用户名: 密码: 验证码:
近百年来洱海沉积物有机碳埋藏时空变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatio-temporal patterns of organic carbon burial in the sediment of Lake Erhai in China during the past 100 years
  • 作者:刘会基 ; 刘恩峰 ; 于真真 ; 张恩楼 ; 林琪 ; 王荣 ; 沈吉
  • 英文作者:LIU Huiji;LIU Enfeng;YU Zhenzhen;ZHANG Enlou;LIN Qi;WANG Rong;SHEN Ji;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong,College of Geography and Environment,Shandong Normal University;
  • 关键词:洱海 ; 沉积物 ; 有机碳埋藏 ; 时空变化 ; 驱动机制
  • 英文关键词:Lake Erhai;;sediment;;organic carbon burial;;spatio-temporal variations;;driving mechanism
  • 中文刊名:湖泊科学
  • 英文刊名:Journal of Lake Sciences
  • 机构:中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;中国科学院大学;山东师范大学地理与环境学院"人地协调与绿色发展"山东省高校协同创新中心;
  • 出版日期:2019-01-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:01
  • 基金:国家科技基础性工作专项(2014FY110400);; 国家自然科学基金项目(41672354,41271214)联合资助
  • 语种:中文;
  • 页:284-294
  • 页数:11
  • CN:32-1331/P
  • ISSN:1003-5427
  • 分类号:X524
摘要
湖泊沉积物有机碳埋藏是陆地碳循环中重要的环节,对全球碳平衡起着重要的作用.洱海是云贵高原第二大淡水湖,目前对洱海生态环境变化、重金属与营养盐污染等已展开了较为深入的研究,但对近百年来沉积物有机碳埋藏时空变化与驱动因素缺乏系统的分析.本文通过对洱海北部湖区典型岩芯(编号EH2012)以及其他湖区13个沉积岩芯中有机碳(OC)含量的分析,结合湖泊生态环境与气候因子变化,研究了近百年来沉积物有机碳埋藏时空变化特征与影响因素. C/N摩尔比值表明洱海沉积物中OC以湖泊内源为主,不同湖区岩芯中OC含量变化趋势基本相似.以EH2012岩芯为例,OC含量历史变化可分为3个阶段:1970年以前,表现出较稳定的低值; 1970-2000年,OC含量逐渐增加; 2000年以来,OC含量增加更加明显并达到近百年来的最大值.近百年来,EH2012岩芯有机碳累积速率(OCAR)呈逐渐增加趋势,变化范围为7.9~87.2 g/(m~2·a),平均OCAR(OCAR)为24.1 g/(m~2·a); OCAR变化与OC含量和区域气温呈显著正相关,全球变暖与营养驱动下的湖泊生产力提高可能是近年来OCAR增加的主要原因之一.基于重金属Cd污染初始时间建立的时标,1982年以来不同湖区OCAR为17.1~44.7 g/(m~2·a),采用克里金插值得到的全湖OCAR均值为31.4 g/(m~2·a);不同湖区OCAR与磷累积速率呈显著正相关,指示了湖泊营养水平对有机碳埋藏空间变化的重要影响.
        Organic carbon( OC) burial in lake sediments plays important roles in the terrestrial carbon cycle and global carbon balance. Lake Erhai is the second largest freshwater lake in the Yunnan-Guizhou Plateau. There have been many studies on the changes in the lake ecological environment and pollution of trace metals and nutrients,but limited knowledge is available on the spatiotemporal patterns in OC burial in sediment. Based on the analysis of OC content in core EH2012 and other 13 sedimentary cores in Lake Erhai,the characteristics in temporal and spatial variations of OC burial in recent 100 years were studied,and their relationships with the climatic,anthropogenic and ecological factors were discussed. The C/N molar ratio indicated that the sedimentary OC in Lake Erhai were mainly autochthonous in source,and they displayed similar vertical trends in the cores from different lake areas. In core EH2012,for example,the OC content displayed three stages variations. The OC content were low before 1970 AD,followed by a gradual increase between 1970 and 2000 AD,then increased sharply after 2000 AD and reached the maxima in recent years. The organic carbon accumulation rate( OCAR) increased gradually over the past 100 years as shown in core EH2012,and ranged from 7. 9 to 87. 2 g/( m~2·a),with an average value( OCAR) of 24.1 g/( m~2·a). The OCAR variations in cores EH2012 were positively correlated with the OC content and regional temperature,suggesting that the enhancing lake primary productivity driven by both nutrients levels and temperature should be one of major factors responsible for rising OCAR. Using the 1982 chronology mark established by initial time of Cd pollution in the cores,the OCAR since 1982 AD showed large diversity in different lake areas,ranging from 17.1 to 44.7 g/( m~2·a),and it averaged 31.4 g/( m~2·a) for the whole lake based on the Kriging interpolation. The spatial variation in OCAR is positively correlated with the phosphorus accumulation rate,which also suggests the driving mechanism of nutrient levels on the OC burial.
