]席北斗,张亚丽,许秋瑾.矿化度作为蒙新高原湖泊营养物基准影响指标的可行性[J].环境科学,2012,33(10):3308-3313.Xi B D,Zhang Y L,Xu Q J. Possibility of total dissolved solid as one of nutrient baselines in Inner Mongolia-Xinjiang Plateau[J]. Environmental Science,2012,33(10):3308-3313.
    [16]曾海鳌,吴敬禄.蒙新高原湖泊水质状况及变化特征[J].湖泊科学,2010,22(6):882-887.Zeng H A,Wu J L. Lake status of water quality and the changes in Inner Mongolia-Xinjiang Plateau[J]. Journal of Lake Sciences,2012,22(6):882-887.
    [17]王亚俊,李宇安,王彦国,等. 20世纪50年代以来博斯腾湖水盐变化及趋势[J].干旱区研究,2005,22(3):355-360.Wang Y J,Li Y A,Wang Y G,et al. Study on the change of inflow and salt content of the Bosten Lake,Xinjiang since the1950s[J]. Arid Zone Research,2005,22(3):355-360.
    [18] Chapra S C,Dove A,Warren G J. Long-term trends of Great Lakes major ion chemistry[J]. Journal of Great Lakes Research,2012,38(3):550-560.
    [19]秦伯强,胡春华.中国生态系统定位观测与研究数据集:湖泊湿地海湾生态系统卷(江苏太湖站1991-2006)[M].(第一版).北京:中国农业出版社,2010.
    [20]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002. 120-121
    [21] Gocic M,Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia[J]. Global and Planetary Change,2013,100:172-182.
    [22] Xu D L,Cai Y,Wu X Q,et al. Regime shifts and resilience of the Lake Taihu social-ecological system under long-term external disturbance(1960s-2000s)[J]. Clean-Soil,Air,Water,2015,43(4):561-568.
    [23] MDBMC. The salinity audit of the Murray-darling basin:a 100-year perspective[M]. Canberra:Murray-Darling Basin Commission,1999.
    [24] WHO. Guidelines for drinking water quality(4th ed.)[M].Geneva:World Health Organization,2011.
    [25]朱广伟,秦伯强,张运林,等. 2005-2017年北部太湖水体叶绿素a和营养盐变化及影响因素[J].湖泊科学,2018,30(2):279-295.Zhu G W,Qin B Q,Zhang Y L,et al. Variation and driving factors of nutrients and chlorophyⅡ-a concentrations in northern region of Lake Taihu,China,2005-2017[J]. Journal of Lake Sciences,2018,30(2):279-295.
    [26] Lei K,Han X J,Zhao J,et al. Characterization of metal kinetics and bioavailability using diffusive gradients in thin films technique in sediments of Taihu Lake,China[J]. Ecotoxicology and Environmental Safety,2016,128:153-160.
    [27] Dugan H A,Bartlett S L,Burke S M,et al. Salting our freshwater lakes[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(17):4453-4458.
    [28] Kaushal S S, Likens G E, Pace M L, et al. Freshwater salinization syndrome on a continental scale[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(4):E574-E583.
    [29]韩贵琳,刘丛强.贵州乌江水系的水文地球化学研究[J].中国岩溶,2000,19(1):35-43.Han G L,Liu C Q. Hydrogeochemistry of Wujiang river water in Guizhou Province[J]. Carsologica Sinica,2000,19(1):35-43.
    [30]查慧铭,朱梦圆,朱广伟,等.太湖出入湖河道与湖体水质季节差异分析[J].环境科学,2018,39(3):1102-1112.Zha H M,Zhu M Y,Zhu G W,et al. Seasonal difference in water quality between lake and inflow/outflow rivers of Lake Taihu,China[J]. Environmental Science,2018,39(3):1102-1112.
    [31] Yu T,Zhang Y,Meng W,et al. Characterization of heavy metals in water and sediments in Taihu Lake, China[J].Environmental Monitoring and Assessment,2012,184(7):4367-4382.
    [32]张立成,董文江,郑建勋,等.湘江河流沉积物重金属的形态类型及其形成因素[J].地理学报,1983,38(1):55-64.Zhang L C,Dong W J,Zheng J X,et al. The metalform and form factors of heavy metals in the Xiangjiang river sediments[J]. Acta Geographica Sinica,1983,38(1):55-64.
    [33]翟雨翔,葛淼.水系沉积物重金属研究进展[J].江西农业学报,2009,21(1):127-130.Zhai Y X,Ge M. Research advance in heavy metals in stream sediment[J]. Acta Agriculturae Jiangxi,2009,21(1):127-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700