用户名: 密码: 验证码:
基于CERES-Rice模型的湖南省一季稻极端高温损失评估及适应性措施
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Yield losses caused by extreme high-temperature events and potential adaptive measures for single rice in Hunan Province based on the CERES-Rice model
  • 作者:张亮亮 ; 张朝 ; 张静 ; 冯博彦
  • 英文作者:ZHANG Liangliang;ZHANG Zhao;ZHANG Jing;FENG Boyan;Key Laboratory of Environmental Change and Natural Disaster, Faculty of Geographical Science, Beijing Normal University;
  • 关键词:一季稻 ; 极端高温事件 ; CERES-Rice ; 灾损率 ; 适应性措施 ; 湖南省
  • 英文关键词:single rice;;extreme high temperature events(EHTEs);;CERES-Rice;;yield loss;;adaptation measures;;Hunan Province
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:环境演变与自然灾害教育部重点实验室北京师范大学地理科学学部;
  • 出版日期:2019-05-31 16:53
  • 出版单位:生态学报
  • 年:2019
  • 期:17
  • 基金:国家自然科学基金项目(31561143003,41571493,41571088)
  • 语种:中文;
  • 页:111-121
  • 页数:11
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S511
摘要
以湖南省4个农业气象站点的一季稻为研究对象,基于1990—2012年逐日气象数据,精细的土壤以及田间管理记录,分析了过去23年极端高温的变化趋势,并利用校准后的CERES-Rice模型评价了高温热害的致损率,着重探讨了不同的适应性措施对缓解高温热害的作用,以期提出科学合理的减灾措施来保障我国的粮食安全。结果表明:(1)CERES-Rice能很好地捕捉本研究区不同天气和管理条件下的水稻物候期和产量,除桑植站开花期外,其余各参数的模拟误差均小于10%。(2)一季稻生育期内极端高温频发且在本世纪有增强趋势,灾损率由高到低依次为古丈>桑植>怀化>靖州,分别为10.4%,8.2%,7.5%和4%。随着气候变暖的加剧,一季稻生产将面临着日趋严重的高温热害风险。(3)选用耐高温品种产量最大可提升29.8%,但在极端高温年份,提高品种高温抗性的方法收效甚微。调节播种期会导致-25%—20%的产量波动,其中提前10 d或5 d种植均可缓解极端高温的危害。增加灌溉的贡献为1%—8%,其中6—8 cm灌水量效果最佳。极端高温期间增施氮肥的贡献稳定且显著,平均增产2%—20%,80—100 kg/hm~2的施氮量能带来较为理想的避热增产效果。
        By applying CERES-Rice, we firstly assessed the yield losses of single rice from extreme high-temperature events(EHTEs), and then tried to find the potential adaptation measures at four agro-meteorological stations in Hunan Province based on detailed information(including daily climatic observations, fine soil, field management and crop growing records from 1990 to 2012). We found that CERES-Rice was a suitable tool for the study due to the low simulated errors(<10%), with the exception of simulated flowering days at Sangzhi station(13.22%). EHTEs were occurred frequently during single rice growth seasons and a significant increased trend was observed during the 21~(st) century. Moreover, the yield losses caused by EHTEs were ordered by Guzhang > Sangzhi > Huaihua > Jingzhou, with the corresponding values of 10.4%, 8.2%, 7.5%, and 4%, respectively. Finally, several potential adaptation measures were evaluated by the calibrated CERES-Rice, and we found that(1) the yield could be enhanced by 29.8% through planting a cultivar with a higher temperature tolerance coefficient. However, such a cultivar will show little effect on enhancing yield in the years with extremely high temperatures.(2) Adjusting sowing dates would cause a yield variability ranging from-25% to 20%, with a positive effect when planting 5 or 10 days in advance.(3) Increased irrigation would alleviate heat damage and increase yield by 1%—8%, with the best effect when irrigating approximately the depth of 6—8 cm.(4) Applying nitrogen fertilizer during EHTEs would contribute significantly to the final increased yields of 2%—20%. On average, 80—100 kg/hm~2 nitrogen application would produce an ideal effect.
引文
[1] Godfray H C J,Beddington J R,Crute I R,Haddad L,Lawrence D,Muir J F,Pretty J,Robinson S,Thomas S M,Toulmin C.Food security:the challenge of feeding 9 billion people.Science,2010,327(5967):812- 818.