引文
[1] Battin TJ,Luyssaert S,Kaplan LA et al. The boundless carbon cycle. Nature Geoscience,2009,2(9):598-600. DOI:10.1038/ngeo618.
    [2] Cole JJ,Pairie YT,Caraco NF et al. Plumbing the global carbon cycle:Integrating inland waters into the terrestrial carbon budget. Ecosystems,2007,10(1):172-185. DOI:10.1007/s10021-006-9013-8.
    [3] Mendon9a R,Müller RA,Clow D et al. Organic carbon burial in global lakes and reservoirs. Nature Communications,2017,8(1):1694. DOI:10.1038/s41467-017-01789-6.
    [4] Dean WE,Gorham E. Magnitude and significance of carbon burial in lakes,reservoirs,and peatlands. Geology,1998,26(6):535-538. DOI:10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO; 2.
    [5] Dietz RD. Engstrom DR,Anderson NJ. Patterns and drivers of change in organic carbon burial across a diverse landscape:Insights from 116 Minnesota lakes. Global Biogeochemical Cycles,2015,29(5):708-727. DOI:10.1002/2014GB004952.
    [6] Heathcote AJ,Downing JA. Impacts of eutrophication on carbon burial in freshwater lakes in an intensively agricultural landscape. Ecosystems,2012,15(1):60-70. DOI:10.1007/s10021-011-9488-9.
    [7] Anderson NJ,Bennion H,Lotter AF. Lake eutrophication and its implications for organic carbon sequestration in Europe.Global Change Biology,2014,20(9):2741-2751. DOI:10.1111/gcb.12584.
    [8] Song C,Dodds WK,Rüegg J et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nature Geoscience,2018,11(6):415-420. DOI:10.1038/s41561-018-0125-5.
    [9] Brothers,SM,Hilt S,Attermeyer K et al. A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow,eutrophic lake. Ecosphere,2013,4(11):4849-4849. DOI:10.1890/es13-00247.1.
    [10] Mackay EB,Jones ID,Folkard AM et al. Contribution of sediment focussing to heterogeneity of organic carbon and phosphorus burial in small lakes. Freshwater Biology,2012,57(2):290-304. DOI:10.1111/j.1365-2427.2011.02616.x.
    [11] Zhang FJ,Xue B,Yao SC et al. Organic carbon burial from multi-core records in Hulun Lake,the largest lake in northernChina. Quaternary International,2018,475:80-90. DOI:10.1016/j.quaint.2017.12.005.
    [12] Zhang FJ,Yao SC,Xue B et al. Organic carbon burial in Chinese lakes over the past 150 years. Quaternary International,2017,438:94-103. DOI:10.1016/j.quaint.2017.03.047.
    [13] Dong XH,Anderson NJ,Yang XD et al. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration. Global Change Biology,2012,18(7):2205-2217. DOI:10. 1111/j. 1365-2486. 2012.02697.x.
    [14] Zhang FJ,Xue B,Yao SC. Organic carbon burial and its driving mechanism in the sediment of Lake Hulun,northeastern Inner Mongolia,since the mid-Holocene. J Lake Sci,2018,30(1):234-244. DOI:10.18307/2018.0123.[张风菊,薛滨,姚书春.中全新世以来呼伦湖沉积物碳埋藏及其影响因素分析.湖泊科学,2018,30(1):234-244.]
    [15] Zhang FJ. A first estimate of organic carbon burial in Holocene Megathermal lake sediments in China[Dissertaion]. Beijing:University of Chinese Academy of Sciences,2014.[张风菊.大暖期中国湖泊沉积物碳埋藏的初步研究[学位论文].北京:中国科学院大学,2014.]
    [16] Han T,Peng WQ,Li HE et al. Evolution of eutrophication in the Erhai Lake and its relevant research progress. Journal of China Institute of Water Resources and Hydropower Research,2005,3(1):71-73.[韩涛,彭文启,李怀恩等.洱海水体富营养化的演变及其研究进展.中国水利水电科学研究院学报,2005,3(1):71-73.]
