用户名: 密码: 验证码:
1952—2016年长江经济带天然与人为氮输入时空演变趋势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatiotemporal evolution of natural and anthropogenic nitrogen inputs to Yangtze River Economic Belt from 1952 to 2016
  • 作者:高伟 ; 白辉 ; 严长安 ; 陈岩
  • 英文作者:GAO Wei;BAI Hui;YAN Chang′an;CHEN Yan;School of Ecology and Environmental Sciences, Yunnan University;United Center for Eco-Environment in Yangtze River Economic Belt, Chinese Academy for Environmental Planning;Kunming Institute of Environmental Science;
  • 关键词:人类活动净氮输入 ; 天然固氮 ; 长江经济带 ; 营养盐 ; EKC曲线 ; 活性氮
  • 英文关键词:net anthropogenic nitrogen input;;natural nitrogen fixation;;Yangtze River Economic Belt;;nutrient;;EKC curve;;reactive nitrogen
  • 中文刊名:环境科学学报
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:云南大学生态学与环境学院;环境保护部环境规划院长江经济带生态环境联合研究中心;昆明市环境科学研究院;
  • 出版日期:2019-04-04 16:51
  • 出版单位:环境科学学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金(No.41701631);; 云南省基础研究计划青年项目(No.Y0120160068)
  • 语种:中文;
  • 页:298-307
  • 页数:10
  • CN:11-1843/X
  • ISSN:0253-2468
  • 分类号:X52
摘要
过量氮输入是水体氮污染的关键驱动因子,解析氮输入的结构和时空变化模式成为氮素环境管理的重要基础和难点.基于1952—2016年长江经济带各地区氮活动数据,分别构建了天然氮输入和人为氮输入模型,评估了氮输入负荷的时空变化特征.结果表明:①长江经济带氮输入负荷总体越过EKC曲线拐点进入由增长向下降的发展阶段,拐点出现在人均GDP为35777~36299元·人~(-1)时,发生时间为"十二五"时期,主要原因是化肥和食物输入下降;②氮输入负荷存在显著的时空差异,东部地区表现为倒U型,中部为S型,西部为J型,表明氮负荷存在从东向西的空间转移,西部地区成为氮输入负荷增长的热点地区,这与东部地区化肥施用量下降有关;③人为输入是长江经济带氮输入的主要来源,输入量及其占总输入的比例均呈现显著的增长趋势,空间上表现为从西到东部逐步递增的变化规律,与氮驱动力分布一致;④植被的多年平均固氮量为1771 kg·km~(-2)·a~(-1),其中,非农作物的固氮速率为763 kg·km~(-2)·a~(-1),植被固氮量的年际波动较小,天然输入对长江经济带总体氮输入影响较小.
        Excessive nitrogen(N) inputs from anthropogenic and natural sources are key drivers of increasing nitrogen loads in waters, and it is of great importance to identify nitrogen sources to establish effective environmental policy. Based on nitrogen activity data from 1952 to 2016 in Yangtze River Economic Belt, anthropogenic and natural N inputs models were built to estimate spatiotemporal evolution of N in the region. Results show that ① N inputs to the Yangtze River Economic Belt have overall crossed the turning point of EKC curve, reversing from increasing trend to decreasing trend due to the decrease of fertilizer and food inputs. The turning point lies in the 12~(th) Five-year Plan period(2011—2015) with the GDP per capita between 35777~36299 RMB. ②There are huge variations of N inputs among different regions of Yangtze River Economic Belt. N inputs in the east, middle and west regions follow inversed U shape, S shape and J shape, respectively. The decrease of fertilizer use in east region is responsible for the change. ③Human activiety induced dominate N inputs in Yangtze River Economic Belt. Both human-induced loads and contribution to the total N inputs of the region have increased over the period. ④Nitrogen fixation of vegetation is 1771 kg·km~(-2)·a~(-1) based on multi-year average and non-crop sources accounts for 763 kg·km~(-2)·a~(-1) with little inter-annual variability, indicating a relative small contribution of vegetation N fixation to total N inputs in Yangtze River Economic Belt.