    [2] Tilman D,Balzer C,Hill J,Befort B L.Global food demand and the sustainable intensification of agriculture.Proceedings of the National Academy of Sciences of the United States of America,2011,108(50):20260- 20264.
    [3] Seck P A,Diagne A,Mohanty S,Wopereis M C S.Crops that feed the world 7:rice.Food Security,2012,4(1):7- 24.
    [4] Cheajesadagul P,Arnaudguilhem C,Shiowatana J,Siripinyanond A,Szpunar J.Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry.Food Chemistry,2013,141(4):3504- 3509.
    [5] Wang P,Zhang Z,Song X,Chen Y,Wei X,Shi P J,Tao F L.Temperature variations and rice yields in China:historical contributions and future trends.Climatic Change,2014,124(4):777- 789.
    [6] Zhang Z,Chen Y,Wang C Z,Wang P,Tao F L.Future extreme temperature and its impact on rice yield in China.International Journal of Climatology,2017,37(14):4814- 4827.
    [7] IPCC.Summary for policymakers//Stocker T F,Qin D,Plattner G K,Tignor M,Allen S K,Boschung J,Nauels A,Xia Y,Bex V,Midgley P M,eds.Climate change 2013:the physical science basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,UK:Cambridge University Press,2013.
    [8] FAOSTAT database 2014.[2017-03- 11].http://www.fao.org/faostat/en/#data/QC.
    [9] Ray D K,Ramankutty N,Mueller N D,West P C,Foley J A.Recent patterns of crop yield growth and stagnation.Nature Communications,2012,3:1293.
    [10] 何亮,吴门新,侯英雨,赵刚,靳宁,于强.基于极值概率分布函数的中国早稻高温热害时空分布统计特征.中国生态农业学报,2018,26(11):1601- 1612.
    [11] 杨秉臻,金涛,陆建飞.长江中下游地区近20年水稻生产与优势的变化.江苏农业科学,2018,46(19):62- 67.
    [12] 刘文茹,陈国庆,曲春红,居辉,刘勤.RCP情景下长江中下游麦稻二熟制气候生产潜力变化特征研究.生态学报,2018,38(1):156- 166.
    [13] 王琛智,张朝,张静,陶福禄,陈一,丁浒.湖南省地形因素对水稻生产的影响.地理学报,2018,73(9):1792- 1808.
    [14] 张倩,赵艳霞,王春乙.长江中下游地区高温热害对水稻的影响.灾害学,2011,26(4):57- 62.
    [15] 郭安红,何亮,韩丽娟,张蕾.早稻高温热害强度指数构建及气候危险性评价.自然灾害学报,2018,27(5):96- 106.
    [16] 姚凤梅,张佳华.1981—2000年水稻生长季相对极端高温事件及其气候风险的变化.自然灾害学报,2009,18(4):37- 42.
    [17] 杨太明,陈金华.江淮之间夏季高温热害对水稻生长的影响.安徽农业科学,2007,35(27):8530- 8531.
    [18] 杨舒畅,申双和,陶苏林.长江中下游地区一季稻高温热害时空变化及其风险评估.自然灾害学报,2016,25(2):78- 85.
    [19] 王主玉.未来气候变化对长江中下游稻区水稻生产的影响研究[D].南京:南京信息工程大学,2011.
    [20] 王连喜,任景全,李琪.未来气候变化情景下江苏水稻高温热害模拟研究Ⅱ:孕穗-抽穗期水稻对高温热害的适应性分析.中国农业气象,2014,35(2):206- 213.
    [21] Bai H Z,Tao F L,Xiao D P,Liu F S,Zhang H.Attribution of yield change for rice-wheat rotation system in China to climate change,cultivars and agronomic management in the past three decades.Climatic Change,2016,135(3/4):539- 553.
    [22] Liu Y J,Chen Q M,Ge Q S,Dai J H,Qin Y,Zou X T,Chen J.Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China.Agricultural and Forest Meteorology,2018,248:518- 526.
    [23] Jones J W,Hoogenboom G,Porter C H,Boote K J,Batchelor W D,Hunt L A,Wilkens P W,Singh U,Gijsman A J,Ritchie J.The DSSAT cropping system model.European Journal of Agronomy,2003,18(3/4):235- 265.
    [24] Vashisht B B,Jalota S K.Impact of temperature variability and management interventions on productivity of wheat.Journal of Agrometeorology,2018,20(1):11- 15.