    [17] Wu GG,Ni LY,Cao T et al. Patterns and controls of dynamics of macrophytes and phytoplankton changes in Lake Erhai From 1977 to 2009. Acta Hydrobiolohica Sinica,2013,37(5):912-918. DOI:10.7541/2013.118.[吴功果,倪乐意,曹特等.洱海水生植物与浮游植物的历史变化及影响因素.水生生物学报,2013,37(5):912-918.]
    [18] Zheng GQ,Yu XX,Jiang N et al. The cause for chang of water quality of Erhai Lake and prediction of water quality. Journal of Northeast Forestry University,2004,32(1):99-102.[郑国强,于兴修,江南等.洱海水质的演变过程及趋势.东北林业大学学报,2004,32(1):99-102.]
    [19] Wang SM,Dou HS eds. China lakes record. Beijing:Science Press,1998.[王苏民,窦鸿身.中国湖泊志.北京:科学出版社,1998.]
    [20] Ding WR. A study on the characteristic of climate change around the erhai area,China. Resources and Environment in the Yangtze Basin,2016,25(4):599-605. DOI:10.11870/cjlyzyyhj201604009.[丁文荣.环洱海地区气候变化特征研究.长江流域资源与环境,2016,25(4):599-605.]
    [21] Wang R. Complex dynamical changes in the trophic status of Erhai Lake,China,based on palaeolimnology and modelling[Dissertation]. Southampton:University of Southampton,2013.
    [22] Ni ZK,Wang SR,Jin XC et al. Study on the evolution and characteristics of eutrophication in the typical lakes on YunnanGuizhou Plateau. Acta Scientiae Circumstantiae,2011,31(12):2681-2689.[倪兆奎,王圣瑞,金相灿等.云贵高原典型湖泊富营养化演变过程及特征研究.环境科学学报,2011,31(12):2681-2689.]
    [23] Li JJ. Research and countermeasures for Erhai Lake eutrophication. J Lake Sci,2001,13(2):187-192. DOI:10.18307/2001.0214.[李杰君.洱海富营养化探析及防治建议.湖泊科学,2001,13(2):187-192.]
    [24] Appleby PG. Chronostratigraphic techniques in recent sediments∥Last MW,Smol PJ eds. Tracking environmental change using lake sediments. Vol 1:Basin analysis, coring and chronological techniques. London:Kluwer Academic Publisher,2001.
    [25] Lin Q. Sedimentary enviroment change in Lugu Lake during the last two hundreds years[Dissertation]. Beijing:University of Chinese Academy of Sciences,2016.[林琪.云南泸沽湖近200年沉积环境变化研究[学位论文].北京:中国科学院大学,2016.]
    [26] Chen XH,Qian XY,Li XP et al. Long-term trend of eutrophication state of Lake Erhai in 1988-2013 and analyses of its socio-economic drivers. J Lake Sci,2018,30(1):70-78. DOI 10.18307/2018.0107.[陈小华,钱晓雍,李小平等.洱海富营养化时间演变特征(1988-2013年)及社会经济驱动分析.湖泊科学,2018,30(1):70-78.]
    [27] Li QQ,Huo SL,Zan FY et al. The distribution of nutrients and particle size,their correlations in surface sediments of different lakes,China. Journal of Agro-Environment Science,2010,29(12):2390-2397.[李青芹,霍守亮,昝逢宇等.我国湖泊沉积物营养盐和粒度分布及其关系研究.农业环境科学学报,2010,29(12):2390-2397.]
    [28] Clow DW,Stackpoole SM,Verdin KL et al. Organic carbon burial in lakes and reservoirs of the conterminous United States. Environmental Science&Technology,2015,49(13):7614-7622. DOI:10.1021/acs.est.5b00373.
    [29] Downing JA,Cole JJ,Middelburg JJ et al. Sediment organic carbon burial in agriculturally eutrophic impoundments overthe last century. Global Biogeochemical Cycles,2008,22(1):1-10. DOI:10.1029/2006GB002854.
    [30] Ferland M,Prairie YT,Teodoru C et al. Linking organic carbon sedimentation,burial efficiency,and long-term accumulation in boreal lakes. Journal of Geophysical Research Biogeosciences, 2014, 119(5):836-847. DOI:10.1002/2013jg002345.
    [31] Katsev S,Crowe SA. Organic carbon burial efficiencies in sediments:The power law of mineralization revisited. Geology,2015,43(7):607-610. DOI:10.1130/g36626.1.