引文
Boyer E W,Howarth R W,Galloway J N,et al.2006.Riverine nitrogen export from the continents to the coasts[J].Global Biogeochemical Cycles,20(1):1-91
    Breemen V,Boyer E W.2002.Where did all the nitrogen go?Fate of nitrogen inputs to large watersheds in the northeastern U.S.A.[J].Biogeochemistry,57/58(1):267-293
    Chen D,Huang H,Hu M,et al.2014.Influence of lag effect,soil release,and climate change on watershed anthropogenic nitrogen inputs and riverine export dynamics[J].Environmental Science & Technology,48(10):5683-5690
    Chen F,Hou L,Liu M,et al.2016.Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export[J].Journal of Geophysical Research-Biogeosciences,121(2):451-465
    Clark C M,Bell M D,Boyd J W,et al.2017.Nitrogen-induced terrestrial eutrophication:cascading effects and impacts on ecosystem services[J].Ecosphere,8(7):E01877,DOI:10.1002/ecs2.1877
    Cleveland C C,Townsend A R,Schimel D S,et al.1999.Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems[J].Global Biogeochemical Cycles,13(2):623-646
    Filoso S,Martinelli L A,Howarth R W,et al.2006.Human activities changing the nitrogen cycle in Brazil[J].Biogeochemistry,79(1/2):61-89
    Galloway J N,Dentener F J,Capone D G,et al.2004.Nitrogen cycles:Past,present,and future[J].Biogeochemistry,70(2):153-226
    高伟,高波,严长安,等.2016.鄱阳湖流域人为氮磷输入演变及湖泊水环境响应[J].环境科学学报,36(9):3137-3145
    Han Y,Fan Y,Yang P,et al.2014.Net anthropogenic nitrogen inputs (NANI) index application in Mainland China[J].Geoderma,213:87-94
    Hong B,Swaney D P,Mccrackin M,et al.2017.Advances in NANI and NAPI accounting for the Baltic drainage basin:spatial and temporal trends and relationships to watershed TN and TP fluxes[J].Biogeochemistry,133(3):245-261
    Howarth R W,Billen G,Swaney D,et al.1996.Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean:Natural and human influences[J].Biogeochemistry,35(1):75-139
    Huang H,Chen D,Zhang B,et al.2014.Modeling and forecasting riverine dissolved inorganic nitrogen export using anthropogenic nitrogen inputs,hydroclimate,and land-use change[J].Journal of Hydrology,517(5):95-104
    Koven C D,Riley W J,Subin Z M,et al.2013.The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4[J].Biogeosciences,10(11):7109-7131
    Lamarque J F,Bond T C,Eyring V,et al.2010.Historical (1850—2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols:methodology and application[J].Atmospheric Chemistry and Physics,10(15):7017-7039
    Li H,Tang H,Shi X,et al.2014.Increased nutrient loads from the Changjiang (Yangtze) River have led to increased harmful algal blooms[J].Harmful Algae,39:92-101
    李登科,王钊.2018.基于MOD17A3的中国陆地植被NPP变化特征分析[J].生态环境学报,27(3):397-405
    李莉,周宏飞,包安明.2014.中亚地区气候生产潜力时空变化特征[J].自然资源学报,29(2):285-294
    李茂田,孙千里,王红,等.2014.长江流域水库过滤器效应对入海溶解硅通量的影响[J].湖泊科学,26(4):505-514
    Lu C,Tian H.2014.Half-century nitrogen deposition increase across China:A gridded time-series data set for regional environmental assessments[J].Atmospheric Environment,97(SI):68-74
    Payne R J,Dise N B,Field C D,et al.2017.Nitrogen deposition and plant biodiversity:past,present,and future[J].Frontiers in Ecology and the Environment,15(8):431-436
    Seitzinger S P,Phillips L.2017.Nitrogen stewardship in the Anthropocene[J].Science,357(6349):350-351
    Thornton P E,Lamarque J,Rosenbloom N A,et al.2007.Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability[J].Global Biogeochemical Cycles,21:GB4018,DOI:10.1029/2006GB002868
    Wang J,Li X,Yan W,et al.2014.Watershed nitrogen export model related to changing nitrogen balance and hydrology in the Changjiang River basin[J].Nutrient Cycling in Agroecosystems,98(1):87-95
    王佳宁,李新艳,晏维金,等.2016.基于MEA情景的长江流域氮平衡及溶解态无机氮通量:流域-河口/海湾氮综合管理[J].环境科学学报,36(1):38-46
    Yan W,Mayorga E,Li X,et al.2010.Increasing anthropogenic nitrogen inputs and riverine DIN exports from the Changjiang River basin under changing human pressures[J].Global Biogeochemical Cycles,24(4):GB06A06,DOI:10.1029/2009GB003575
    叶琳琳,张民,孔繁翔,等.2014.水生生态系统蓝藻固氮作用研究进展与展望[J].湖泊科学,26(1):9-18
    张汪寿,李叙勇,杜新忠,等.2014.流域人类活动净氮输入量的估算、不确定性及影响因素[J].生态学报,34(24):7454-7464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700