    [25] Braga R P,Cardoso M J,Coelho J P.Crop model based decision support for maize (Zea mays L.) silage production in Portugal.European Journal of Agronomy,2008,28(3):224- 233.
    [26] Zhang H,Tao F L,Xiao D P,Shi W J,Liu F S,Zhang S,Liu Y J,Wang M,Bai H Z.Contributions of climate,varieties,and agronomic management to rice yield change in the past three decades in China.Frontiers of Earth Science,2016,10(2):315- 327.
    [27] 黎用朝,刘三雄,曾翔,黄志才,吴云天,方宝华,闵军.湖南水稻生产概况、发展趋势及对策探讨.湖南农业科学,2008,(2):129- 133.
    [28] Almorox J,Hontoria C.Global solar radiation estimation using sunshine duration in Spain.Energy Conversion and Management,2004,45(9/10):1529- 1535.
    [29] Tao F L,Yokozawa M,Zhang Z.Modelling the impacts of weather and climate variability on crop productivity over a large area:a new process-based model development,optimization,and uncertainties analysis.Agricultural and Forest Meteorology,2009,149(5):831- 850.
    [30] 刘文茹,陈国庆,刘恩科,居辉,刘勤.基于DSSAT模型的长江中下游冬小麦潜在产量模拟研究.生态学报,2018,38(9):3219- 3229.
    [31] Chavez E,Conway G,Ghil M,Sadler M.An end-to-end assessment of extreme weather impacts on food security.Nature Climate Change,2015,5(11):997- 1001.
    [32] 李洋,王玉辉,吕晓敏,叶永昌,汲玉河.1961- 2013年东北三省极端气候事件时空格局及变化.资源科学,2015,37(12):2501- 2513.
    [33] 张蕾,侯英雨,杨冰韵,黄大鹏.长江流域一季稻高温热害分布特征及风险分析.自然灾害学报,2018,27(2):107- 115.
    [34] 赵海燕.气候变化对长江中下游地区水稻生产的影响及适应性研究[D].北京:中国农业科学院,2006.
    [35] 赵决建.氮磷钾施用量及比例对水稻抗高温热害能力的影响.土壤肥料,2005,(5):13- 16.
    [36] 宋忠华,庞冰,刘厚敖.灌水深度对杂交稻生产中高温危害的缓解效果初探.杂交水稻,2006,21(2):72- 73.
    [37] 张彬,郑建初,黄山,田云录,彭兰,卞新民,张卫建.抽穗期不同灌水深度下水稻群体与大气的温度差异.应用生态学报,2008,19(1):87- 92.
    [38] He G,Cui Z L,Ying H,Zheng H F,Wang Z H,Zhang F S.Managing the trade-offs among yield increase,water resources inputs and greenhouse gas emissions in irrigated wheat production systems.Journal of Cleaner Production,2017,164:567- 574.
    [39] Meng Q F,Wang H F,Yan P,Pan J X,Lu D J,Cui Z L,Zhang F S,Chen X P.Designing a new cropping system for high productivity and sustainable water usage under climate change.Scientific Reports,2017,7:41587.
    [40] Chen X P,Cui Z L,Fan M S,Vitousek P,Zhao M,Ma W Q,Wang Z L,Zhang W J,Yan X Y,Yang J C,Deng X P,Gao Q,Zhang Q,Guo S W,Ren J,Li S Q,Ye Y L,Wang Z H,Huang J L,Tang Q Y,Sun Y X,Peng X L,Zhang J W,He M R,Zhu Y J,Xue J Q,Wang G L,Wu L,An N,Wu L Q,Ma L,Zhang W F,Zhang F S.Producing more grain with lower environmental costs.Nature,2014,514(7523):486- 489.
    [41] Peng S B,Buresh R J,Huang J L,Zhong X H,Zou Y B,Yang J C,Wang G H,Liu Y Y,Hu R F,Tang Q Y,Gui K H,Zhang F S,Dobermann A.Improving nitrogen fertilization in rice by site specific N management.A review.Agronomy for Sustainable Development,2010,30(3):649- 656.
    [42] Ju X T,Xing G X,Chen X P,Zhang S L,Zhang L J,Liu X J,Cui Z L,Yin B,Christie P,Zhu Z L,Zhang F S.Reducing environmental risk by improving N management in intensive Chinese agricultural systems.Proceedings of the National Academy of Sciences of the United States of America,2009,106(9):3041- 3046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700