    [32] Sobek S,Durischkaiser E,Zurbrügg R et al. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnology&Oceanography,2009,54(6):2243-2254. DOI:10. 4319/lo. 2009. 54.6.2243.
    [33] Meyers PA. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology,1994,144(3/4):289-302. DOI:10.1016/0009-2541(94)90059-0.
    [34] Ni ZK. Studies on the history pollution and the sources of organic matter and nitrogen in sediments of lake[Dissertation].Hohhot:Inner Mongolia Agricultural University,2011.[倪兆奎.湖泊沉积物污染历史及有机质和氮来源研究[学位论文].呼和浩特:内蒙古农业大学,2011.]
    [35] Yuan JX,Wang YZ. Level in Erhai Lake. Transactions of Oceanology and Limnology,1985,(3):9-14.[袁静秀,王银珠.洱海的水位.海洋湖沼通报,1985,(3):9-14.]
    [36] Pan HX,Wang YF,Dong YS. Factor analysis of eutrophication in Erhai Lake. J Lake Sci,1999,11(2):184-188. DOI:10.18307/1999.0217.[潘红玺,王云飞,董云生.洱海富营养化影响因素分析.湖泊科学,1999,11(2):184-188.]
    [37] Lu HB,Chen GJ,Cai YF et al. Cladoceran community responses to eutrophication,fish introduction and macrophyte degradation over the past century in Lake Erhai. J Lake Sci,2016,23(1):132-140. DOI:10.18307/2016.0115.[卢慧斌,陈光杰,蔡燕凤等.近百年来枝角类群落响应洱海营养水平、外来鱼类引入以及水生植被变化的特征.湖泊科学,2016,23(1):132-140.]
    [38] Carnero-Bravo V,Merino-Ibarra M,Ruiz-Fernandez AC et al. Sedimentary record of water column trophic conditions and sediment carbon fluxes in a tropical water reservoir(Valle de Bravo,Mexico). Environmental Science&Pollution Research,2015,22(6):4680-4694. DOI:10.1007/s11356-014-3703-0.
    [39] Gudasz C,Bastviken D,Premke K et al. Temperature-controlled organic carbon mineralization in lake sediments. Nature,2010,466(7305):478-482. DOI:10.1038/nature09186.
    [40] Gudasz C,Sobek S,Bastviken D et al. Temperature sensitivity of organic carbon mineralization in contrasting lake sediments. Journal of Geophysical Research Biogeosciences,2015,120(7):1215-1225. DOI:10.1002/2015jg002928.
    [41] Sobek S,S9derbck B,Karlsson S et al. A carbon budget of a small humic lake:an example of the importance of lakes for organic matter cycling in boreal catchments. Ambio,2006,35(8):469-475. DOI:10.1579/0044-7447(2006)35.
    [42] Glman V,Rydberg J,De-Luna SS et al. Carbon and nitrogen loss rates during aging of lake sediment:Changes over 27years studied in varved lake sediment. Limnology&Oceanography,2008,53(3):1076-1082. DOI:10.2307/40058220.
    [43] Huang C,Yao L,Zhang Y et al. Spatial and temporal variation in autochthonous and allochthonous contributors to increased organic carbon and nitrogen burial in a plateau lake. Science of The Total Environment,2017,603/604(Supplement C),390-400. DOI:10.1016/j.scitotenv.2017.06.118.
    [44] Li Y,Li RW,Shang YM et al. The environment sedimentological study of Erhai Lake—Correlation between nutrients and particle size distribution in superficial sediments. Acta Sedimentologica Sinica,2000,18(3):346-348.[李原,李任伟,尚榆民等.洱海环境沉积学研究—表层沉积物营养盐与粒度分布.沉积学报,2000,18(3):346-348.]
    [45] Chu ZS,Ye BB,Tian GP et al. Spatial distribution characteristics and estimation of submerged plant biomass in Lake Erhai. Research of Environmental Sciences,2014,27(1):1-5.[储昭升,叶碧碧,田桂平等.洱海沉水植物空间分布及生物量估算.环境科学研究,2014,27(1):1-5.]
    [46] Yang W,Deng DG,Zhang S et al. Seasonal dynamic and spatial distribution of chlorophyll-a concentration in Lake Erhai.J Lake Sci,2012,24(6):858-864. DOI:10.18307/2012.0608.[杨威,邓道贵,张赛等.洱海叶绿素a浓度的季节动态和空间分布.湖泊科学,2012,24(6):858-864.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700